
CMSC 341

Hashing (Continued)

Based on slides from previous iterations of this course

Today’s Topics

 Review
 Uses and motivations of hash tables

 Major concerns with hash tables

 Properties
 Hash function

 Hash table size

 Load factor

 Operations
 Collision handling

 Resizing/Expanding

 Deletion

UMBC CMSC 341 Hashing

Review: Hash Tables

Motivation

 We want a data structure that supports fast:

 Insertion

 Deletion

 Searching

 (We don’t care about sorting)

 We could use direct indexing in an array, but

that is not space efficient

 The solution is a hash table

UMBC CMSC 341 Hashing

Hash Tables

 A hash table is used to store (key, value) pairs

 There are two major components:

 Bucket array

 Hash function

UMBC CMSC 341 Hashing

Bucket Array

 A bucket array is an array of size N where

each cell can be thought of as a “bucket” that

holds a collection of key/value pairs

 If the keys are unique integers that fit in the

range [0, N-1] then the bucket array is all we

need – no hash function at all!

 However, this is rarely (i.e., never) the case

UMBC CMSC 341 Hashing

Hash Function

 A hash function is needed to take our initial

keys and map them into the range [0, N-1]

 Two parts to a hash function:

 Hash code

 Converts key into an integer

 Compression function

 Converts integer to index in the correct range

 (Often combined into one function)

UMBC CMSC 341 Hashing

Uses of Hash Functions

 Convert non-integer keys (like strings) into an

integer index for easy storage

 Compress sparsely-populated indexes into a

more space-efficient format

 For fast access

 Possibly as fast as O(1)

 As long as sorting is not a concern

UMBC CMSC 341 Hashing

Major Concerns

 How big to make the bucket array?

 Want to minimize space needed

 Want to minimize number of collisions

 How to choose hash function?

 Want it to be efficient

 Want it to produce evenly distributed indexes

 How to handle collisions?

 Want to minimize time spent searching

UMBC CMSC 341 Hashing

Hash Table Properties

Hash Function

 The hash function maps the given keys to

integer values in the range of the table size

 These integer values are then used to index into

specific locations in the table

 A good hash function should:

 Be relatively easy/fast to compute

 Create a uniform distribution

 (Very important!)

UMBC CMSC 341 Hashing

Hash Functions – Trivial

 Some “obvious” hash functions:

 With SSN as a key, use the last 4 as the hash

 Convert a string key to ASCII and sum values

 Use first three letters of a string key as the hash

 These functions perform very poorly at

creating a uniform distribution

 Leads to lots of collisions

 Which is something we want to avoid

UMBC CMSC 341 Hashing

Hash Function – Integers

 Here is a decent hash for integer keys

((a * key + b) % P) % N)

a, b: positive integers

N : number of buckets

P : large prime, P >> N

 Having a prime number somewhere in the

hash function is important

 So values aren’t easily divisible by some number

UMBC CMSC 341 Hashing

Hash Functions – Strings

 Here is a decent hash for string keys

int hashVal = 0;

for(char in string):

hashVal = (37 * hashVal + ASCII_of_char

 % 16908799);

hashVal % = tableSize;

 Prime number (16908799) is very large so
hashVal doesn’t go over size for integers

UMBC CMSC 341 Hashing

Horner’s Rule

static int hash(String key, int tableSize)
{
 int hashVal = 0;

 for (int i = 0; i < key.length(); i++)
 hashVal = 37 * hashVal + key.charAt(i);

 hashVal %= tableSize;
 if(hashVal < 0)

 hashVal += tableSize;

return hashVal;
}

UMBC CMSC 341 Hashing

Designing Hash Functions

 Hash functions can perform differently on

different types of input

 Should always test a hash function on sample

input to evaluate performance

 Probably not a good idea to design your own

hash function when you need one

 There are good hash functions available, that

were created by more experienced programmers

and have been extensively tested

UMBC CMSC 341 Hashing

Hash Table Size

 Important to keep in mind two things when

choosing a hash table size

 Interaction with hash function

 Either table size needs to be prime

 Or hash function needs to contain a prime

 (Preferably both)

 Load factor

 How full the table will be, and the rate of collisions

UMBC CMSC 341 Hashing

Load Factor

 Load factor refers to the percentage of

buckets in the array containing entries

 General rule is below 75% - 80%

 Balance between minimizing the space needed

for storage and the number of collisions

 For implementations with multiple entries per

bucket, want to consider list size as well

 If actual load factor is much higher/lower than

ideal, we might consider resizing hash table

UMBC CMSC 341 Hashing

Collisions

 Collisions are when two keys map to the

same index in the hash table

 Affected by function, table size, and load factor

 Collisions are unavoidable in practice

 Collision-resolution strategy greatly affects

effectiveness and performance of hash table

 Many different strategies are available

UMBC CMSC 341 Hashing

Handling Collisions

Methods of Handling Collisions

 Chaining

 Lists (linked list, array, etc.)

