CMSC 341 Lecture 5 Asymptotic Analysis (Continued)

Based on slides from previous iterations at UMBC

Today's Topics

- More on Big O notation
 - Examples
 - Big Omega (Ω)
 - Big Theta (Θ)
- More detail on proof by induction
- In-class worksheet

First, an Explanation from Last Class...

Big O: Example 4

Code:

```
sum2 = 0;
for (i = 1; i <= n; i++) {
  for (j = 1; j <= i; j++) {
    sum2++;
  }
}</pre>
```

Complexity:
 Quadratic – O(n²)

Big O: Example 4

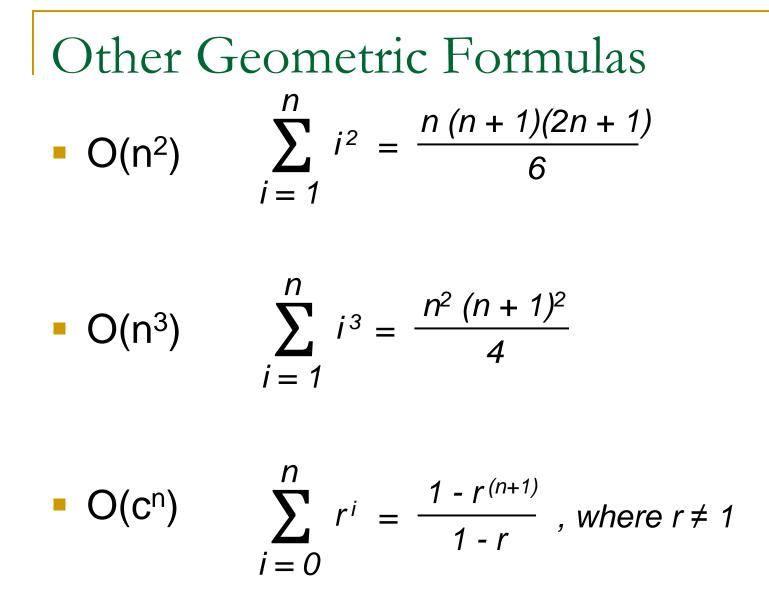
- Code: sum2 = 0;for $(i = 1; i \le n; i++)$ { for (j = 1; j <= i; j++) {</pre> sum2++; 🚄 how many times do we execute this statement? $1 + 2 + 3 + 4 + \dots + n - 2 + n - 1 + n$ Complexity:
 - Quadratic O(n²)

Expressing as a summation

Can we express this as a summation?

• Yes!
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Does this have a known formula?
 Yes!
- What does this formula multiply out to?
 (n² + n) / 2
 or O(n²)



Big O: Example 5

- Code: sum3 = 0;for $(i = 1; i \le n; i++)$ { for (j = 1; j <= i; j++) {</pre> sum3++; } } for (k = 0; k < n; k++) { a[k] = k;}
- Complexity:
 - Quadratic O(n²)

Big O: Example 6

Code:

```
sum4 = 0;
for (k = 1; k <= n; k *= 2)
for (j = 1; j <= n; j++) {
    sum4++;
}
```

Complexity:O(n log n)

More Help with Summations

- Mr. Lupoli's notes on Blackboard
 "Lupoli_MathReviewNotes.doc"
- Simplifying functions for geometric series
- Solving summations quickly
- Mathematical series shortcuts
- Reading sigma notation
- And more!

Big Omega (Ω) and Big Theta(Θ)

"Big" Notation (words)

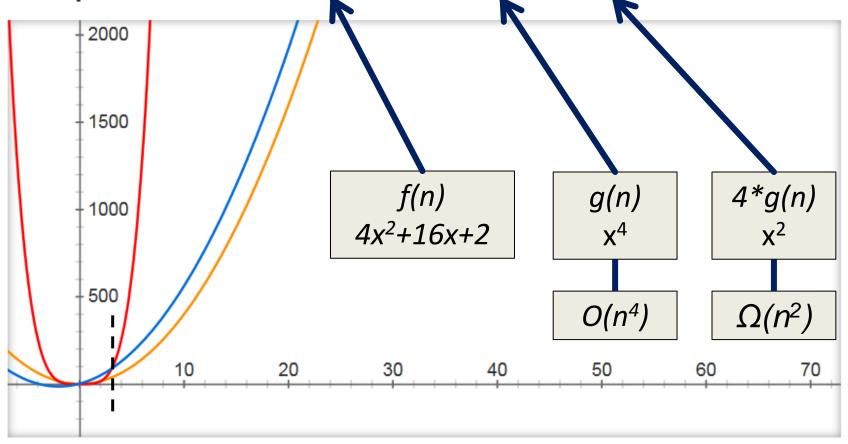
- Big O describes an *asymptotic upper bound* The worst possible performance we can expect
- Big Ω describes an asymptotic lower bound
 The best possible performance we can expect
- Big Θ describes an asymptotically tight bound
 The best and worst running times can be expressed with the same equation

