

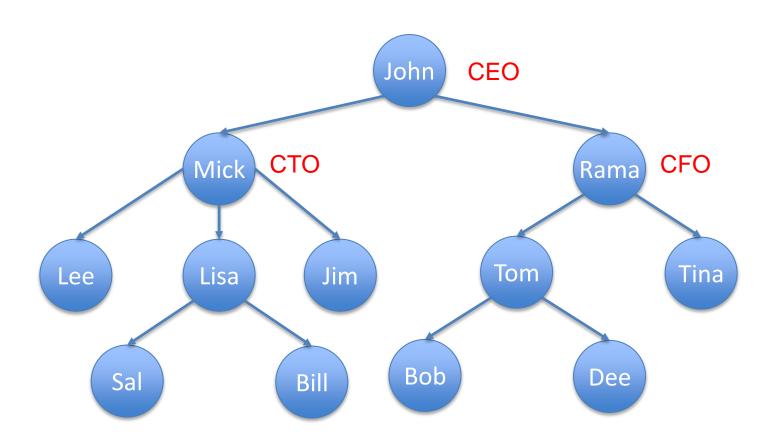
CMSC 341
Lecture 8
Introduction to
Trees

Prof. Gibson & Prof. Goodrich

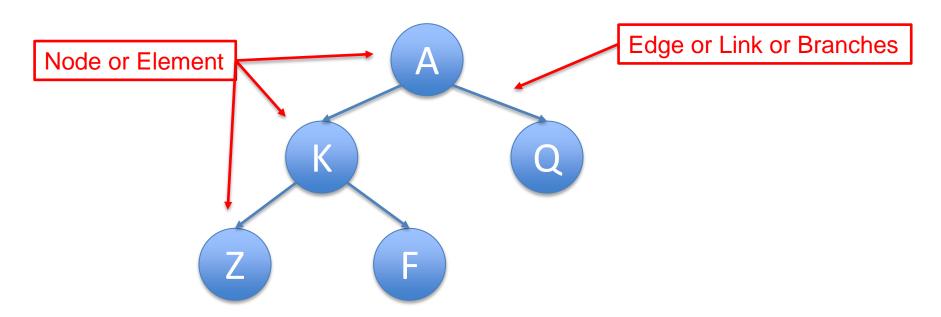
Introduction to Trees

- In computer science, a <u>tree</u> is an abstract model of a hierarchical structure
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree Example – Org Chart



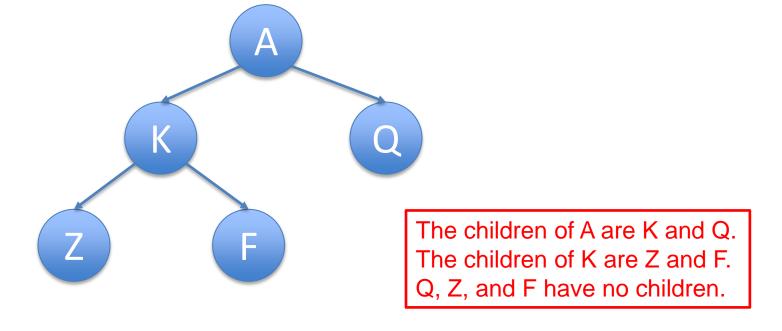
A <u>tree</u> is a collection of nodes (elements)



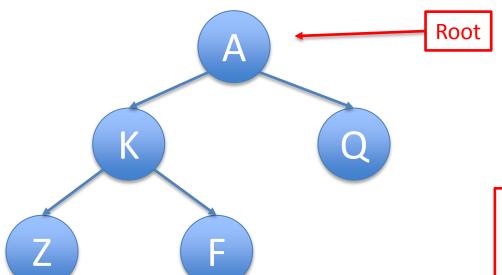
Tree Terminology

- There are two main ways that trees are described.
 - 1. Terms are related to "trees" such as *root,* branches, and leaves
 - 2. Terms are related to "ancestry" such as *parent*, *children*, *sibling*, *ancestors*, and *descendants*

Each node may have 0 or more <u>children</u>



- Each node has exactly one parent
 - Except the starting / top node, called the <u>root</u>



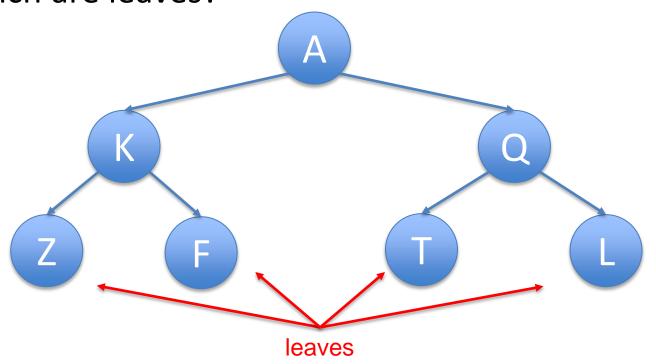
The parent of K is A.
The parent of Q is A.
The parent of Z is K.
The parent of F is K.

