CMSC 341
Lecture 7 — STL Containers,
[terators, Algorithms

Based on slides by Jeremy Dixon & Tamassia Goodrich at UMBC

Today’s Topics

Quick Review of: Stacks & Queues
STL Stacks & Queues

Deque

Vectors

Lists

Iterators

Sequences

Bonus

UMBC CMSC 341

Standard Template Library (STL)

www.umbc.edu

Standard Template Library (STL)

e The Standard Template Library (STL) is a C++

library of container classes, algorithms, and
Iiterators

* Provides many of the basic algorithms and
data structures of computer science

From: https://www.sgi.com/tech/stl/stl_introduction.html www.umbc.edu

Considerations of the STL

 The decision of which type of container to use
for a specific need depends on:

—the functionality offered by the container

—the efficiency of some of its members
(complexity)

From: http://www.cplusplus.com/reference/stl/ www.umbc.edu

Types of Containers

e Sequence containers L Focus of Today

—|Array, vector,[deque, Iistl,forwa rd_list

 Container adapters

— Stacks, queuesl priority _queues

e Associative containers (and the unordered)

— Set, multiset, map, multimap

www.umbc.edu

Standard Containers

* Sequences:

— vector: Dynamic array of variables, struct or
objects. Insert data at the end.

— list: Linked list of variables, struct or objects.
Insert/remove anywhere.

— Sequence means order does matter

www.umbc.edu

Container Adapters

 Container adapters:
— stack LIFO
— queue FIFO
— adapter means VERY LIMITED functionality

www.umbc.edu

Will we use STL?

e Today we are going to talk about the ways that
we can implement stacks, queues, deque,
vector, list, iterators, algorithmes.

e Review: 3 Ways to Create a Stack or Queue
— Create a static stack or queue using an array
— Create a dynamic stack or queue using a linked list

— Create a stack or queue using the STL

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Stacks

www.umbc.edu

Implementations of Stacks

e Static Stacks

— Fixed size
— Can be implemented with an array

 Dynamic Stacks
— Grow in size as needed
— Can be implemented with a linked list

e Using STL (dynamic)

www.umbc.edu

Stack Operations

e Push

— causes a value to be stored in (pushed onto) the
stack

* Pop

— retrieves and removes a value from the stack

www.umbc.edu

Other Stack Operations

 ISFUll(): ABoolean operation needed for
static stacks. Returns true if the stack is full.
Otherwise, returns false.

e ISEmpty(): A Boolean operation needed for
all stacks. Returns true if the stack is empty.
Otherwise, returns false.

www.umbc.edu

Static Stacks

www.umbc.edu

Static Stacks

e A static stack is built on an array

— As we are using an array, we must specify
the starting size of the stack

—The stack may become full if the array
becomes full

www.umbc.edu

Member Variables for Stacks

* Three major variables:
— Pointer Creates a pointer to stack
—Sslize Tracks elements in stack
—top Tracks top element in stack

www.umbc.edu

Member Functions for Stacks

— CONSTRUCTOR
— DESTRUCTOR
—push()

—pop()
— I1SEmpty()
—1skFull)

Creates a stack

Deletes a stack

Pushes element to stack
Pops element from stack
Is the stack empty?

Is the stack full?

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Static Stack Definition

#i1fndeft INTSTACK_H
#define INTSTACK_H

class IntStack _
{ pointer

private: / size() Member Variables
int *StaCkArray/ to
int StacKEiEEi———”’—————_——_——_——_——— PO

int top;

Constructor -
~IntStack()
{delete[] StW push() - Meml?er
void push(int); — popQ) Functions
void pop(int &); « E) P
bool isFull(); g _lSFU"()
bool isEmpty(); <« iIsEmpty() _
};
#endi

www.umbc.edu

Dynamic Stacks

www.umbc.edu

Dynamic Stacks

* A dynamic stack is built on a linked list instead of an
array.

* A linked list-based stack offers two advantages over
an array-based stack.

— No need to specify the starting size of the stack. A dynamic
stack simply starts as an empty linked list, and then
expands by one node each time a value is pushed.

— A dynamic stack will never be full, as long as the system
has enough free memory.

www.umbc.edu

Member Variables for Dynamic Stacks

e Parts:
—Linked li1st Linked list for stack (nodes)
—si1ze Tracks elements in stack

www.umbc.edu

Member Functions for Dynamic Stacks

— CONSTRUCTOR Creates a stack

— DESTRUCTOR Deletes a stack
—push() Pushes element to stack
—pop() Pops element from stack
— I1SEmpty() Is the stack empty?
—top() What is the top element?

