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Standard Template Library (STL)
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Standard Template Library (STL)

e The Standard Template Library (STL) is a C++

library of container classes, algorithms, and
Iiterators

* Provides many of the basic algorithms and
data structures of computer science

From: https://www.sgi.com/tech/stl/stl_introduction.html www.umbc.edu



Considerations of the STL

 The decision of which type of container to use
for a specific need depends on:

—the functionality offered by the container

—the efficiency of some of its members
(complexity)

From: http://www.cplusplus.com/reference/stl/ www.umbc.edu



Types of Containers

e Sequence containers L Focus of Today

—|Array, vector,[deque, Iistl,forwa rd_list

 Container adapters

— Stacks, queuesl priority _queues

e Associative containers (and the unordered)

— Set, multiset, map, multimap

www.umbc.edu



Standard Containers

* Sequences:

— vector: Dynamic array of variables, struct or
objects. Insert data at the end.

— list: Linked list of variables, struct or objects.
Insert/remove anywhere.

— Sequence means order does matter

www.umbc.edu



Container Adapters

 Container adapters:
— stack LIFO
— queue FIFO
— adapter means VERY LIMITED functionality

www.umbc.edu



Will we use STL?

e Today we are going to talk about the ways that
we can implement stacks, queues, deque,
vector, list, iterators, algorithmes.

e Review: 3 Ways to Create a Stack or Queue
— Create a static stack or queue using an array
— Create a dynamic stack or queue using a linked list

— Create a stack or queue using the STL

www.umbc.edu
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Stacks
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Implementations of Stacks

e Static Stacks

— Fixed size
— Can be implemented with an array

 Dynamic Stacks
— Grow in size as needed
— Can be implemented with a linked list

e Using STL (dynamic)

www.umbc.edu



Stack Operations

e Push

— causes a value to be stored in (pushed onto) the
stack

* Pop

— retrieves and removes a value from the stack

www.umbc.edu



Other Stack Operations

 ISFUll(): ABoolean operation needed for
static stacks. Returns true if the stack is full.
Otherwise, returns false.

e ISEmpty(): A Boolean operation needed for
all stacks. Returns true if the stack is empty.
Otherwise, returns false.

www.umbc.edu



Static Stacks
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Static Stacks

e A static stack is built on an array

— As we are using an array, we must specify
the starting size of the stack

—The stack may become full if the array
becomes full

www.umbc.edu



Member Variables for Stacks

* Three major variables:
— Pointer Creates a pointer to stack
—Sslize Tracks elements in stack
—top Tracks top element in stack

www.umbc.edu



Member Functions for Stacks

— CONSTRUCTOR
— DESTRUCTOR
—push()

—pop()
— I1SEmpty()
—1skFull )

Creates a stack

Deletes a stack

Pushes element to stack
Pops element from stack
Is the stack empty?

Is the stack full?

www.umbc.edu
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Static Stack Definition

#i1fndeft INTSTACK_H
#define INTSTACK_H

class IntStack _
{ pointer

private: / size() Member Variables
int *StaCkArray/ to
int StacKEiEEi———”’—————_——_——_——_——— PO

int top;

Constructor -
~IntStack()
{delete[] StW push() - Meml?er
void push(int); — popQ) Functions
void pop(int &); « E) P
bool isFull(); g _lSFU"()
bool isEmpty(); <« iIsEmpty()  _
};
#endi

www.umbc.edu



Dynamic Stacks
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Dynamic Stacks

* A dynamic stack is built on a linked list instead of an
array.

* A linked list-based stack offers two advantages over
an array-based stack.

— No need to specify the starting size of the stack. A dynamic
stack simply starts as an empty linked list, and then
expands by one node each time a value is pushed.

— A dynamic stack will never be full, as long as the system
has enough free memory.

www.umbc.edu



Member Variables for Dynamic Stacks

e Parts:
—Linked li1st Linked list for stack (nodes)
—si1ze Tracks elements in stack

www.umbc.edu



Member Functions for Dynamic Stacks

— CONSTRUCTOR Creates a stack

— DESTRUCTOR Deletes a stack
—push() Pushes element to stack
—pop() Pops element from stack
— I1SEmpty() Is the stack empty?
—top() What is the top element?

