CMSC 341
Lecture 6 — Templates, Stacks &
Queues

Based on slides by Shawn Lupoli & Katherine Gibson at UMBC

Today’s Topics

Data types in C++
Overloading functions

Templates

o How to implement them

o Possible problems (and solutions)
o Compiling with templates

Stacks
Queues

UMBC CMSC 341 Templates

Data Types

Data Types (Review)

Values of variables are stored somewhere
In an unspecified location in the computer
memory as zeros and ones

Our program does not need to know the
exact location where a variable Is stored

o It can simply refer to it by its name

What the program needs to be aware of Is
the kind of data stored in the variable

UMBC CMSC 341 Templates

Fundamental Data Types in C++

Group Type names* Notes on size / precision

char Exactly one byte in size. At least 8 bits.
charlé t Not smaller than char. At least 16 bits.

Character types = :
char32 t Not smaller than char16_t. At least 32 bits.
wchar t Can represent the largest supported character set.
signed char Same size as char. At least 8 bits.
signed short int Not smaller than char. At least 16 bits.

Integer types (signed) |signed int Not smaller than short. At least 16 bits.
signed long int Not smaller than int. At least 32 bits.

signed long long int |Not smaller than long. At least 64 bits.

unsigned char

unsigned short int

Integer types (unsigned)funsigned int (same size as their signed counterparts)

unsigned long int

unsigned long long int

float
Floating-point types double Precision not less than float
long double Precision not less than docuble
Boolean type bool
Void type void no storage
Null pointer decltype (nullptr)

Source: http://www.cplusplus.com/doc/tutorial/variables/

UMBC CMSC 341 Templates

Overloading Functions

What 1s Overloading?

Used to create multiple definitions for
functions in various settings:

o Class constructors
o Class operators
o Functions

Let’s look at a simple swap function

UMBC CMSC 341 Templates

Example: Swap Function

Here Is a function to swap two |integers

void SwapVals &vl, &v2) {
temp

temp = vl1; what if we want to
swap two floats?

vl = v2;
what do we need

v2 = temp; to change?

UMBC CMSC 341 Templates

Example: Swap Function

Here iIs a function to swap twolfloats

void SwapVals &vl, &v2) |

float] temp;

temp = vl1; what if we want to
swap two chars?

vl = v2;
what do we need

v2 = temp; to change?

UMBC CMSC 341 Templates

Example: Swap Function

Here is a function to swap two(chars}

void SwapVals &vl, &v2) {
temp

temp = vl1; what if we want to
swap two strings?

vl = v2;
what do we need

v2 = temp; to change?

UMBC CMSC 341 Templates

Example: Swap Function

This Is getting ridiculous!

We should be able to write just one function
that can handle all of these things

o The only difference is the data type, after all

This is possible by using templates

UMBC CMSC 341 Templates

11

Templates

12

Common Uses for Templates

Some common algorithms that easily
lend themselves to templates:

0 Swap

0 Sort

o Search
o FIndMax
o FIndMin

UMBC CMSC 341 Templates

13

maxx () Overloaded Example

float maxx (const float a, const float b);
int maxx (const int a, const int b);
Rational maxx (const Rational& a, const Rationalé& b);

myType maxx (const myType& a, const myTypeé& b);

Code for each looks the same...
if (a < b)

return b;

we want to reuse this
else code for all types

return a,

UMBC CMSC 341 Templates 14

What are Templates?

Templates let us create functions and classes
that can use “generic” input and types

This means that functions like
SwapVals () only need to be written once

2 And can then be used for almost anything

UMBC CMSC 341 Templates 15

Indicating Templates

To let the compiler know you are going to
apply a template, use the following:
template <class T>

Y’

this keyword tells
the compiler that
what follows this
will be a template

UMBC CMSC 341 Templates

Indicating Templates

To let the compiler know you are going to
apply a template, use the following:

template <class T>

this does not mean
“class” in the same
sense as C++ classes
with members!

in fact, another keyword
we can use is actually
“typename”, because we

are defining a new type

but “class” is more common
by far, and so we will use class
to avoid confusion

UMBC CMSC 341 Templates

17

Indicating Templates

To let the compiler know you are going to
apply a template, use the following:

template <class T>

2

T" isthe name |\ o can call it anything
of our new type | \ye want, but using “T”

is the style convention

(of course, we can’t use “int” or
“for” or any other types or
keywords as a name for our type)

UMBC CMSC 341 Templates

18

Indicating Templates

To let the compiler know you are going to
apply a template, use the following:
template <class T>

What this line means overall is that we plan
to use “T” in place of a data type

o e.d., int, char, myClass, elcC.