AN HUNUKS UNIVERSIIT IN MARTLAND

What is a Tree?

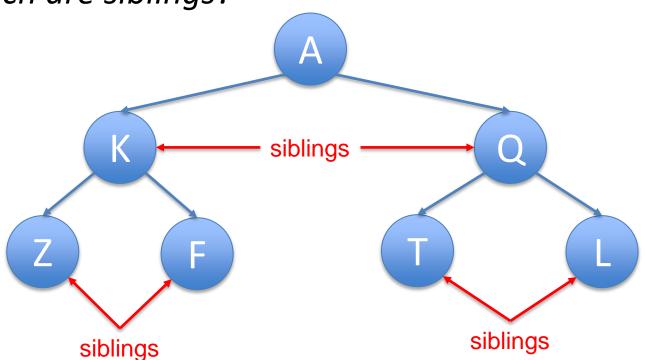
Nodes with no children are called <u>leaves</u>

• Which are leaves?



Nodes with same parent are <u>siblings</u>

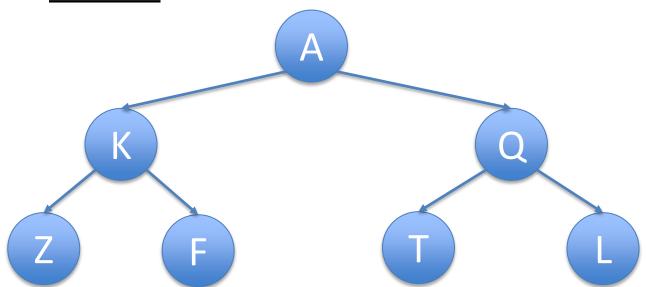
• Which are siblings?



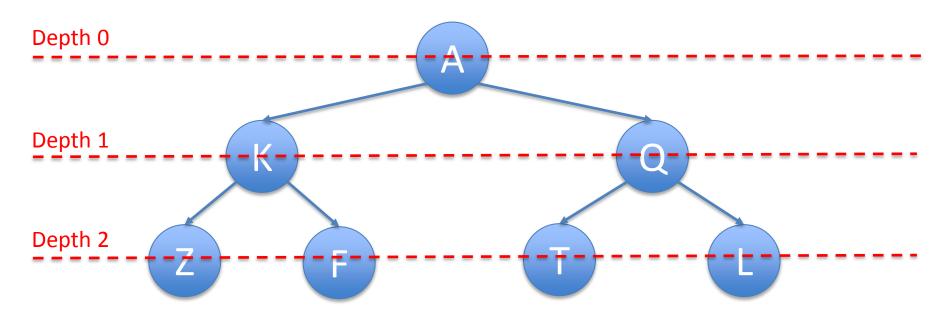
• If there is a path between node A and node Z:

Z is a <u>descendant</u> of A

A is an *ancestor* of Z



• <u>Depth</u> of a node: The number of ancestors excluding itself.

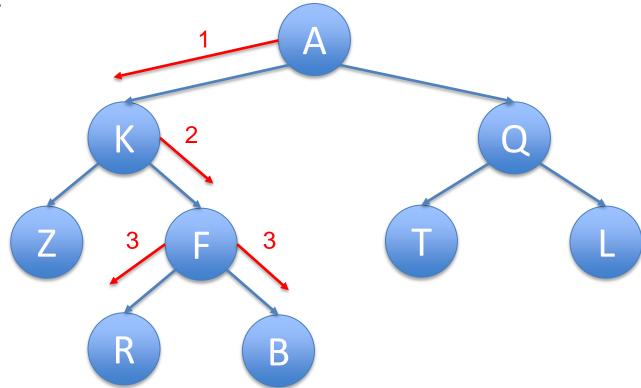


Count number of edges between root and node for depth

Height of a tree: Number of edges between root and farthest leaf

What is the height of this tree?