What happened to isFull () ?

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Dynamic Stack

class DynlIntStack Linked list -

grivate' / of elements
struct StackNode value Member

{ /) —)
thcknore. / pointer Variables
StackNode *next;

to

StackNode *top;

Constructor -
pUinC: / M b
DyniIntStack(void) / push(Q) Fuenr:tic()erzs
{ top = NULL; O
void push(int); / PopO) i

void pop(int &); top(O
const Elem& top()<«const throw(StackEmpty); _
bool isEmpty(void); < ISsEmpty()

www.umbc.edu

The STL Stack

#include <stack>
using std::stack; // make stack accessible
stack<int> myStack; // a stack of integers

List of the principal member functions.

size(): Return the number of elements in the stack.
empty(): Return true if the stack is empty and false
otherwise. push(e): Push e onto the top of the stack.
pop(): Pop the element at the top of the stack.

top(): Return a reference to the element at the top of the
stack

www.umbc.edu

Common Problems with Stacks

e Stack underflow
— no elements in the stack, and you tried to pop

e Stack overflow
— maximum elements in stack, and tried to add another
— not an issue using STL or a dynamic implementation

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Queues

www.umbc.edu

Introduction to the Queue

e Like a stack, a queue is a data structure that holds a
sequence of elements.

A gueue, however, provides access to its elements in
first-in, first-out (FIFO) ordetr.

www.umbc.edu

Implementations of Queues

Just like
stacks!

e Static Queues
— Fixed size
— Can be implemented with an array
* Dynamic Queues
— Grow in size as heeded

— Can be implemented with a linked list

e Using STL (dynamic)

www.umbc.edu

Implementation of a Static Queue

 The previous discussion was about static arrays

— Container is an array

e Class Implementation for a static integer queue

— Member functions
 enqueue()
 dequeue()

e 1SEmpty()
e I1SFUll()
e clear()

www.umbc.edu

Member Variables for Static Queues

* Five major variables:

— gqueueArray Creates a pointer to queue
— queueSize Tracks capacity of queue

— numltems Tracks elements in queue
— front

— rrear

* The variables front and rear are used when our
queue “rotates,” as discussed earlier

www.umbc.edu

Member Functions for Queues

— CONSTRUCTOR
— DESTRUCTOR
—engueue()

— dequeue()

— 1SEmpty ()
—1sFull)
—clear()

Creates a queue

Deletes a queue

Adds element to queue
Removes element from queue
Is the queue empty?

Is the queue full?

Empties queue

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Static Queue Example

#ifndef INTQUEUE_H

#define INTQUEUE_H pointer =
class IntQueue iueues.ze() Member
{ ront —
orivate: Variables
int *queueArray; rear
int queueSize; numltems -
int front; —_
it rear; - Constructor
int numltems;
IntQUEUE(int); / Member
void enqueue(int);
void dequeue(int &); <« fjequeue() — Functions
bool isEmpty() const; <— |sEmpty()
bool isFull() const; _ -
void clear(); ;_ ISFUI I()
};)
#endif — clear() _

www.umbc.edu

Dynamic Queue Example

(front) (rear) cursor

LAX MSP ATL

(==

Circularly Linked List

www.umbc.edu

STL Queues

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

STL Queues

e Another way to implement a queue is by using the standard library

* An STL queue leverages the pre-existing library to access the data structure

* Principal member functions:

O 0O O O O O

size(): Return the number of elements in the queue.

empty(): Return true if the queue is empty and false otherwise.
push(e): Enqueue e at the rear of the queue.

pop(): Dequeue the element at the front of the queue.

front(): Return a reference to the element at the queue’s front.

back(): Return a reference to the element at the queue’s rear.

www.umbc.edu

AN

HONORS UNIVERSITY IN MARYLAND

#include <iostream> // std::cin, std::cout
#include <queue> // std::queue
using namespace std;

int main () STL

{

d:: i ;
i:lt mg:z:?<1nt> myqueue Qu e u e

std::cout << "Please enter some integers (enter 0 to E |
end) : \n"; Xall lp e

do {
std::cin >> myint;
myqueue.push (myint);
} while (myint);

std: :cout << "myqueue contains: ";
while (!myqueue.empty())

