
CMSC 341 

Hashing (Continued) 

Based on slides from previous iterations of this course 



Today’s Topics 

 Review
 Uses and motivations of hash tables

 Major concerns with hash tables

 Properties
 Hash function

 Hash table size

 Load factor

 Operations
 Collision handling

 Resizing/Expanding

 Deletion

UMBC CMSC 341 Hashing 



Review: Hash Tables 



Motivation 

 We want a data structure that supports fast:

 Insertion

 Deletion

 Searching

 (We don’t care about sorting)

 We could use direct indexing in an array, but

that is not space efficient

 The solution is a hash table

UMBC CMSC 341 Hashing 



Hash Tables 

 A hash table is used to store (key, value) pairs

 There are two major components:

 Bucket array

 Hash function

UMBC CMSC 341 Hashing 



Bucket Array 

 A bucket array is an array of size N where

each cell can be thought of as a “bucket” that

holds a collection of key/value pairs

 If the keys are unique integers that fit in the

range [0, N-1] then the bucket array is all we

need – no hash function at all!

 However, this is rarely (i.e., never) the case

UMBC CMSC 341 Hashing 



Hash Function 

 A hash function is needed to take our initial

keys and map them into the range [0, N-1]

 Two parts to a hash function:

 Hash code

 Converts key into an integer

 Compression function

 Converts integer to index in the correct range

 (Often combined into one function)

UMBC CMSC 341 Hashing 



Uses of Hash Functions 

 Convert non-integer keys (like strings) into an

integer index for easy storage

 Compress sparsely-populated indexes into a

more space-efficient format

 For fast access

 Possibly as fast as O(1)

 As long as sorting is not a concern

UMBC CMSC 341 Hashing 



Major Concerns 

 How big to make the bucket array?

 Want to minimize space needed

 Want to minimize number of collisions

 How to choose hash function?

 Want it to be efficient

 Want it to produce evenly distributed indexes

 How to handle collisions?

 Want to minimize time spent searching

UMBC CMSC 341 Hashing 



Hash Table Properties 



Hash Function 

 The hash function maps the given keys to

integer values in the range of the table size

 These integer values are then used to index into

specific locations in the table

 A good hash function should:

 Be relatively easy/fast to compute

 Create a uniform distribution

 (Very important!)

UMBC CMSC 341 Hashing 



Hash Functions – Trivial 

 Some “obvious” hash functions:

 With SSN as a key, use the last 4 as the hash

 Convert a string key to ASCII and sum values

 Use first three letters of a string key as the hash

 These functions perform very poorly at

creating a uniform distribution

 Leads to lots of collisions

 Which is something we want to avoid

UMBC CMSC 341 Hashing 



Hash Function – Integers 

 Here is a decent hash for integer keys

((a * key + b) % P) % N)

a, b: positive integers 

N   : number of buckets 

P   : large prime, P >> N 

 Having a prime number somewhere in the

hash function is important

 So values aren’t easily divisible by some number

UMBC CMSC 341 Hashing 



Hash Functions – Strings 

 Here is a decent hash for string keys

int hashVal = 0; 

for(char in string): 

hashVal = (37 * hashVal + ASCII_of_char 

  % 16908799 ); 

hashVal % = tableSize; 

 Prime number (16908799) is very large so
hashVal doesn’t go over size for integers

UMBC CMSC 341 Hashing 



Horner’s Rule 

static int hash(String key, int tableSize) 
{ 
 int hashVal = 0; 

 for (int i = 0; i < key.length(); i++) 
 hashVal = 37 * hashVal + key.charAt(i); 

 hashVal %= tableSize; 
 if(hashVal < 0) 

 hashVal += tableSize; 

return hashVal; 
} 

UMBC CMSC 341 Hashing 



Designing Hash Functions 

 Hash functions can perform differently on

different types of input

 Should always test a hash function on sample

input to evaluate performance

 Probably not a good idea to design your own

hash function when you need one

 There are good hash functions available, that

were created by more experienced programmers

and have been extensively tested

UMBC CMSC 341 Hashing 



Hash Table Size 

 Important to keep in mind two things when

choosing a hash table size

 Interaction with hash function

 Either table size needs to be prime

 Or hash function needs to contain a prime

 (Preferably both)

 Load factor

 How full the table will be, and the rate of collisions

UMBC CMSC 341 Hashing 



Load Factor 

 Load factor refers to the percentage of

buckets in the array containing entries

 General rule is below 75% - 80%

 Balance between minimizing the space needed

for storage and the number of collisions

 For implementations with multiple entries per

bucket, want to consider list size as well

 If actual load factor is much higher/lower than

ideal, we might consider resizing hash table

UMBC CMSC 341 Hashing 



Collisions 

 Collisions are when two keys map to the

same index in the hash table

 Affected by function, table size, and load factor

 Collisions are unavoidable in practice

 Collision-resolution strategy greatly affects

effectiveness and performance of hash table

 Many different strategies are available

UMBC CMSC 341 Hashing 



Handling Collisions 



Methods of Handling Collisions 

 Chaining

 Lists (linked list, array, etc.)