What happened to isFull () ?

www.umbc.edu
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Dynamic Stack

class DynlIntStack Linked list -

grivate' / of elements
struct StackNode value Member

{ / ) — )
thcknore. / pointer Variables
StackNode *next;

to

StackNode *top;

Constructor -
pUinC: / M b
DyniIntStack(void) / push(Q) Fuenr:tic()erzs
{ top = NULL; O
void push(int); / PopO) i

void pop(int &); top(O
const Elem& top()<«const throw(StackEmpty); _
bool isEmpty(void); < ISsEmpty()

www.umbc.edu



The STL Stack

#include <stack>
using std::stack; // make stack accessible
stack<int> myStack; // a stack of integers

List of the principal member functions.

size(): Return the number of elements in the stack.
empty(): Return true if the stack is empty and false
otherwise. push(e): Push e onto the top of the stack.
pop(): Pop the element at the top of the stack.

top(): Return a reference to the element at the top of the
stack

www.umbc.edu



Common Problems with Stacks

e Stack underflow
— no elements in the stack, and you tried to pop

e Stack overflow
— maximum elements in stack, and tried to add another
— not an issue using STL or a dynamic implementation

www.umbc.edu
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Queues
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Introduction to the Queue

e Like a stack, a queue is a data structure that holds a
sequence of elements.

A gueue, however, provides access to its elements in
first-in, first-out (FIFO) ordetr.

www.umbc.edu



Implementations of Queues

Just like
stacks!

e Static Queues
— Fixed size
— Can be implemented with an array
* Dynamic Queues
— Grow in size as heeded

— Can be implemented with a linked list

e Using STL (dynamic)

www.umbc.edu



Implementation of a Static Queue

 The previous discussion was about static arrays

— Container is an array

e Class Implementation for a static integer queue

— Member functions
 enqueue()
 dequeue()

e 1SEmpty()
e I1SFUll()
e clear()

www.umbc.edu



Member Variables for Static Queues

* Five major variables:

— gqueueArray Creates a pointer to queue
— queueSize Tracks capacity of queue

— numltems Tracks elements in queue
— front

— rrear

* The variables front and rear are used when our
queue “rotates,” as discussed earlier

www.umbc.edu



Member Functions for Queues

— CONSTRUCTOR
— DESTRUCTOR
—engueue()

— dequeue()

— 1SEmpty ()
—1sFull )
—clear()

Creates a queue

Deletes a queue

Adds element to queue
Removes element from queue
Is the queue empty?

Is the queue full?

Empties queue

www.umbc.edu
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Static Queue Example

#ifndef INTQUEUE_H

#define INTQUEUE_H pointer =
class IntQueue iueues.ze() Member
{ ront —
orivate: Variables
int *queueArray; rear
int queueSize; numltems -
int front; —_
it rear; - Constructor
int numltems;
IntQUEUE(int); / Member
void enqueue(int);
void dequeue(int &); <« fjequeue() — Functions
bool isEmpty() const; <— |sEmpty()
bool isFull() const; _ -
void clear(); ;_ ISFUI I()
}; )
#endif — clear() _

www.umbc.edu



Dynamic Queue Example

(front) (rear) cursor

LAX MSP ATL

(==

Circularly Linked List
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STL Queues
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STL Queues

e Another way to implement a queue is by using the standard library

* An STL queue leverages the pre-existing library to access the data structure

* Principal member functions:

O 0O O O O O

size(): Return the number of elements in the queue.

empty(): Return true if the queue is empty and false otherwise.
push(e): Enqueue e at the rear of the queue.

pop(): Dequeue the element at the front of the queue.

front(): Return a reference to the element at the queue’s front.

back(): Return a reference to the element at the queue’s rear.

www.umbc.edu
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#include <iostream> // std::cin, std::cout
#include <queue> // std::queue
using namespace std;

int main () STL

{

d:: i ;
i:lt mg:z:?<1nt> myqueue Qu e u e

std::cout << "Please enter some integers (enter 0 to E |
end) : \n"; Xall lp e

do {
std::cin >> myint;
myqueue.push (myint);
} while (myint);

std: :cout << "myqueue contains: ";
while (!myqueue.empty())