This template prefix needs to be used before
function declarations and function definitions

UMBC CMSC 341 Templates 19

Template Example

Function Template
template <class T>
T maxx (const T& a, const T& b)
| | ||

{
if (a < b))
return b;
else
return a;

}

Compiler generates code based on the argument type
cout << maxx(4, 7) << endl;

Generates the following:

int maxx (const int& a, const inté& b)
I I I

{
if (a < b))
return b;
else
return a;

/

_

Notice how ‘T’ is
mapped to ‘int’
everywhere in the
function...

~

)

UMBC CMSC 341 Templates

20

Using Templates

When we call these templated functions,
nothing looks different:

SwapVals (intOne, intTwo) ;
SwapVals (charOne, charTwo) ;
SwapVals (strOne, strTwo) ;

SwapVals (myClassA, myClassB);

UMBC CMSC 341 Templates

21

(In)valid Use of Templates

Which of the following will work?
SwapVals (int, int);

SwapVals ;

SwapVals ["hello", "world");

SwapVals |[double, float) ;

SwapVals (Shape, Shape);

These use two different

types, and the These are two

string literals — we
can’t swap those!

SwapVals() function
doesn'’t allow this.

UMBC CMSC 341 Templates

22

Template Requirements

Templated functions can handle any
input types that “makes sense”

0 l.e., any data type where the behavior
that occurs in the function is defined

Even user-defined types!

o As long as the behavior is defined

o What happens if the behavior isn’'t defined?
Compiler will give you an error

UMBC CMSC 341 Templates 23

Overloading Templates

24

Why Overload Templates?

Sometimes, even though the behavior is
defined, the function performs incorrectly

Assume the code:
char* sl = "hello";

char* s2 = "goodbye";

cout << maxx(sl, s2);

What Is the call to maxx () actually going to do?

UMBC CMSC 341 Templates 25

Incorrect Template Performance

The compiler generates:

char* maxx (const char*& a, const char*& b)

{
if (a < b))
return b;

else
return a;

}

Is this what we want?

UMBC CMSC 341 Templates 26

Overloading a Template

Fix this by creating a version of maxx ()
specifically to handle char* variables

o Compiler will use this instead of the template

char* maxx (char *a, char *b)
{
if (strcmp(a,b) < 0)
return b;
else

return a;

UMBC CMSC 341 Templates

27

Compiling Templates

28

Compiler Handling of Templates

Exactly what versions of Swapvals () are
created Is determined at compile time

If we call Swapvals () with integers and
strings, the compiler will create versions of
the function that take in integers and strings

UMBC CMSC 341 Templates 29

Separate Compilation

Which versions of templated function to
create are determined at compile time

How does this affect our use of separate
compilation?

g

g

Q

—unction declaration in .h file
—unction definition in . cpp file

—unction call in separate .cpp file

UMBC CMSC 341 Templates

30

Separate Compilation: Example Code

Here’s an illustrative example:

#include "swap.h" template <class T>
void SwapVals (T &vl, T &v2);

int main|()
{ swap_.h
int a = 3, b = 8;
SwapVals(a, b); #include “swap.h”

}
template <class T>

main.cpp void SwapVals (T &vl, T &v2)

{
T temp;
temp = vl;
vl v2;
v2 temp;

sSwap.cCcpp

UMBC CMSC 341 Templates

31

Separate Compilation

Most compilers (including GL's) cannot
handle separate compilation with templates

When swap . cpp Is compiled...
o There are no calls to SwapVvals ()
0 swap.o has no SwapVals () definitions

UMBC CMSC 341 Templates 32

Separate Compilation

When main. cpp is compiled...

o It assumes everything is fine
o Since swap . h has the appropriate declaration

When main.o and swap.o are linked...

