
CMSC 341 

Lecture 5 Asymptotic Analysis 

  (Continued) 

Based on slides from previous iterations at UMBC 



Today’s Topics 

 More on Big O notation 

 Examples 

 Big Omega (Ω) 

 Big Theta (Θ) 

 More detail on proof by induction 

 

 In-class worksheet 
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First, an Explanation  

from Last Class… 
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Big O: Example 4  

 Code: 
sum2 = 0; 

for (i = 1; i <= n; i++) { 

  for (j = 1; j <= i; j++) { 

    sum2++; 

  } 

} 

 

 Complexity: 

 Quadratic – O(n2) 
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But why??? 



Big O: Example 4  

 Code: 
sum2 = 0; 

for (i = 1; i <= n; i++) { 

  for (j = 1; j <= i; j++) { 

    sum2++; 

  } 

} 

 

 Complexity: 

 Quadratic – O(n2) 
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how many times do 
we execute this 

statement? 

1 + 2 + 3 + 4 + … + n-2 + n-1 + n 



Expressing as a summation 

 Can we express this as a summation? 

 Yes! 

 
 

 Does this have a known formula? 

 Yes! 

 What does this formula multiply out to? 

 (n2 + n) / 2 

 or O(n2) 
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Σ 
n 

i = 1 

i 
n (n + 1) 

= 
2 



Other Geometric Formulas 

 O(n2) 

 

 

 O(n3) 

 

 

 O(cn) 
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Σ 
n 

i = 1 

i 2 
n (n + 1)(2n + 1) 

= 
6 

Σ 
n 

i = 1 

i 3 
n2 (n + 1)2 

= 
4 

Σ 
n 

i = 0 

r i 
1 - r (n+1) 

= 
1 - r 

, where r ≠ 1 



Big O: Example 5  

 Code: 
sum3 = 0; 

for (i = 1; i <= n; i++) { 

  for (j = 1; j <= i; j++) { 

    sum3++; } 

} 

for (k = 0; k < n; k++) { 

  a[ k ] = k; 

} 

 Complexity: 

 Quadratic – O(n2) 
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Big O: Example 6 

 Code: 
sum4 = 0; 

for (k = 1; k <= n; k *= 2) 

  for (j = 1; j <= n; j++) { 

    sum4++; 

} 

 

 Complexity: 

 O(n log n) 
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More Help with Summations 

 Mr. Lupoli’s notes on Blackboard 

 "Lupoli_MathReviewNotes.doc" 

 

 Simplifying functions for geometric series 

 Solving summations quickly 

 Mathematical series shortcuts 

 Reading sigma notation 

 And more! 
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Big Omega (Ω) and Big Theta(Θ) 
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“Big” Notation (words) 

 Big O describes an asymptotic upper bound 

 The worst possible performance we can expect 

 

 Big Ω describes an asymptotic lower bound 

 The best possible performance we can expect 

 

 Big Θ describes an asymptotically tight bound 

 The best and worst running times can be 

expressed with the same equation 
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“Big” Notation (equations)  

 Big O describes an asymptotic upper bound 

 f(n) is asymptotically less than or equal to g(n) 

 

 Big Ω describes an asymptotic lower bound 

 f(n) is asymptotically greater than or equal to g(n) 

 

 Big Θ describes an asymptotically tight bound 

 f(n) is asymptotically equal to g(n) 
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Big O and Big Omega Example 
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f(n) 
4x2+16x+2 

g(n) 
x4 

4*g(n) 
x2 

O(n4) Ω(n2) 



Big Theta Example 

UMBC CMSC 341 Asymptotic Analysis 15 

f(n) 
4x2+16x+2 

10*g(n) 
x2 

4*g(n) 
x2 

O(n2) Ω(n2) 

Θ(n2) 



A Simple Example 

 Say we write an algorithm that takes in an 

array of numbers and returns the highest one 

 What is the absolute fastest it can run? 

 Linear time – Ω(n) 

 What is the absolute slowest it can run? 

 Linear time – O(n) 

 

 Can this algorithm be tightly asymptotically bound? 

 YES – so we can also say it’s Θ(n) 
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Proof by Induction 
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Proof by Induction 

 The only way to prove that Big O will work 

 As n becomes larger and larger numbers 

 

 To prove F(n) for any positive integer n 

1. Base case: prove F(1) is true 

2. Hypothesis: Assume F(k) is true for any  

 k >= 1 

3. Inductive: Prove the if F(k) is true, then 

 F(k+1) is true 
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Induction Example (Step 1) 

 Show that for all n ≥ 1 :

1. Base case:

 n = 1

 (This is our n0)
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Induction Example (Step 2) 

 Show that for all n ≥ 1 : 

 

2. Hypothesis: 

 Assume that  

 

holds for any n ≥ 1 
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Induction Example (Step 3) 

 Show that for all n ≥ 1 :

3. Inductive:

 Prove that if F(k) is true (assumed),

the F(k+1) is also true

 We’ve already proved F(1) is true

 So proving this step will prove F(2) from F(1),

and F(3) from F(2), …, and F(k+1) from F(k)
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Induction Example (Step 3) 
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Worksheet Time! 
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Announcements 

 Homework 2 is out

 Due Thursday, September 21st at 8:59:59 PM 

 Project 1 is out this week

 Due Tuesday, September 26th at 8:59:59 PM 
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