Height = 3

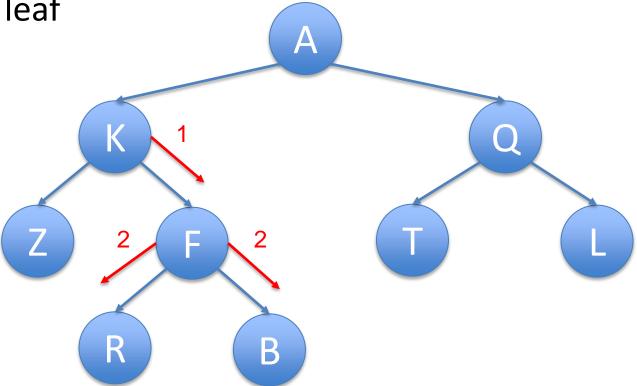


• <u>Height</u> of a node: Number of edges between node

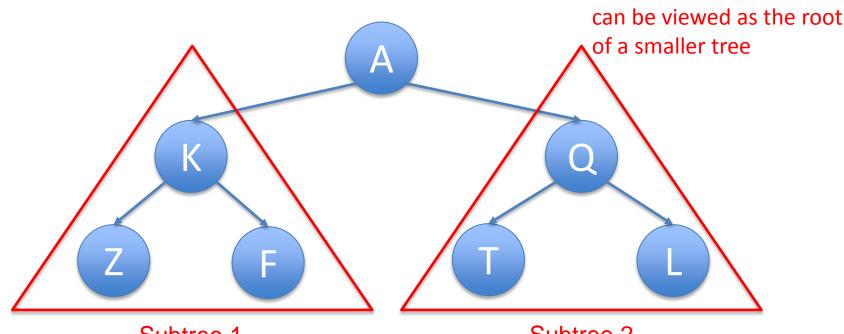
and deepest leaf

What is the height of node K?

Height = 2



 Subtree: A tree that consists of a child and the child's descendants Considered recursive



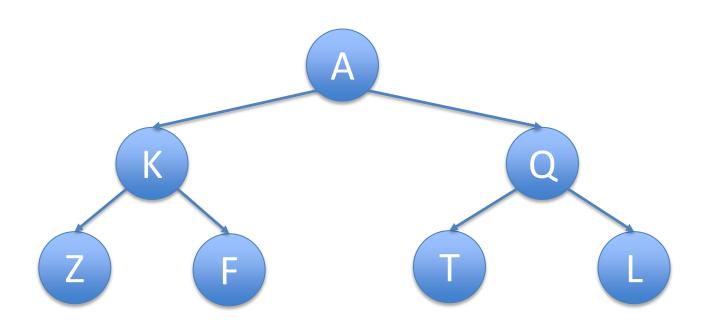
Subtree 1 Includes K, Z, and F

Subtree 2 Includes Q, T, and L

because each sub-tree

Tree Terminology Practice

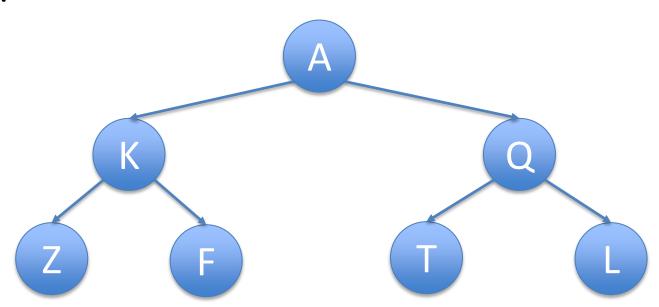
1. How could we describe Z?



Z is a node, a leaf, a sibling of F and a child of K

Tree Terminology Practice

2. How could we describe the relationship between T and L?



T is a sibling of L and they are both leaves

Tree Terminology Summary

- A <u>tree</u> is a collection of nodes(elements)
- Each node may have 0 or more <u>children</u>
 - (Unlike a list, which has 0 or 1 successors)
- Each node has exactly one parent
 - Except the starting / top node, called the <u>root</u>
- Links from a node to its successors are called <u>edges</u> or <u>branches</u>
- Nodes with same parent are <u>siblings</u>
- Nodes with no children are called leaves

Types of Trees

Types of Trees

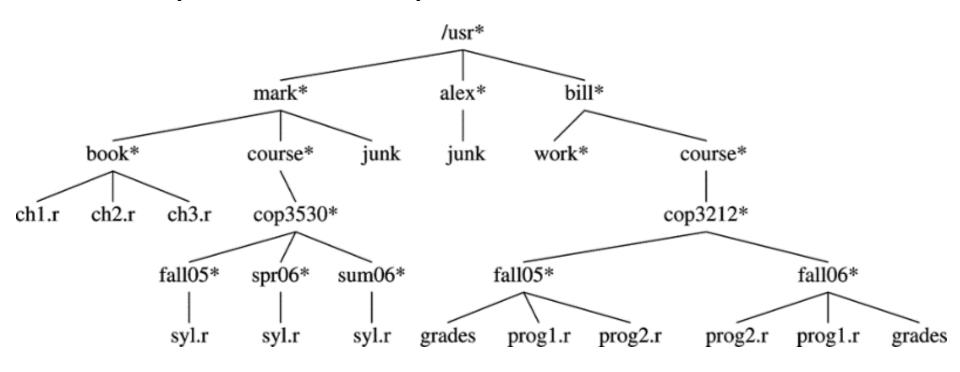
- Regular Tree
- Regular Binary Tree
- Binary Search Tree (BST)

All regular binary trees are also regular trees.

All binary search trees (BST) are also regular binary trees.