 Data structures (BST)

 Only worth it if minimizing delay is super important

 Open addressing (probing)

 (Entries stored directly in the bucket array)

 Linear probing

 Quadratic probing

 Double hashing

UMBC CMSC 341 Hashing

Chaining

 Chaining “accepts” the collisions, and allows

storage of multiple entries in one index

 The bucket array

contains pointers to a

data structure that can

hold multiple entries

(list, BST, etc.)

UMBC CMSC 341 Hashing

Chaining Example - Division Method

 Exercise:

 For a table of size 7, insert the following keys
(where the hash function is just key % 7)

 1, 4, 7, 8, 9, 10, 14, 15, 17, 20, 21, 24, 27, 29

UMBC CMSC 341 Hashing

1

0 1 2 3 4 5 6 index

4 7

8

9 10

14

15

17

20

21 24

27

29

Chaining Performance

 Insert

 For linked lists is O(1)

 For BSTs is O(log n)

 Delete and Find

 Worst case for linked lists: O(n)

 All of the entries are in one index’s list

 (This means the hash function is pretty terrible)

 Average case for linked lists:

O(1) when load factor is less than 100%

UMBC CMSC 341 Hashing

Probing

 Other option is open addressing, or “probing”

 Each index holds only one entry

 If an index already holds an entry, the question

becomes – what index do we try next?

 Random would be great – but isn’t repeatable

 Three common choices

 Linear Probing

 Quadratic Probing

 Double Hashing

UMBC CMSC 341 Hashing

Linear Probing

 Linear probing handles collisions by finding

the next available index in the bucket array

 If it reaches the end of the bucket array,

it wraps back around to the first index

 Each table cell inspected is one “probe”

 Linear probing is normally sequential, but can
be implemented to probe with larger

“jumps” (c)

UMBC CMSC 341 Hashing

Linear Probing

n Use a linear function for f(i)
 f(i) = c * i

n Example:
h’(k) = k mod 10 in a table of size 10 , f(i) = i

So that
 h(k, i) = (k mod 10 + i) mod 10

 Insert the values U={89,18,49,58,69} into the hash
table

Linear Probing Example

 Exercise:

 For a table of size 13, insert the following keys
(where the hash function is just key % 13)

 1, 14, 3, 15, 2, 9, 22, 4, 7

 What do you notice?

UMBC CMSC 341 Hashing

0 1 2 3 4 5 6 index 7 8 9 10 11 12 13

1 14 2 15 3 9

1 pushed off by:

22 4 7

2 3 2 1

Linear Probing (cont.)

n Problem: Clustering
q  When the table starts to fill up, performance →

O(N)

n Asymptotic Performance
q  Insertion and unsuccessful find, average

n λ is the “load factor” – what fraction of the table is used
n Number of probes ≅ (½) (1+1/(1-λ)2)
n if λ ≅ 1, the denominator goes to zero and the number of

probes goes to infinity

Clustering

 Clustering is when indexes in the hash table

become filled in long unbroken stretches

 Most commonly occurs with linear probing

 Especially sequential probing

 Severely degrades performance of all the

operations of the hash table

 Drops from ideal O(1) to close to O(n)

UMBC CMSC 341 Hashing

Linear Probing Performance

 Insert and Find
 Best case is O(1)

 Worst case can become O(n)

 Delete is complicated
 We can’t just delete the entry! (Why not?)

 The empty space will confuse future probing

 We’ll discuss the details of deleting later

UMBC CMSC 341 Hashing

Quadratic Probing

 Quadratic probing is similar to linear probing

 Rather than checking in sequence, “jump”

further away with each consecutive probe

 Helps to prevent clustering problems

 Quadratic function implementation can vary

 (k + i * i), .i >= 1: 1, 4, 9, 16, 25, etc.

 (k + i + i2), i >= 1: 2, 6, 12, 20, 30, etc.