{

std::cout << ' ' << myqueue.front():;
myqueue.pop () ;

std::cout << '\n';

return O0;

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

STL Deque

Deque - Double ended Queue (Implement it with a doubly Linked List)
(Supports insertion and deletion at both the front and the rear of the queue)

Here is a list of the principal operations.

size(): Return the number of elements in the deque.

empty(): Return true if the deque is empty and false otherwise.
push front(e): Insert e at the beginning the deque.

push back(e): Insert e at the end of the deque.

pop front(): Remove the first element of the deque.

pop back(): Remove the last element of the deque.

front(): Return a reference to the deque’s first element.

back(): Return a reference to the deque’s last element.

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Warm up Question!!

Explain how you can implement all the functions of the deque ADT using
two stacks. What is the running time of the two stacks deque functions?

size(): Return the number of elements in the deque.

empty(): Return true if the deque is empty and false otherwise.
push front(e): Insert e at the beginning the deque.

push back(e): Insert e at the end of the deque.

pop front(): Remove the first element of the deque.

pop back(): Remove the last element of the deque.

front(): Return a reference to the deque’s first element.

back(): Return a reference to the deque’s last element.

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Bonus Question (0.5%)

Describe how to implement the stack ADT using two queues. What is the
running time of the push and pop functions in this case?

A stack is an abstract data type (ADT) that supports the following
operations:

push(e): Insert element e at the top of the stack.

pop(): Remove the top element from the stack; an error occurs

if the stack is empty.

top(): Return a reference to the top element on the stack, without
removing it; an error occurs if the stack is empty.

Additionally, let us also define the following supporting functions:

size(): Return the number of elements in the stack.
empty(): Return true if the stack is empty and false otherwise.

www.umbc.edu

lterators

© 2010 Goodrich,

: Iterators and Sequences
Tamassia

Containers and Iterators

* An iterator abstracts the process of scanning through
a collection of elements

* A containeris an abstract data structure that supports
element access through iterators
— begin(): returns an iterator to the first element

— end(): return an iterator to an imaginary position just after
the last element

* An iterator behaves like a pointer to an element

— *p:returns the element referenced by this iterator
— ++p: advances to the next element

Extends the concept of position by adding a traversal
capability

© 2010 Goodrich,

: Iterators and Sequences
Tamassia

Containers

e Data structures that support iterators are called containers
 Examples include Stack, Queue, Vector, List

* \Various notions of iterator:
— (standard) iterator: allows read-write access to elements
— const iterator: provides read-only access to elements
— bidirectional iterator: supports both ++p and —p

— random-access iterator: supports both p+i and p-i

© 2010 Goodrich,

: Iterators and Sequences
Tamassia

lterating through a Container

* Let C be a container and p be an iterator for C
for (p = C.begin(); p != C.end(); ++p)
loop_body
 Example: (with an STL vector)
typedef vector<int>::iterator Iterator;
int sum = 0;
for (Iterator p = V.begin(); p != V.end(); ++p)
sum += *p;

return sum;

© 2010 Goodrich,

: Iterators and Sequences
Tamassia

Implementing Iterators

* Array-based

— array A of the n elements

— index i that keeps track of the cursor

— begin() =0

— end() = n (index following the last element)
* Linked list-based

— doubly-linked list L storing the elements, with sentinels for
header and trailer

— pointer to node containing the current element
— begin() = front node
— end() = trailer node (just after last node)

© 2010 Goodrich,

: Iterators and Sequences
Tamassia

STL Iterators in C++

* Each STL container type C supports iterators:

C::iterator — read/write iterator type
C::const_iterator —read-only iterator type

C.begin(), C.end() — return start/end iterators

* This iterator-based operators and methods:

© 2010 Goodrich,

Tamassia

*p: access current element
++p, --p: advance to next/previous element

C.assign(p, q): replace C with contents referenced by the iterator
range [p, q) (from p up to, but not including, q)

insert(p, e): insert e prior to position p
erase(p): remove element at position p

erase(p, q): remove elements in the iterator range [p, q)

Iterators and Sequences

© 2010 Goodrich,

Tamassia Lists

Position ADT

 The Position ADT models the notion of place within a
data structure where a single object is stored

* |t gives a unified view of diverse ways of storing data,
such as

— a cell of an array
— a node of a linked list
e Just one method:

— object p.element(): returns the element at position
— In C++ it is convenient to implement this as *p

© 2010 Goodrich, .
Tamassia Lists

Node List ADT

e The Node List ADT

* |terators:
moglgls a sequence of _ begin(), end()
positions storing
arbitrary objects * Update methods:
e |t establishes a — insertFront(e),
nefore/after relation insertBack(e)
petween positions — removeFront(),
* Generic methods: removeBack()
— size(), empty() * |terator-based update:
— insert(p, e)
— remove(p)

© 2010 Goodrich, .
Tamassia Lists

Node List ADT

Operation
insartFront|)
r = begin{]
insartBack(3)

g=p; ++4q
o begin(}

insert{g.3)
D
insartFront |9
erazeBack()
Erass| m)
eraseFront ()

Doubly Linked List

—_—_———————— e —_—_————_———————— — — —

A doubly linked list provides a natural / prev next
implementation of the Node List ADT
* Nodes implement Position and store:
— element
— link to the previous node
— link to the next node

* Special trailer and header nodes

header | nodes/positions | trailer

——— —_—————————————— —_—_————— - ————— —————————————— —_————

=

| ‘ elements

—_—— e - - -, e~

(
|
|
|
|
|
|

© 2010 Goodrich,
Tamassia

Insertion

* We visualize operation insert(p, x), which inserts x before p

p

© 2010 Goodrich,

Tamassia Lists

Insertion Algorithm

Algorithm insert(p, e): {insert e before p}
Create a new node v
v—element=e
u = p—prev
v—next = p; p—prev=yv {linkin v before p}
v—prev =u; u—next=v {linkin v after u}

© 2010 Goodrich,

Tamassia Lists

Deletion

* We visualize remove(p)

.................................
.
. .

© 2010 Goodrich,

Tamassia Lists

Deletion Algorithm

Algorithm remove(p):
u = p—prev
w = p—next
u—next = w {linking out p}
wW—>prev = u

© 2010 Goodrich,

Tamassia Lists

Performance

* |n the implementation of the List ADT by means
of a doubly linked list
— The space used by a list with n elements is O(n)
— The space used by each position of the list is O(1)
— All the operations of the List ADT run in O(1) time

— Operation element() of the
Position ADT runs in O(1) time

© 2010 Goodrich,

Tamassia Lists

© 2010 Goodrich,

Tamassia

Sequence ADT

The Sequence ADT is the e List-based methods:
union of the Array List and — begin(), end()
Node List ADTs — insertFront(o),
Elements accessed by insertBack(o)
_ Index. or — eraseFront(),
7 eraseBack()
— Position

. — insert (p, 0), erase(p)
Generic methods:

— size(), empty()
Vector (ArrayList)-based
methods:

— at(i), set(i, o), insert(i, o),
erase(i)

* Bridge methods:
— atIndex(i), indexOf(p)

Iterators and Sequences

Applications of Sequences

* The Sequence ADT is a basic, general-purpose,

data structure for storing an ordered collection of
elements

* Direct applications:

— Generic replacement for stack, queue, vector, or list
— small database (e.g., address book)

* Indirect applications:

— Building block of more complex data structures

% n%'gigaGoodrlch, Iterators and Sequences

Linked List Implementation

* A doubly linked list provides a reasonable o Position-based methods

implementation of the Sequence ADT run in constant time
* Nodes implement Position and store: o Index-based methods
— element require searching from
— link to the previous node header or trailer while

keeping track of indices;
hence, run in linear time

— link to the next node

* Special trailer and header nodes

header ! nodes/ p05|t|ons - trailer

(
|
|
|
|
|
|

\
% n%'gigaGoodrlch, Iterators and Sequences

Circular Array-based Implementation

We use a
circular array
storing
positions
A position
object stores:
— Element
— Index

Indices fand /
keep track of
first and last
positions

© 2010 Goodrich,
Tamassia

N\
elements

I
I
I
)

positions
—

f l

Iterators and Sequences

I
I
I

Comparing Sequence

Implementations
('perafions Circular Amay | List
size, empty 1] Ol
begin, end 1] 01
insertFront, insartBack L1y O(1)
Insert, erase (Nn| O(1)

	CMSC 341 - Lec04 - Templates - Gibson
	CMSC 341 - Lec08 - Stacks, Queues, and Iterators - Dixon
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