{

std::cout << ' ' << myqueue.front():;
myqueue.pop () ;

std::cout << '\n';

return O0;

www.umbc.edu
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STL Deque

Deque - Double ended Queue (Implement it with a doubly Linked List)
(Supports insertion and deletion at both the front and the rear of the queue)

Here is a list of the principal operations.

size(): Return the number of elements in the deque.

empty(): Return true if the deque is empty and false otherwise.
push front(e): Insert e at the beginning the deque.

push back(e): Insert e at the end of the deque.

pop front(): Remove the first element of the deque.

pop back(): Remove the last element of the deque.

front(): Return a reference to the deque’s first element.

back(): Return a reference to the deque’s last element.

www.umbc.edu
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Warm up Question!!

Explain how you can implement all the functions of the deque ADT using
two stacks. What is the running time of the two stacks deque functions?

size(): Return the number of elements in the deque.

empty(): Return true if the deque is empty and false otherwise.
push front(e): Insert e at the beginning the deque.

push back(e): Insert e at the end of the deque.

pop front(): Remove the first element of the deque.

pop back(): Remove the last element of the deque.

front(): Return a reference to the deque’s first element.

back(): Return a reference to the deque’s last element.

www.umbc.edu
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Bonus Question (0.5%)

Describe how to implement the stack ADT using two queues. What is the
running time of the push and pop functions in this case?

A stack is an abstract data type (ADT) that supports the following
operations:

push(e): Insert element e at the top of the stack.

pop(): Remove the top element from the stack; an error occurs

if the stack is empty.

top(): Return a reference to the top element on the stack, without
removing it; an error occurs if the stack is empty.

Additionally, let us also define the following supporting functions:

size(): Return the number of elements in the stack.
empty(): Return true if the stack is empty and false otherwise.

www.umbc.edu



lterators
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Containers and Iterators

* An iterator abstracts the process of scanning through
a collection of elements

* A containeris an abstract data structure that supports
element access through iterators
— begin(): returns an iterator to the first element

— end(): return an iterator to an imaginary position just after
the last element

* An iterator behaves like a pointer to an element

— *p:returns the element referenced by this iterator
— ++p: advances to the next element

Extends the concept of position by adding a traversal
capability

© 2010 Goodrich,

: Iterators and Sequences
Tamassia



Containers

e Data structures that support iterators are called containers
 Examples include Stack, Queue, Vector, List

* \Various notions of iterator:
— (standard) iterator: allows read-write access to elements
— const iterator: provides read-only access to elements
— bidirectional iterator: supports both ++p and —p

— random-access iterator: supports both p+i and p-i

© 2010 Goodrich,

: Iterators and Sequences
Tamassia



lterating through a Container

* Let C be a container and p be an iterator for C
for (p = C.begin(); p != C.end(); ++p)
loop_body
 Example: (with an STL vector)
typedef vector<int>::iterator Iterator;
int sum = 0;
for (Iterator p = V.begin(); p != V.end(); ++p)
sum += *p;

return sum;

© 2010 Goodrich,

: Iterators and Sequences
Tamassia



Implementing Iterators

* Array-based

— array A of the n elements

— index i that keeps track of the cursor

— begin() =0

— end() = n (index following the last element)
* Linked list-based

— doubly-linked list L storing the elements, with sentinels for
header and trailer

— pointer to node containing the current element
— begin() = front node
— end() = trailer node (just after last node)

© 2010 Goodrich,

: Iterators and Sequences
Tamassia



STL Iterators in C++

* Each STL container type C supports iterators:

C::iterator — read/write iterator type
C::const_iterator —read-only iterator type

C.begin(), C.end() — return start/end iterators

* This iterator-based operators and methods:

© 2010 Goodrich,

Tamassia

*p: access current element
++p, --p: advance to next/previous element

C.assign(p, q): replace C with contents referenced by the iterator
range [p, q) (from p up to, but not including, q)

insert(p, e): insert e prior to position p
erase(p): remove element at position p

erase(p, q): remove elements in the iterator range [p, q)

Iterators and Sequences
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Position ADT

 The Position ADT models the notion of place within a
data structure where a single object is stored

* |t gives a unified view of diverse ways of storing data,
such as

— a cell of an array
— a node of a linked list
e Just one method:

— object p.element(): returns the element at position
— In C++ it is convenient to implement this as *p

© 2010 Goodrich, .
Tamassia Lists



Node List ADT

e The Node List ADT

* |terators:
moglgls a sequence of _ begin(), end()
positions storing
arbitrary objects * Update methods:
e |t establishes a — insertFront(e),
nefore/after relation insertBack(e)
petween positions — removeFront(),
* Generic methods: removeBack()
— size(), empty() * |terator-based update:
— insert(p, e)
— remove(p)

© 2010 Goodrich, .
Tamassia Lists



Node List ADT

Operation
insartFront| )
r = begin{]
insartBack(3)

g=p; ++4q
o begin(}

insert{g.3)
D
insartFront |9
erazeBack()
Erass| m)
eraseFront ()







Doubly Linked List

—_—_———————— e —_—_————_———————— — — —

A doubly linked list provides a natural / prev next
implementation of the Node List ADT
* Nodes implement Position and store:
— element
— link to the previous node
— link to the next node

* Special trailer and header nodes

_______________________________________________________

header | nodes/positions |  trailer

___________________________________________________

——— —_—————————————— —_—_————— - ————— —————————————— —_————

=

| ‘ elements

—_—— e - - -, e~

(
|
|
|
|
|
|

© 2010 Goodrich,
Tamassia




Insertion

* We visualize operation insert(p, x), which inserts x before p

p

© 2010 Goodrich,

Tamassia Lists



Insertion Algorithm

Algorithm insert(p, e): {insert e before p}
Create a new node v
v—element=e
u = p—prev
v—next = p; p—prev=yv {linkin v before p}
v—prev =u; u—next=v {linkin v after u}

© 2010 Goodrich,

Tamassia Lists



Deletion

* We visualize remove(p)

.................................
.
. .

© 2010 Goodrich,

Tamassia Lists



Deletion Algorithm

Algorithm remove(p):
u = p—prev
w = p—next
u—next = w {linking out p}
wW—>prev = u

© 2010 Goodrich,

Tamassia Lists



Performance

* |n the implementation of the List ADT by means
of a doubly linked list
— The space used by a list with n elements is O(n)
— The space used by each position of the list is O(1)
— All the operations of the List ADT run in O(1) time

— Operation element() of the
Position ADT runs in O(1) time

© 2010 Goodrich,

Tamassia Lists
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Sequence ADT

The Sequence ADT is the e List-based methods:
union of the Array List and — begin(), end()
Node List ADTs — insertFront(o),
Elements accessed by insertBack(o)
_ Index. or — eraseFront(),
7 eraseBack()
— Position

. — insert (p, 0), erase(p)
Generic methods:

— size(), empty()
Vector (ArrayList)-based
methods:

— at(i), set(i, o), insert(i, o),
erase(i)

* Bridge methods:
— atIndex(i), indexOf(p)

Iterators and Sequences



Applications of Sequences

* The Sequence ADT is a basic, general-purpose,

data structure for storing an ordered collection of
elements

* Direct applications:

— Generic replacement for stack, queue, vector, or list
— small database (e.g., address book)

* Indirect applications:

— Building block of more complex data structures

% n%'gigaGoodrlch, Iterators and Sequences



Linked List Implementation

* A doubly linked list provides a reasonable o Position-based methods

implementation of the Sequence ADT run in constant time
* Nodes implement Position and store: o Index-based methods
— element require searching from
— link to the previous node header or trailer while

keeping track of indices;
hence, run in linear time

— link to the next node

* Special trailer and header nodes

_______________________________________________________

header ! nodes/ p05|t|ons - trailer

(
|
|
|
|
|
|

\
% n%'gigaGoodrlch, Iterators and Sequences



Circular Array-based Implementation

We use a
circular array
storing
positions
A position
object stores:
— Element
— Index

Indices fand /
keep track of
first and last
positions

© 2010 Goodrich,
Tamassia

N\
elements

I
I
I
)

positions
—
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Comparing Sequence

Implementations
('perafions Circular Amay | List
size, empty 1] Ol
begin, end 1] 01
insertFront, insartBack L1y O(1)
Insert, erase (Nn| O(1)
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