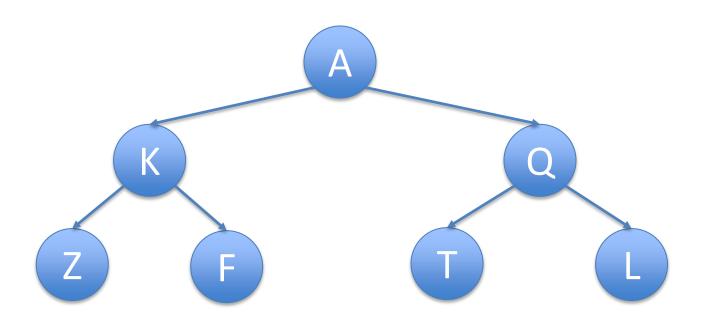
Regular (Non-binary) Tree

Many links to many children



Regular Binary Tree

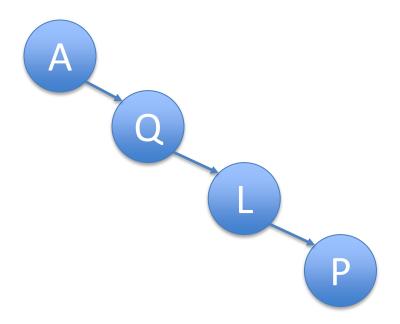
No node can have more than two children.



Average depth is $O(\sqrt{n})$

Regular Binary Tree

No node can have more than two children.

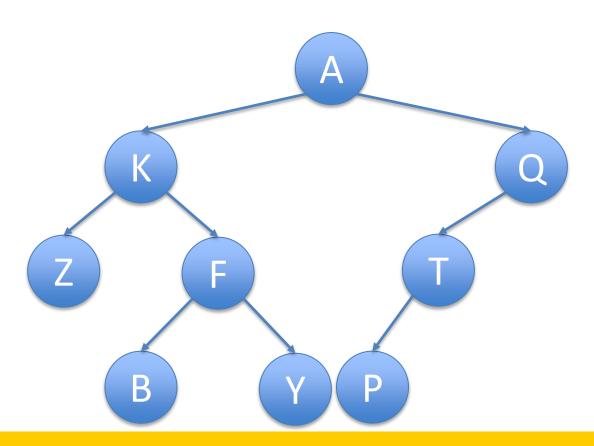


Worst scenario depth is O(n-1)

UMBC

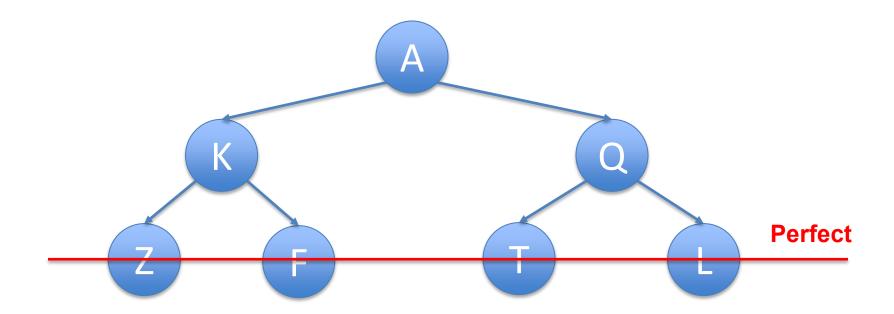
Binary Search Tree (BST)

Has at MOST two children



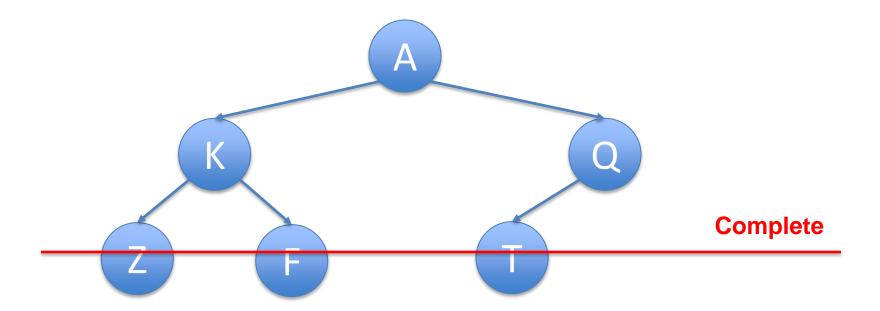
Perfect Binary Tree

 A binary tree is <u>perfect</u> if all leaves are at the same level



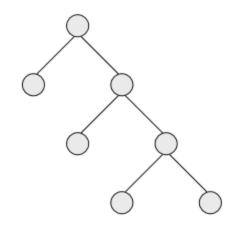
Complete Binary Tree

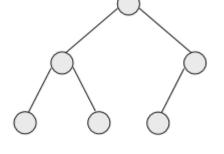
- A binary tree is <u>complete</u> if:
 - All leaves are at level h or level h-1 (for some h)
 - All leaves are as far to the left as possible

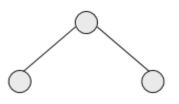


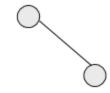
Complete & Full Binary Trees

Is each tree full, complete, neither, or both?