 Data structures (BST)

 Only worth it if minimizing delay is super important

 Open addressing (probing)

 (Entries stored directly in the bucket array)

 Linear probing

 Quadratic probing

 Double hashing

UMBC CMSC 341 Hashing 



Chaining 

 Chaining “accepts” the collisions, and allows

storage of multiple entries in one index

 The bucket array

contains pointers to a

data structure that can

hold multiple entries

(list, BST, etc.)

UMBC CMSC 341 Hashing 



Chaining Example -  Division Method

 Exercise:

 For a table of size 7, insert the following keys
(where the hash function is just key % 7)

 1, 4, 7, 8, 9, 10, 14, 15, 17, 20, 21, 24, 27, 29

UMBC CMSC 341 Hashing 

1 

0 1 2 3 4 5 6 index 

4 7 

8 

9 10 

14 

15 

17 

20 

21 24 

27 

29 



Chaining Performance 

 Insert

 For linked lists is O(1)

 For BSTs is O(log n)

 Delete and Find

 Worst case for linked lists: O(n)

 All of the entries are in one index’s list

 (This means the hash function is pretty terrible)

 Average case for linked lists:

O(1) when load factor is less than 100%

UMBC CMSC 341 Hashing 



Probing 

 Other option is open addressing, or “probing”

 Each index holds only one entry

 If an index already holds an entry, the question

becomes – what index do we try next?

 Random would be great – but isn’t repeatable

 Three common choices

 Linear Probing

 Quadratic Probing

 Double Hashing

UMBC CMSC 341 Hashing 



Linear Probing 

 Linear probing handles collisions by finding

the next available index in the bucket array

 If it reaches the end of the bucket array,

it wraps back around to the first index

 Each table cell inspected is one “probe”

 Linear probing is normally sequential, but can 
be implemented to probe with larger 

“jumps” (c) 

UMBC CMSC 341 Hashing 



Linear Probing 

n Use a linear function for f( i )
  f( i ) = c * i 

n Example:
h’( k ) = k mod 10 in a table of size 10 , f( i ) = i

So that 
 h( k, i ) = (k mod 10 + i ) mod 10 

 Insert the values U={89,18,49,58,69} into the hash 
table 



Linear Probing Example 

 Exercise:

 For a table of size 13, insert the following keys
(where the hash function is just key % 13)

 1, 14, 3, 15, 2, 9, 22, 4, 7

 What do you notice?

UMBC CMSC 341 Hashing 

0 1 2 3 4 5 6 index 7 8 9 10 11 12 13 

1 14 2 15 3 9 

1 pushed off by: 

22 4 7 

2 3 2 1 



Linear Probing (cont.) 

n Problem: Clustering
q  When the table starts to fill up, performance →

O(N) 

n Asymptotic Performance
q  Insertion and unsuccessful find, average

n λ is the “load factor” – what fraction of the table is used
n Number of probes ≅  ( ½ ) ( 1+1/( 1-λ )2 )
n if λ ≅ 1, the denominator goes to zero and the number of

probes goes to infinity



Clustering 

 Clustering is when indexes in the hash table

become filled in long unbroken stretches

 Most commonly occurs with linear probing

 Especially sequential probing

 Severely degrades performance of all the

operations of the hash table

 Drops from ideal O(1) to close to O(n)

UMBC CMSC 341 Hashing 



Linear Probing Performance 

 Insert and Find
 Best case is O(1)

 Worst case can become O(n)

 Delete is complicated
 We can’t just delete the entry! (Why not?)

 The empty space will confuse future probing

 We’ll discuss the details of deleting later

UMBC CMSC 341 Hashing 



Quadratic Probing 

 Quadratic probing is similar to linear probing

 Rather than checking in sequence, “jump”

further away with each consecutive probe

 Helps to prevent clustering problems

 Quadratic function implementation can vary

 (k + i * i), .i >= 1: 1, 4, 9, 16, 25, etc.

 (k + i + i2), i >= 1: 2, 6, 12, 20, 30, etc.