"Big" Notation (equations)

- Big O describes an asymptotic upper bound
 f(n) is asymptotically less than or equal to g(n)
- Big Ω describes an asymptotic lower bound
 f(n) is asymptotically greater than or equal to g(n)
- Big Θ describes an asymptotically tight bound
 f(n) is asymptotically equal to g(n)

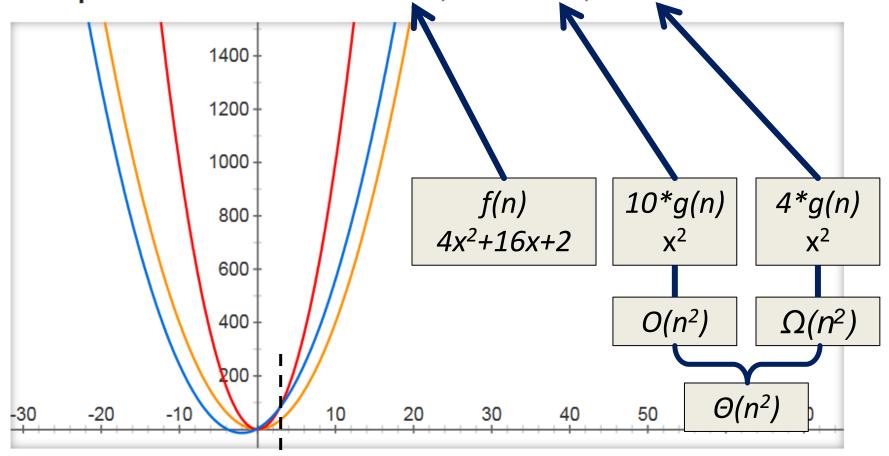
Big O and Big Omega Example

Graph for 4*x^2+16*x+2, x^4, 4*x^2



Big Theta Example

Graph for 4*x^2+16*x+2, 10*x^2, 4*x^2



A Simple Example

- Say we write an algorithm that takes in an array of numbers and returns the highest one
 - What is the absolute fastest it can run?
 - Linear time $\Omega(n)$
 - What is the absolute slowest it can run?
 - Linear time O(n)
 - Can this algorithm be *tightly* asymptotically bound?
 - YES so we can also say it's Θ(n)

Proof by Induction

Proof by Induction

- The only way to prove that Big O will work
 As n becomes larger and larger numbers
- To prove F(n) for any positive integer n
 - 1. <u>Base case</u>: prove F(1) is true
 - 2. <u>Hypothesis</u>: Assume F(k) is true for any $k \ge 1$
 - 3. Inductive: Prove the if F(k) is true, then F(k+1) is true

Induction Example (Step 1)

- Show that for all $n \ge 1$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- **1.** <u>Base case</u>: *n* = 1
 (This is our n₀)

$$\sum_{i=1}^{1} i^{2} = \frac{1(1+1)(2(1)+1)}{6}$$
$$\sum_{i=1}^{1} i^{2} = \frac{1(2)(3)}{6}$$
$$\sum_{i=1}^{1} i^{2} = \frac{6}{6}$$
$$\sum_{i=1}^{1} i^{2} = 1$$

Induction Example (Step 2)

• Show that for all $n \ge 1$:

2. <u>Hypothesis</u>: • Assume that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

holds for any $n \ge 1$

Induction Example (Step 3)

- Show that for all $n \ge 1$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- 3. Inductive:
 - Prove that if F(k) is true (assumed), the F(k+1) is also true
 - We've already proved F(1) is true
 - So proving this step will prove F(2) from F(1), and F(3) from F(2), ..., and F(k+1) from F(k)

Induction Example (Step 3)

$$\sum_{i=1}^{k+1} i^{2} = \sum_{i=1}^{k} i^{2} + (k+1)^{2}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k(2k+1) + 6(k+1))}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

Worksheet Time!

Announcements

- Homework 2 is out
 - Due Thursday, September 21st at 8:59:59 PM

Project 1 is out this week
 Due Tuesday, September 26th at 8:59:59 PM