
www.umbc.edu

CMSC 341
Lecture 8

Introduction to
Trees

Prof. Gibson & Prof.
Goodrich

www.umbc.edu

Introduction to Trees

www.umbc.edu

What is a Tree?

• In computer science, a tree is an abstract
model of a hierarchical structure

• Applications:

– Organization charts

– File systems

– Programming environments

www.umbc.edu

Tree Example – Org Chart

John

Mick Rama

Lee Jim Tom Tina Lisa

Bob Dee Sal Bill

CEO

CTO CFO

www.umbc.edu

What is a Tree?

• A tree is a collection of nodes (elements)

A

K Q

Z F

Node or Element
Edge or Link or Branches

www.umbc.edu

Tree Terminology

• There are two main ways that trees are
described.

1. Terms are related to “trees” such as root,
branches, and leaves

2. Terms are related to “ancestry” such as parent,
children, sibling, ancestors, and descendants

www.umbc.edu

What is a Tree?

• Each node may have 0 or more children

A

K Q

Z F The children of A are K and Q.

The children of K are Z and F.

Q, Z, and F have no children.

www.umbc.edu

What is a Tree?

• Each node has exactly one parent
– Except the starting / top node, called the root

A

K Q

Z F

Root

The parent of K is A.
The parent of Q is A.
The parent of Z is K.
The parent of F is K.

www.umbc.edu

What is a Tree?

• Nodes with no children are called leaves

• Which are leaves?

A

K Q

Z F T L

leaves

www.umbc.edu

What is a Tree?

• Nodes with same parent are siblings

• Which are siblings?

A

K Q

Z F T L

siblings siblings

siblings

www.umbc.edu

What is a Tree?
• If there is a path between node A and node Z:

A

K Q

Z F T L

Z is a descendant of A

A is an ancestor of Z

www.umbc.edu

What is a Tree?

• Depth of a node: The number of ancestors excluding
itself.

A

K Q

Z F T L

Depth 0

Depth 1

Depth 2

Count number of edges between root and node for depth

www.umbc.edu

What is a Tree?

• Height of a tree: Number of edges between root and
farthest leaf

A

K Q

Z F T L

R B

What is the
height of this
tree?

1

2

3

Height = 3

3

www.umbc.edu

What is a Tree?

• Height of a node: Number of edges between node
and deepest leaf

A

K Q

Z F T L

R B

What is the height
of node K?

1

2

Height = 2

2

www.umbc.edu

What is a Tree?
• Subtree: A tree that consists of a child and the

child's descendants

A

K Q

Z F T L

Subtree 1

Includes K, Z, and F

Subtree 2

Includes Q, T, and L

Considered recursive
because each sub-tree
can be viewed as the root
of a smaller tree

www.umbc.edu

Tree Terminology Practice

1. How could we describe Z?

Z is a node, a leaf, a sibling of F and a child of K

A

K Q

Z F T L

www.umbc.edu

Tree Terminology Practice

2. How could we describe the relationship between T
and L?

T is a sibling of L and they are both leaves

A

K Q

Z F T L

www.umbc.edu

Tree Terminology Summary
• A tree is a collection of nodes(elements)

• Each node may have 0 or more children

– (Unlike a list, which has 0 or 1 successors)

• Each node has exactly one parent

– Except the starting / top node, called the root

• Links from a node to its successors are called edges
or branches

• Nodes with same parent are siblings

• Nodes with no children are called leaves

www.umbc.edu

Types of Trees

www.umbc.edu

Types of Trees

• Regular Tree

• Regular Binary Tree

• Binary Search Tree (BST)

All regular binary trees are also regular trees.

All binary search trees (BST) are also regular binary trees.

www.umbc.edu

Regular (Non-binary) Tree

• Many links to many children

www.umbc.edu

Regular Binary Tree

• No node can have more than two children.

A

K Q

Z F T L

Average depth is 𝑶(𝒏)

www.umbc.edu

Regular Binary Tree

• No node can have more than two children.

A

Q

L

Worst scenario depth is 𝑶(𝒏 − 𝟏)

P

www.umbc.edu

Binary Search Tree (BST)

• Has at MOST two children

A

K Q

Z F T

B Y P

www.umbc.edu

Perfect Binary Tree

• A binary tree is perfect if all leaves are at the
same level

A

K Q

Z F T L
Perfect

www.umbc.edu

Complete Binary Tree
• A binary tree is complete if:

– All leaves are at level h or level h-1 (for some h)

– All leaves are as far to the left as possible

A

K Q

Z F T
Complete

www.umbc.edu

Complete & Full Binary Trees
• Is each tree full, complete, neither, or both?