UMBC CMSC 341 Hashing

Quadratic Probing

n Use a quadratic function for f(i)
 f(i) = c2i2 + c1i + c0

 The simplest quadratic function is f(i) = i2
n Example:

 Let f(i) = i2 and m = 10
 Let h’(k) = k mod 10

 So that
 h(k, i) = (k mod 10 + i2) mod 10

 Insert the value U={89, 18, 49, 58, 69 } into an
initially empty hash table

Quadratic Probing (cont.)

n Advantage:
q  Reduced clustering problem

n Disadvantages:
q  Reduced number of sequences
q  No guarantee that empty slot will be found if
λ ≥ 0.5, even if m is prime

q  If m is not prime, may not find an empty slot
even if λ < 0.5

Quadratic Probing Example

 Exercise:

 For a table of size 7, insert the following keys:

8, 16, 15, 2, 23

 Using quadratic formula (k + i * i)

UMBC CMSC 341 Hashing

0 1 2 3 4 5 6 index

8 16 15 2 23

Quadratic Probing Concerns

 With many common quadratic functions, it is

best to keep the table less than half full

 No guarantee of finding an empty cell!

 If two keys have the same initial probe position,
then their probe sequences are the same.

 (Depends on interaction between size and probe)

 Trade off

 Faster probing and clustering is less common

 Table cannot have a load factor greater than 50%

UMBC CMSC 341 Hashing

Double Hashing

 Double hashing is a form of collision-handling where

a second hash function determines how much the

probe “jumps” by for each probe

 Both hash functions should give uniform distributions,

and should be independent

 Second hash function cannot evaluate to 0! Why?

 We will continually probe the same index

Unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key k (h'(k)
and h2(k)).

UMBC CMSC 341 Hashing

Double Hashing
n Let f(i) use another hash function

 f(i) = i * h2(k)
 Then h(k, i) = (h’(k) + i* h2(k)) mod m
and probes are performed at distances of

 h2(k), 2 * h2(k), 3 * h2(k), 4 * h2(k), etc

n Choosing h2(k)
q  Don’t allow h2(k) = 0 for any k.
q  A good choice:

h2(k) = R - (k mod R) with R a prime smaller than m

n Characteristics
q  No clustering problem
q  Requires a second hash function

Double Hashing Example

 Exercise:

 For a table of size 7, insert numbers 9, 16, 23, 30

h1 = key % 7 h2 = 11 – (key % 11)

UMBC CMSC 341 Hashing

0 1 2 3 4 5 6 index

9 16 23 30

16 % 7 = 2

11-(16%11) = 6

(2 + 6) % 7 = 1

23 % 7 = 2

11-(23%11) = 10

(2 + 10) % 7 = 5

9 % 7 = 2

30 % 7 = 2

11-(30%11) = 3

(2 + 3) % 7 = 5

(5 + 3) % 7 = 1

(1 + 3) % 7 = 4

Hash Tables: Other Details

When to Use a Hash Table?

 Good for when you need fast access

 Average find/insert/delete is O(1)

 Very poor choice if sorting is a concern

 Indexing is essentially random based on value

 Hash functions are also used in cryptography

 The primary goal with crypto is to have hash

functions that can’t be reverse-engineered

UMBC CMSC 341 Hashing

Deleting from a Hash Table

 With open addressing, deletion is a concern
 “Empty” indexes affect search pattern

 Lazy deletion
 Mark an element as deleted

 Treat element as empty when inserting

 Treat element as occupied when searching

 Rehash the entire table
 Time consuming, but makes sense in some cases

UMBC CMSC 341 Hashing

Resizing a Hash Table

 Ideally, hash tables should be resized when

the load factor becomes too high

 May also be resized if load factor is very low

 Performance of resizing a hash table?

 O(n)

 All (key, value) pairs are rehashed to new indexes

 If run-time is critical (such as in real-time

systems) we may use another option

UMBC CMSC 341 Hashing

Incremental Resizing

 Incremental resizing is a method of resizing

a hash table that is done incrementally

 Often used for real-time and disk-based tables

 Allocate a new hash table, but keep old one

 Find and Delete look for value in both tables

 Insert new values only into new table

 At each insertion, also move some number of

elements from the old table to the new table

 “Incrementally” rehashing the values

UMBC CMSC 341 Hashing

Multiple Copies of a Key

 How do we handle data that has duplicate

keys, with unique associated values?
 Depends heavily on the purpose of hash table

 Insert both, search/delete picks one arbitrarily
 Pros? Cons?

 Replace the original entry with the new one
 Pros? Cons?

UMBC CMSC 341 Hashing

Announcements

 Homework 6 will be out tomorrow (11/15)
 Due Thursday, November 30th at 8:59:59 PM

 Project 5 will be out soon

 Due Tuesday, December 12th at 8:59:59 PM

 Next Time:

 Exam 2 Review

UMBC CMSC 341 Hashing