o Everything goes wrong

0 error: undefined reference to
‘void SwapVals<int>(inté&, inté&)’

UMBC CMSC 341 Templates 33

Separate Compilation Solutions

The template function definition code must be
In the same file as the function call code

Two ways to do t
o place function c
o place function c

NIS:
efinition In main.c
efinition in swap . h,

which Is #incluo

UMBC

ed Inmain.c

CMSC 341 Templates 34

Template Compilation Solution

Second option keeps some sense of separate
compilation, and better allows code reuse

#include "swap.h" // declaration
template <class T>
int main() void SwapVals (T &vl, T &v2);

{

int a = 3, b = 8; // definition
SwapVals(a, b); template <class T>
} void SwapVals (T &vl, T &v2)

main.cpp T temp;

temp = vl;
v2;
temp;

swap.h

UMBC CMSC 341 Templates 35

CMSC 341
Stacks and Queues

www.umbc.edu

Topics for Today
* |Introduction to Standard Template Library
(STL)

e Stacks
— Types of Stacks

— Examples
* Queues
— Types of Queues

— Examples

www.umbc.edu

Standard Template Library (STL)

www.umbc.edu

Standard Template Library (STL)

e The Standard Template Library (STL) is a C++

library of container classes, algorithms, and
Iiterators

* Provides many of the basic algorithms and
data structures of computer science

From: https://www.sgi.com/tech/stl/stl_introduction.html www.umbc.edu

Considerations of the STL

e Containers replicate structures very commonly
used in programming.
 Many containers have several member

functions in common, and share
functionalities.

From: http://www.cplusplus.com/reference/stl/ www.umbc.edu

Considerations of the STL

 The decision of which type of container to use
for a specific need depends on:

—the functionality offered by the container

—the efficiency of some of its members
(complexity)

From: http://www.cplusplus.com/reference/stl/ www.umbc.edu

Types of Containers

Focus of Today

* Sequence containers

— Array, vector,|deque, forward_list, list

 Container adapters

— Stacks, queuesl priority_queues

e Associative containers (and the unordered)

— Set, multiset, map, multimap

www.umbc.edu

Standard Containers

* Sequences:

— vector: Dynamic array of variables, struct or
objects. Insert data at the end.

— list: Linked list of variables, struct or objects.
Insert/remove anywhere.

— Sequence means order does matter

www.umbc.edu

Container Adapters

 Container adapters:
— stack LIFO
— queue FIFO
— adapter means VERY LIMITED functionality

www.umbc.edu

Will we use STL?

 Today we are going to talk about the ways that
we can implement stacks and queues

3 Ways to Create a Stack or Queue
— Create a static stack or queue using an array
— Create a dynamic stack or queue using a linked list
— Create a stack or queue using the STL

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Stacks

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Stacks

www.umbc.edu

Introduction to Stacks

e A stack is a data structure that stores and

retrieves items in a last-in-first-out (LIFO)
mannetr.

Last plate in,
first plate out > ! '

First plate in, —> q'

last plate out

www.umbc.edu

Applications of Stacks

e Computer systems use stacks during a
program’s execution to store function return
addresses, local variables, etc.

 Some calculators use stacks for performing
mathematical operations.

www.umbc.edu

Implementations of Stacks

e Static Stacks

— Fixed size
— Can be implemented with an array

 Dynamic Stacks
— Grow in size as needed
— Can be implemented with a linked list

e Using STL (dynamic)

www.umbc.edu

Stack Operations

e Push

— causes a value to be stored in (pushed onto) the
stack

* Pop

— retrieves and removes a value from the stack

www.umbc.edu

The Push Operation

e Suppose we have an empty integer stack that
is capable of holding a maximum of three
values. With that stack we execute the
following push operations.

push(3);
push(10);
push(15);

www.umbc.edu

push(5);

The Push Operation

push(10);

10

push(15);

15

10

www.umbc.edu

The Pop Operation

* Now, suppose we execute three
consecutive pop operations on the same
stack:

15 4\\\ 10 4\\\ 5 4\\\

10

pop; | 5 POP; POp;

www.umbc.edu

Other Stack Operations

 ISFUll(): ABoolean operation needed for
static stacks. Returns true if the stack is full.
Otherwise, returns false.