From: http://courses.cs.vt.edu/~cs3114/Fall09/wmcquain/Notes/T03a.BinaryTreeTheorems.pdf

Full, but

not complete

Complete,

but not full

Full and

complete

(“perfect”)

Neither full

nor complete

Trees

Properties of Proper Binary Trees

• Notation
n number of nodes

e number of external
nodes

i number of internal
nodes

h height

Properties:

 e = i + 1

 n = 2e - 1

 h  i

 h  (n - 1)/2

 e  2h

 h  log2 e

 h  log2 (n + 1) - 1

© 2010 Goodrich,
Tamassia

www.umbc.edu

Binary Search Tree (BST)

• A binary search tree (BST) or ordered binary
tree is a type of binary tree where the nodes
are arranged in order:

– For each node, all elements in its left subtree are
less than or equal to the node (<=)

– All the elements in its right subtree are greater
than the node (>)

BSTs Next Class!

www.umbc.edu

Other Binary Tree Information

• Trees are SHALLOW – they can hold many
nodes with very few levels

• A height of 20 can hold 1,048,575 nodes

• 2height -1 = How many TOTAL nodes can be held
by this tree

–Can also be expressed as 2(depth+1) - 1

www.umbc.edu

Tree Implementations

www.umbc.edu

Tree Implementation

• There are two ways to construct trees

– Linked Lists

• Use links to connect to the other nodes in the tree

– Array (K-ary)

• Can only use if we know the MAXIMUM number of
children allowed

Trees

Linked Structure for Binary Trees

• A node is represented by
an object storing

– Element

– Parent node

– Left child node

– Right child node

• Node objects implement
the Position ADT

B

D A

C E

 

   

B

A D

C E



© 2010 Goodrich,
Tamassia

www.umbc.edu

K-ary Trees (also called M-ary)

• “k” is the number of children (links)

• Built as an array of nodes

• Will only work if we know the MAXIMUM number of children

• Empty spots in the array to denote a missing node

• Useful in coding since we can dictate the number of nodes we
want
– Also since there is a formula to calculate the node’s kids

• Child and grandchild index and corresponding items can be
found in constant time.

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

www.umbc.edu

K-ary Trees

• A k-ary tree is a tree in which the children of a
node appear at distinct index positions in
0..k-1

• This means the maximum number of children
for a node is k

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

www.umbc.edu

K-ary Trees

• Some k-ary trees have special names

– 2-ary trees are called binary trees

– 3-ary trees are called trinary trees or ternary
trees

– 1-ary trees are called lists

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

www.umbc.edu

Array Representation Of A Tree

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

Array-Based Representation of Binary Trees

• Nodes are stored in an array A

© 2010 Goodrich,
Tamassia

Trees

 Node v is stored at A[rank(v)]

 rank(root) = 1

 if node is the left child of parent(node),
rank(node) = 2  rank(parent(node))

 if node is the right child of parent(node),
rank(node) = 2  rank(parent(node)) + 1

1

2 3

6 7 4 5

10 11

A

H G

F E

D

C

B

J

A B D G H … …

1 2 3 10 11 0

www.umbc.edu

Tree Traversals

www.umbc.edu

Traversals of Binary Trees

• To iterate over and process the nodes of a tree

– We walk the tree and visit the nodes in order

– This process is called tree traversal

• Three kinds of binary tree traversal:

– Preorder

– Inorder

– Postorder

www.umbc.edu

Traversals of Binary Trees
• Preorder: Visit root, traverse left, traverse right

• Inorder: Traverse left, visit root, traverse right

• Postorder: Traverse left, traverse right, visit root

Algorithm for

Preorder Traversal
1. if the tree is empty

2. Return
 else

3. Visit the root.

4. Preorder traverse

the left subtree.

5. Preorder traverse

the right subtree.

Algorithm for

Postorder Traversal
1. if the tree is empty

2. Return
 else

3. Postorder traverse

the left subtree.

4. Postorder traverse

the right subtree.

5. Visit the root.

Algorithm for

Inorder Traversal
1. if the tree is empty

2. Return
 else

3. Inorder traverse

the left subtree.