Full, but not complete

Complete, but not full

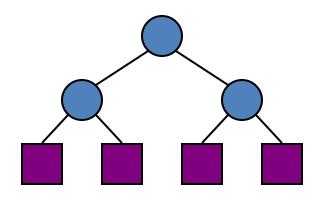
Full and complete ("perfect")

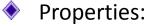
Neither full nor complete

Properties of Proper Binary Trees

Notation

- *n* number of nodes
- e number of external nodes
- i number of internal nodes
- h height





- $\bullet \quad e = i + 1$
- n = 2e 1
- $h \leq i$
- $h \le (n-1)/2$
- $e \le 2^h$
- $h \ge \log_2 e$
- $h \ge \log_2(n+1) 1$

Binary Search Tree (BST)

- A binary search tree (BST) or ordered binary tree is a type of binary tree where the nodes are arranged in order:
 - For each node, all elements in its left subtree are less than or equal to the node (<=)</p>
 - All the elements in its right subtree are greater than the node (>)

BSTs Next Class!

Other Binary Tree Information

- Trees are <u>SHALLOW</u> they can hold many nodes with very few levels
- A height of 20 can hold 1,048,575 nodes

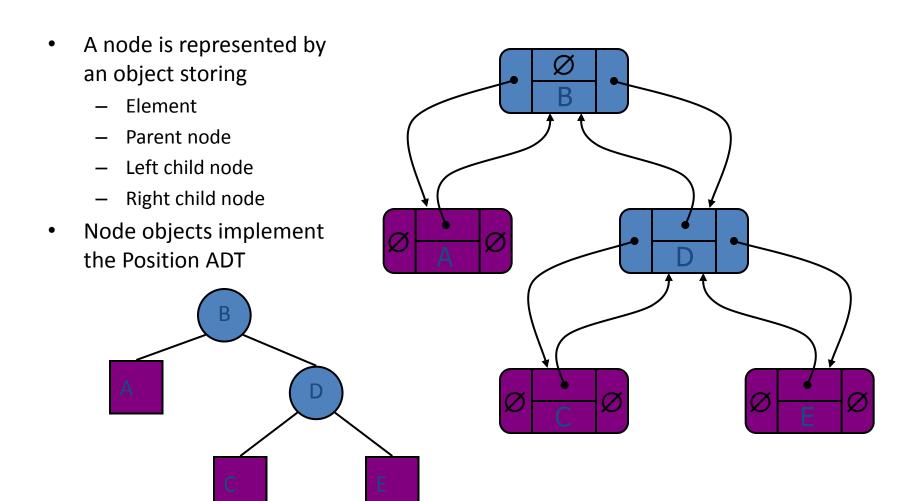
- 2^{height} -1 = How many TOTAL nodes can be held by this tree
 - -Can also be expressed as 2^(depth+1) 1

Tree Implementations

Tree Implementation

- There are two ways to construct trees
 - Linked Lists
 - Use links to connect to the other nodes in the tree
 - Array (K-ary)
 - Can only use if we know the MAXIMUM number of children allowed

Linked Structure for Binary Trees



K-ary Trees (also called M-ary)

- "k" is the number of children (links)
- Built as an array of nodes
- Will only work if we know the MAXIMUM number of children
- Empty spots in the array to denote a missing node
- Useful in coding since we can dictate the number of nodes we want
 - Also since there is a formula to calculate the node's kids
- Child and grandchild index and corresponding items can be found in constant time.

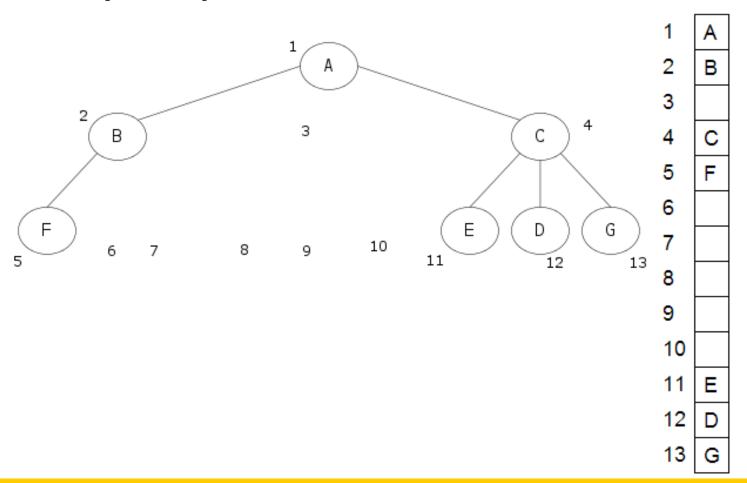
K-ary Trees

- A k-ary tree is a tree in which the children of a node appear at distinct index positions in 0..k-1
- This means the maximum number of children for a node is k