e ISEmpty(): A Boolean operation needed for
all stacks. Returns true if the stack is empty.
Otherwise, returns false.

www.umbc.edu

Static Stacks

www.umbc.edu

Static Stacks

e A static stack is built on an array

— As we are using an array, we must specify
the starting size of the stack

—The stack may become full if the array
becomes full

www.umbc.edu

Member Variables for Stacks

* Three major variables:
— Pointer Creates a pointer to stack
—Sslize Tracks elements in stack
—top Tracks top element in stack

www.umbc.edu

Member Functions for Stacks

— CONSTRUCTOR
— DESTRUCTOR
—push()

—pop()
— I1SEmpty()
—1skFull)

Creates a stack

Deletes a stack

Pushes element to stack
Pops element from stack
Is the stack empty?

Is the stack full?

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Static Stack Definition

#i1fndeft INTSTACK_H
#define INTSTACK_H

class IntStack _
{ pointer

private: / size() Member Variables
int *StaCkArray/ to
int StacKEiEEi———”’—————_——_——_——_——— PO

int top;

Constructor -
~IntStack()
{delete[] StW push() - Meml?er
void push(int); — popQ) Functions
void pop(int &); « E) P
bool isFull(); g _lSFU"()
bool isEmpty(); <« iIsEmpty() _
};
#endi

www.umbc.edu

Dynamic Stacks

www.umbc.edu

Dynamic Stacks

* A dynamic stack is built on a linked list instead of an
array.

* A linked list-based stack offers two advantages over
an array-based stack.

— No need to specify the starting size of the stack. A dynamic
stack simply starts as an empty linked list, and then
expands by one node each time a value is pushed.

— A dynamic stack will never be full, as long as the system
has enough free memory.

www.umbc.edu

Member Variables for Dynamic Stacks

e Parts:
—Linked li1st Linked list for stack (nodes)
—si1ze Tracks elements in stack

www.umbc.edu

Member Functions for Dynamic Stacks

— CONSTRUCTOR Creates a stack

— DESTRUCTOR Deletes a stack
—push() Pushes element to stack
—pop() Pops element from stack
— I1SEmpty() Is the stack empty?
—top() What is the top element?

What happened to isFull () ?

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Dynamic Stack

class DynlIntStack Linked list -

grivate' / of elements
struct StackNode value Member

{ /) —)
ehcknore. / pointer Variables
StackNode *next;

to

StackNode *top;

Constructor -
pUinC: / M b
DyniIntStack(void) / push(Q) Fuenr:tic()erzs
{ top = NULL; O
void push(int); / PopO) i

void pop(int &); top(O
const Elem& top()<«const throw(StackEmpty); _
bool isEmpty(void); < ISsEmpty ()

www.umbc.edu

Common Problems with Stacks

e Stack underflow

— NO

elements in the stack, and you tried to pop

e Stack overflow
— maximum elements in stack, and tried to add another

— not an issue using STL or a dynamic implementation

® Pract
whic
whic

ice question: Stack Min - How would you design a stack
n, in addition to push and pop, has a function min
N returns the minimum element? Push, pop and min

shou

d all operate in 0(1) time.

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Queues

www.umbc.edu

Introduction to the Queue

e Like a stack, a queue is a data structure that holds a
sequence of elements.

A gueue, however, provides access to its elements in
first-in, first-out (FIFO) order.

* The elements in a queue are processed like customers
standing in a line: the first customer to get in line is
the first one to be served (and leave the line).

www.umbc.edu

Example Applications of Queues

* |n a multi-user system, a queue is used to hold print
jobs submitted by users, while the printer services
those jobs one at a time.

e Communications software also uses queues to hold
information received over networks. Sometimes
information is transmitted to a system faster than it

can be processed, so it is placed in a queue when it is
received.

www.umbc.edu

Implementations of Queues

Just like
stacks!

e Static Queues
— Fixed size
— Can be implemented with an array
* Dynamic Queues
— Grow in size as heeded

— Can be implemented with a linked list

e Using STL (dynamic)

www.umbc.edu

Queue Operations

 Think of queues as having a front and a
rear.