UMBC CMSC 341 Hashing 



Quadratic Probing 

n Use a quadratic function for f( i )
 f( i ) = c2i2 + c1i + c0 

 The simplest quadratic function is f( i ) = i2  
n Example:

 Let f( i ) = i2 and m = 10 
 Let h’( k ) = k mod 10 

 So that 
 h( k, i ) = (k mod 10 + i2 ) mod 10 

 Insert the value U={89, 18, 49, 58, 69 } into an 
initially empty hash table 



Quadratic Probing (cont.) 

n Advantage:
q  Reduced clustering problem

n Disadvantages:
q  Reduced number of sequences
q  No guarantee that empty slot will be found if
λ ≥ 0.5, even if m is prime 

q  If m is not prime, may not find an empty slot 
even if λ < 0.5 



Quadratic Probing Example 

 Exercise:

 For a table of size 7, insert the following keys:

8, 16, 15, 2, 23

 Using quadratic formula (k + i * i)

UMBC CMSC 341 Hashing 

0 1 2 3 4 5 6 index 

8 16 15 2 23 



Quadratic Probing Concerns 

 With many common quadratic functions, it is

best to keep the table less than half full

 No guarantee of finding an empty cell!

 If two keys have the same initial probe position,
then their probe sequences are the same.

 (Depends on interaction between size and probe)

 Trade off

 Faster probing and clustering is less common

 Table cannot have a load factor greater than 50%

UMBC CMSC 341 Hashing 



Double Hashing 

 Double hashing is a form of collision-handling where

a second hash function determines how much the

probe “jumps” by for each probe

 Both hash functions should give uniform distributions,

and should be independent

 Second hash function cannot evaluate to 0! Why?

 We will continually probe the same index

Unlike the case of linear or quadratic probing, the probe 
sequence here depends in two ways upon the key k (h'(k) 
and h2(k)).

UMBC CMSC 341 Hashing 



Double Hashing 
n Let f( i ) use another hash function

  f( i ) = i * h2( k ) 
 Then h( k, i ) = ( h’( k ) +  i* h2( k ) ) mod m  
and probes are performed at distances of 

 h2( k ), 2 * h2( k ), 3 * h2( k ), 4 * h2( k ), etc 

n Choosing h2( k )
q  Don’t allow h2( k ) = 0 for any k. 
q  A good choice: 

h2( k ) = R - ( k mod R ) with R a prime smaller than m 

n Characteristics
q  No clustering problem
q  Requires a second hash function



Double Hashing Example 

 Exercise:

 For a table of size 7, insert numbers 9, 16, 23, 30

h1 = key % 7  h2 = 11 – (key % 11)

UMBC CMSC 341 Hashing 

0 1 2 3 4 5 6 index 

9 16 23 30 

16 % 7 = 2 

11-(16%11) = 6 

(2 + 6) % 7 = 1

23 % 7 = 2 

11-(23%11) = 10 

(2 + 10) % 7 = 5

9 % 7 = 2 

30 % 7 = 2 

11-(30%11) = 3 

(2 + 3) % 7 = 5

(5 + 3) % 7 = 1

(1 + 3) % 7 = 4



Hash Tables: Other Details 



When to Use a Hash Table? 

 Good for when you need fast access

 Average find/insert/delete is O(1)

 Very poor choice if sorting is a concern

 Indexing is essentially random based on value

 Hash functions are also used in cryptography

 The primary goal with crypto is to have hash

functions that can’t be reverse-engineered

UMBC CMSC 341 Hashing 



Deleting from a Hash Table 

 With open addressing, deletion is a concern
 “Empty” indexes affect search pattern

 Lazy deletion
 Mark an element as deleted

 Treat element as empty when inserting

 Treat element as occupied when searching

 Rehash the entire table
 Time consuming, but makes sense in some cases

UMBC CMSC 341 Hashing 



Resizing a Hash Table 

 Ideally, hash tables should be resized when

the load factor becomes too high

 May also be resized if load factor is very low

 Performance of resizing a hash table?

 O(n)

 All (key, value) pairs are rehashed to new indexes

 If run-time is critical (such as in real-time

systems) we may use another option

UMBC CMSC 341 Hashing 



Incremental Resizing 

 Incremental resizing is a method of resizing

a hash table that is done incrementally

 Often used for real-time and disk-based tables

 Allocate a new hash table, but keep old one

 Find and Delete look for value in both tables

 Insert new values only into new table

 At each insertion, also move some number of

elements from the old table to the new table

 “Incrementally” rehashing the values

UMBC CMSC 341 Hashing 



Multiple Copies of a Key 

 How do we handle data that has duplicate

keys, with unique associated values?
 Depends heavily on the purpose of hash table

 Insert both, search/delete picks one arbitrarily
 Pros? Cons?

 Replace the original entry with the new one
 Pros? Cons?

UMBC CMSC 341 Hashing 



Announcements 

 Homework 6 will be out tomorrow (11/15)
 Due Thursday, November 30th at 8:59:59 PM

 Project 5 will be out soon

 Due Tuesday, December 12th at 8:59:59 PM 

 Next Time:

 Exam 2 Review

UMBC CMSC 341 Hashing 