K-ary Trees

- Some k-ary trees have special names
 - 2-ary trees are called binary trees
 - 3-ary trees are called **trinary trees** or **ternary** trees
 - 1-ary trees are called lists

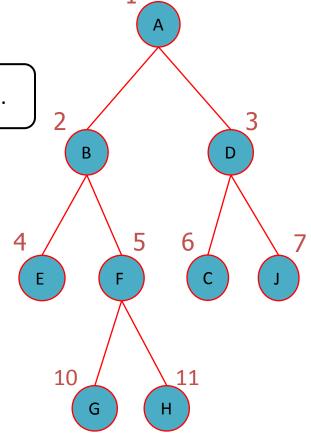
Array Representation Of A Tree



Array-Based Representation of Binary Trees

Nodes are stored in an array A

- □ Node v is stored at A[rank(v)]
 - rank(root) = 1
 - if node is the left child of parent(node), rank(node) = 2 · rank(parent(node))
 - if node is the right child of parent(node), rank(node) = 2 · rank(parent(node)) + 1



Tree Traversals

Traversals of Binary Trees

- To iterate over and process the nodes of a tree
 - We walk the tree and visit the nodes in order
 - This process is called <u>tree traversal</u>
- Three kinds of binary tree traversal:
 - *Pre*order
 - <u>In</u>order
 - <u>Post</u>order

UMBC

Traversals of Binary Trees

- Preorder: Visit root, traverse left, traverse right
- Inorder: Traverse left, visit root, traverse right
- Postorder: Traverse left, traverse right, visit root

Algorithm for Preorder Traversal

- 1. if the tree is empty
- 2. Return
- 3. Visit the root.
- 4. Preorder traverse the left subtree.
- 5. Preorder traverse the right subtree.

Algorithm for Inorder Traversal

- 1. if the tree is empty
- 2. Return
- 3. Inorder traverse the left subtree.
- 4. Visit the root.
- 5. Inorder traverse the right subtree.

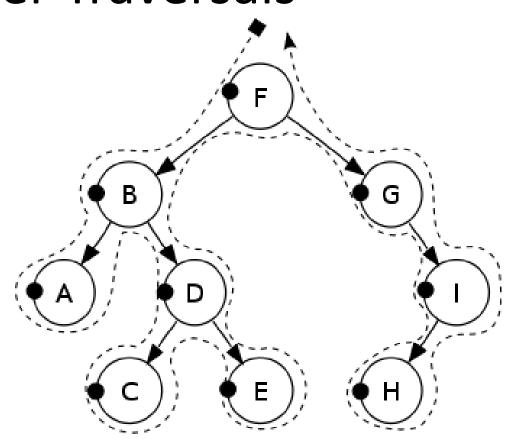
Algorithm for Postorder Traversal

- 1. if the tree is empty
- 2. Return
- 3. Postorder traverse the left subtree.
- 4. Postorder traverse the right subtree.
- 5. Visit the root.

Preorder Traversals

Preorder: F, B, A, D, C, E, G, I, H

Display a node's data as soon as you see it

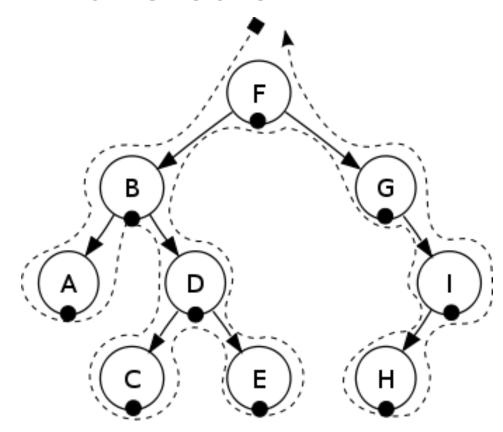


- Display the data part of root element (or current element)
- Traverse the left subtree by recursively calling the pre-order function.
- Traverse the right subtree by recursively calling the pre-order function.