4. Visit the root.

5. Inorder traverse

the right subtree.

www.umbc.edu

Preorder Traversals

Preorder:

F, B, A, D, C, E, G, I, H

1. Display the data part of root element (or current element)

2. Traverse the left subtree by recursively calling the pre-order function.

3. Traverse the right subtree by recursively calling the pre-order function.

From: https://en.wikipedia.org/wiki/Tree_traversal

Display a node’s data

as soon as you see it

www.umbc.edu

Inorder Traversals

Inorder:

A, B, C, D, E, F, G, H, I

1. Traverse the left subtree by recursively calling the in-order function

2. Display the data part of root element (or current element)

3. Traverse the right subtree by recursively calling the in-order function

From: https://en.wikipedia.org/wiki/Tree_traversal

Display the nodes in

order (sort of from left

to right, with the lower

nodes first)

www.umbc.edu

Postorder Traversals

Postorder:

 A, C, E, D, B, H, I, G, F

1. Traverse the left subtree by recursively calling the post-order function.

2. Traverse the right subtree by recursively calling the post-order function.

3. Display the data part of root element (or current element).

From: https://en.wikipedia.org/wiki/Tree_traversal

Display a node’s data

the last time you see it

www.umbc.edu

Tree Traversal Example

b j

c

d
g

k

m l

i h f e

a What would the preorder traversal look like?

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Tree Traversal Example

b j

c

d
g

k

m l

i h f e

a What would the inorder traversal look like?

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Tree Traversal Example

b j

c

d
g

k

m l

i h f e

a What would the postorder traversal look like?

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Preorder Traversals

preorder (Node t)

 if (t == null)

 return;

 visit (t.value());

 preorder (t.lchild());

 preorder (t.rchild());

} // preorder

Preorder
 N L R

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Inorder Traversals

inorder (Node t)

 if (t == null)

 return;

 inorder (t.lchild());

 visit (t.value());

 inorder (t.rchild());

} // inorder

Inorder
 L N R

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Postorder Traversals

postorder (Node t)

 if (t == null)

 return;

 postorder (t.lchild());

 postorder (t.rchild());

 visit (t.value());

} // postorder

Postorder
 L R N

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Another Tree Traversal

• A level-order walk effectively performs a
breadth-first search over the entire tree

• Nodes are traversed level by level

– Root node is visited first

– Followed by its direct child nodes

– Followed by its grandchild nodes

– Until all nodes in the tree have been
traversed

Trees

Euler Tour Traversal

• Generic traversal of a binary tree

• Includes a special cases the preorder, postorder and inorder traversals

• Walk around the tree and visit each node three times:

– on the left (preorder)

– from below (inorder)

– on the right (postorder)

+



- 2

5 1

3 2

L

B

R

© 2010 Goodrich,
Tamassia

Trees

Arithmetic Expression Tree

• Binary tree associated with an arithmetic expression
– internal nodes: operators

– external nodes: operands

• Example: arithmetic expression tree for the expression (2
 (a - 1) + (3  b))

+

 

- 2

a 1

3 b

© 2010 Goodrich,
Tamassia

Trees

Print Arithmetic Expressions

• Specialization of an inorder
traversal
– print operand or operator when

visiting node

– print “(“ before traversing left
subtree

– print “)“ after traversing right
subtree

Algorithm printExpression(v)

if v.isExternal()
print(“(’’)

inOrder(v.left())

print(v.element())

if v.isExternal()

inOrder(v.right())

print (“)’’)

+

 

- 2

a 1

3 b

((2  (a - 1)) + (3  b))

© 2010 Goodrich,
Tamassia

Trees

Evaluate Arithmetic Expressions

• Specialization of a postorder
traversal

– recursive method returning
the value of a subtree

– when visiting an internal
node, combine the values of
the subtrees

Algorithm evalExpr(v)

if v.isExternal()

return v.element()

else

x  evalExpr(v.left())

y  evalExpr(v.right())

  operator stored at v

return x  y+

 

- 2

5 1

3 2

© 2010 Goodrich,
Tamassia

www.umbc.edu

Tree Functions

www.umbc.edu

Binary Tree Functions

Node Setup

void insert(x) --> Insert x

void remove(x) --> Remove x

boolean contains(x) --> Return true if x is present

Comparable findMin() --> Return smallest item

Comparable findMax() --> Return largest item

boolean isEmpty() --> Return true if empty; else false

void makeEmpty() --> Remove all items

void printTree() --> Print tree in sorted order

www.umbc.edu

Generic Struct for Binary Tree
private struct BinaryNode

{

 Comparable element; // Data in the node

 BinaryNode *left; // Left child

 BinaryNode *right; // Right child

 // Constructors

 BinaryNode(const Comparable & theElement,

 BinaryNode *lt, BinaryNode *rt)

 {

 element = theElement;

 left = lt;

 right = rt;

 }

}

www.umbc.edu

Questions about Trees?

www.umbc.edu

Announcements

• Homework 3 will be out tomorrow
– Due Thursday, October 5th at 8:59:59 PM

• Project 2 is out

– Due Tuesday, October 10th at 8:59:59 PM

• Next Time:

– Project 2