— rear: position where elements are added

— front: position from which elements are
removed

Front Rear

N 4

www.umbc.edu

Queue Operations

 The two primary queue operations are
enqueuing and dequeuing.

* To enqueue means to insert an element at the
rear of a queue.

 To dequeue means to remove an element
from the front of a queue.

www.umbc.edu

Queue Operations

e Suppose we have an empty static integer
queue that is capable of holding a maximum
of three values. With that queue we execute
the following enqueue operations.

Enqueue(3);
Enqueue(6) ;
Enqueue(9);

www.umbc.edu

Queue Operations - Enqueue

 The state of the queue
after each of the
enqueue operations.

Front

Enqueue(3);

N

Rear

3

Enqueue(6);

Front

N

Rear

'

3

6

Enqueue(9);

Front

Rear

3

6|9

www.umbc.edu

Queue Operations - Dequeue

| Dequeue();
e Now let's see how Front Rear
dequeue operations are . N 4
performed. The figure on removed 6|9
the right shows the state
Dequeue();

of the queue after each of
three consecutive

Front Rear

dequeue operations 6 9
] removed
e An important remark
— After each dequeue, Dequeue();
remaining items shift Front=-1 Rear=-1
toward the front of the 9
queue. removed

www.umbc.edu

Efficiency Problem of Dequeue & Solution

o Shifting after each dequeue operation

: . Enqueue(3);
causes inefficiency. Enqueue(6) -
e Solution Enqueue(9);
— Let front index move as elements are Bequeue() .
q equeue();
remove Enqueue(12);
— let rear index "wrap around" to the Dequeue();

beginning of array, treating array as circular
e Similarly, the front index as well

— Yields more complex enqueue, dequeue
code, but more efficient

— Let's see the trace of this method on the
board for the enqueue and dequeue
operations given on the right (queue size is 3)

www.umbc.edu

Implementation of a Static Queue

 The previous discussion was about static arrays

— Container is an array

e Class Implementation for a static integer queue

— Member functions
 enqueue()
 dequeue()

e 1SEmpty()
e I1SFUll()
e clear()

www.umbc.edu

Member Variables for Static Queues

* Five major variables:

— gqueueArray Creates a pointer to queue
— queueSize Tracks capacity of queue

— numltems Tracks elements in queue
— front

— Frear

e The variables front and rear are used when our
gueue “rotates,” as discussed earlier

www.umbc.edu

Member Functions for Queues

— CONSTRUCTOR
— DESTRUCTOR
—engueue()

— dequeue()

— 1SEmpty ()
—1sFull)
—clear()

Creates a queue

Deletes a queue

Adds element to queue
Removes element from queue
Is the queue empty?

Is the queue full?

Empties queue

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Static Queue Example

#ifndef INTQUEUE_H

#define INTQUEUE_H pointer =
class IntQueue (;ueueSIZe() Member
{ ront —
orivate: Variables
int *queueArray; rear
int queueSize; numltems -
int front; —_
it rear; - Constructor
int numltems;
IntQueue(int); / Member
void enqueue(int);
void dequeue(int &); <« Ejequeue() — Functions
bool isEmpty() const; <— ISEmpty()
bool isFull() const; _ -
void clear(); ;_ ISFUI I()
}s)
#endif — clear() _

www.umbc.edu

STL Queues

www.umbc.edu

STL Queues

e Another way to implement a queue is by using
the standard library

 An STL queue leverages the pre-existing library
to access the data structure

e Much easier to use

www.umbc.edu

AN

HONORS UNIVERSITY IN MARYLAND

#include <iostream> // std::cin, std::cout
#include <queue> // std::queue
using namespace std;

int main () STL

{

d:: i ;
i:lt m}q,:::?<1nt> myqueue Qu e u e

std::cout << "Please enter some integers (enter 0 to E I
end) :\n"; Xall Ip e

do {
std::cin >> myint;
myqueue.push (myint);
} while (myint);

std: :cout << "myqueue contains: ";
while (!myqueue.empty())

{

std::cout << ' ' << myqueue.front():;
myqueue.pop () ;

std::cout << '"\n';

return O;

www.umbc.edu

	CMSC 341 - Lec04 - Templates - Gibson
	CMSC 341 - Lec08 - Stacks, Queues, and Iterators - Dixon