Inorder Traversals

Inorder: A, B, C, D, E, F, G, H, I

Display the nodes in order (sort of from left to right, with the lower nodes first)

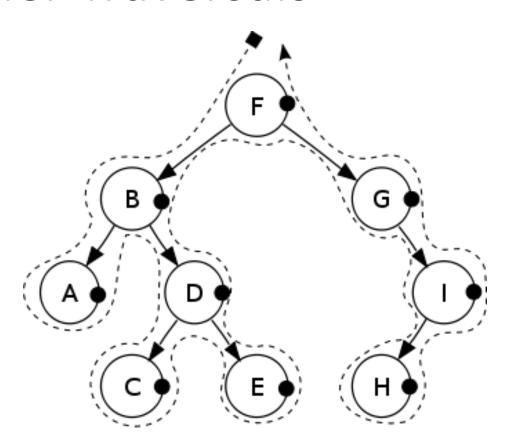


- 1. Traverse the left subtree by recursively calling the in-order function
- 2. Display the data part of root element (or current element)
- 3. Traverse the right subtree by recursively calling the in-order function

Postorder Traversals

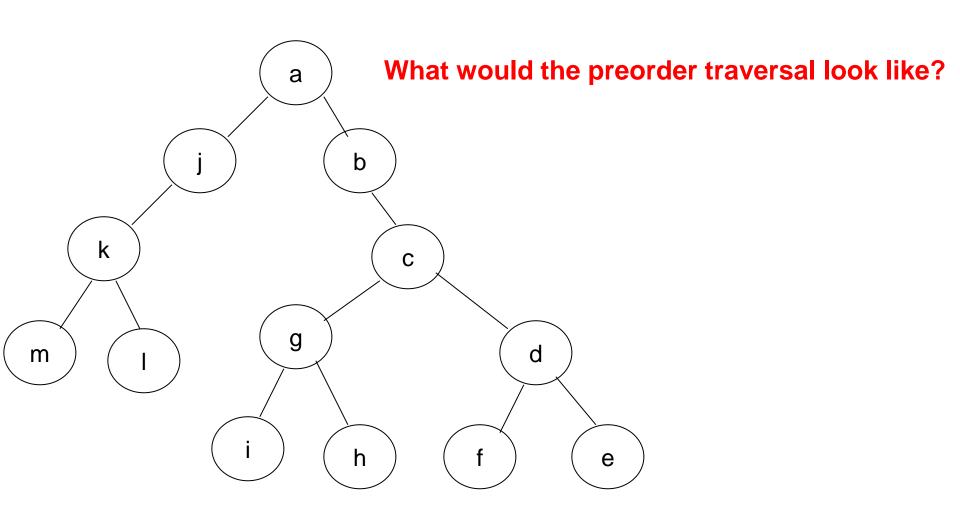
Postorder: A, C, E, D, B, H, I, G, F

Display a node's data the last time you see it

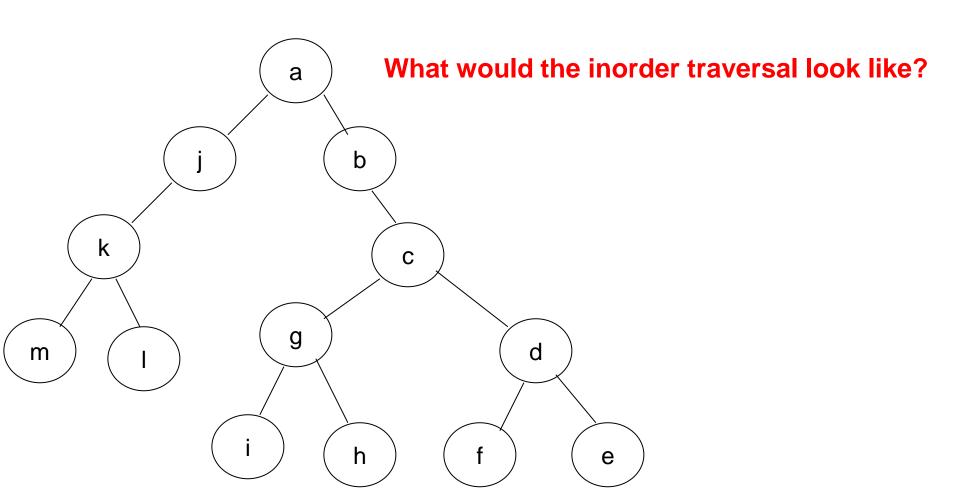


- 1. Traverse the left subtree by recursively calling the post-order function.
- 2. Traverse the right subtree by recursively calling the post-order function.
- 3. Display the data part of root element (or current element).

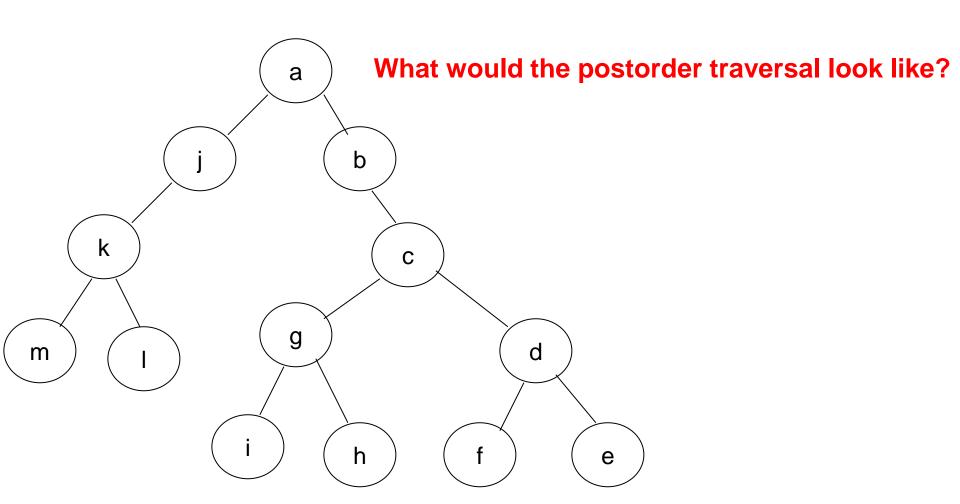
Tree Traversal Example



Tree Traversal Example



Tree Traversal Example



Preorder Traversals

```
preorder (Node t)
                           Preorder
   if (t == null)
                            NLR
      return;
   visit (t.value());
   preorder (t.lchild());
   preorder (t.rchild());
} // preorder
```

Inorder Traversals

```
inorder (Node t)
                           Inorder
   if (t == null)
                            LNR
      return;
   inorder (t.lchild());
   visit (t.value());
   inorder (t.rchild());
} // inorder
```

Postorder Traversals

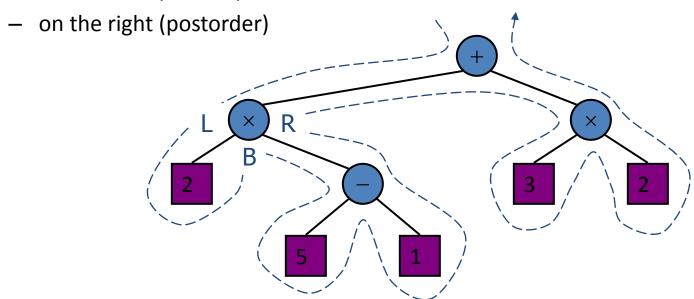
```
postorder (Node t)
                           Postorder
   if (t == null)
                            LRN
      return;
   postorder (t.lchild());
   postorder (t.rchild());
   visit (t.value());
} // postorder
```

Another Tree Traversal

- A <u>level-order</u> walk effectively performs a breadth-first search over the entire tree
- Nodes are traversed level by level
 - Root node is visited first
 - Followed by its direct child nodes
 - Followed by its grandchild nodes
 - Until all nodes in the tree have been traversed

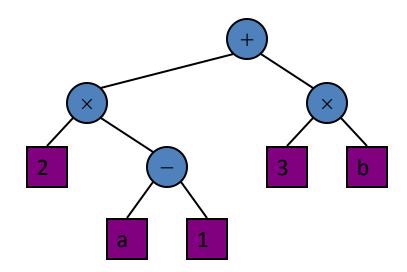
Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)



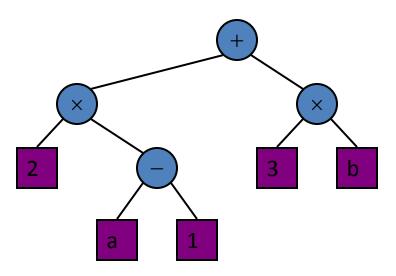
Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression (2 \times (a 1) + (3 \times b))



Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree



```
Algorithm printExpression(v)

if ¬v.isExternal()

print("(")

inOrder(v.left())

print(v.element())

if ¬v.isExternal()

inOrder(v.right())

print (")")
```

$$((2 \times (a-1)) + (3 \times b))$$

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

```
2 - 3 2
5 1
```

```
Algorithm evalExpr(v)

if v.isExternal()

return v.element()

else

x \leftarrow evalExpr(v.left())

y \leftarrow evalExpr(v.right())

\Diamond \leftarrow operator stored at v

return x \Diamond y
```

Tree Functions

UMBC

Binary Tree Functions

```
Node Setup
void insert( x )
                            --> Insert x
void remove( x )
                            --> Remove x
                            --> Return true if x is present
boolean contains (x)
Comparable findMin()
                            --> Return smallest item
Comparable findMax()
                            --> Return largest item
                            --> Return true if empty; else false
boolean isEmpty( )
                            --> Remove all items
void makeEmpty( )
                             --> Print tree in sorted order
void printTree( )
```


Generic Struct for Binary Tree

```
private struct BinaryNode
    Comparable element; // Data in the node
    BinaryNode *left; // Left child
    BinaryNode *right; // Right child
    // Constructors
    BinaryNode (const Comparable & theElement,
              BinaryNode *lt, BinaryNode *rt )
        element = theElement;
        left = lt;
        right = rt;
```

Questions about Trees?

Announcements

- Homework 3 will be out tomorrow
 - Due Thursday, October 5th at 8:59:59 PM
- Project 2 is out
 - Due Tuesday, October 10th at 8:59:59 PM
- Next Time:
 - Project 2