CMSC 341
Hashing (Continued)

Based on slides from previous iterations of this course

Today’s Topics

Review
o Uses and motivations of hash tables
o Major concerns with hash tables

Properties

o Hash function
o Hash table size
o Load factor

Operations

o Collision handling

o Resizing/Expanding
o Deletion

UMBC CMSC 341 Hashing

Review: Hash Tables

Motivation

We want a data structure that supports fast:

o Insertion
o Deletion
o Searching

(We don’t care about sorting)

We could use direct indexing In an array, but
that Is not space efficient

The solution i1s a hash table

UMBC CMSC 341 Hashing

Hash Tables

A hash table iIs used to store (key, value) pairs

There are two major components:
o Bucket array
o Hash function

UMBC CMSC 341 Hashing

Bucket Array

A bucket array Is an array of size N where
each cell can be thought of as a “bucket” that
holds a collection of key/value pairs

If the keys are unique integers that fit in the
range [0, N-1] then the bucket array Is all we
need — no hash function at all!

o However, this is rarely (i.e., never) the case

UMBC CMSC 341 Hashing

Hash Function

A hash function Is needed to take our initial
keys and map them into the range [0, N-1]

Two parts to a hash function:
2 Hash code
Converts key into an integer

o Compression function
Converts integer to index in the correct range
o (Often combined into one function)

UMBC CMSC 341 Hashing

Uses of Hash Functions

Convert non-integer keys (like strings) into an
Integer index for easy storage

Compress sparsely-populated indexes into a
more space-efficient format

For fast access
0 Possibly as fast as O(1)
o As long as sorting Is not a concern

UMBC CMSC 341 Hashing

Major Concerns

How big to make the bucket array?
o Want to minimize space needed
o Want to minimize number of collisions

How to choose hash function?
o Want it to be efficient
o Want it to produce evenly distributed indexes

How to handle collisions?
o Want to minimize time spent searching

UMBC CMSC 341 Hashing

Hash Table Properties

Hash Function

The hash function maps the given keys to
iInteger values in the range of the table size

o These integer values are then used to index into
specific locations in the table

A good hash function should:
o Be relatively easy/fast to compute

o Create a uniform distribution
(Very important!)

UMBC CMSC 341 Hashing

Hash Functions — Trivial

Some “obvious” hash functions:

o With SSN as a key, use the last 4 as the hash

o Convert a string key to ASCII and sum values

o Use first three letters of a string key as the hash

These functions perform very poorly at
creating a uniform distribution

o Leads to lots of collisions
a2 Which is something we want to avoid

UMBC CMSC 341 Hashing

Hash Function — Integers

Here is a decent hash for integer keys

((a * key + b) 3 P) % N)
a, b: positive integers
N : number of buckets
P : large prime, P >> N

Having a prime number somewhere in the
hash function is important

o So values aren’t easily divisible by some number

UMBC CMSC 341 Hashing

Hash Functions — Strings
Here is a decent hash for string keys

int hashval = 0;
for (char in string):

hashVal = (37 * hashvVal + ASCII of char
% 16908799) ;

hashVal % = tableSize;

Prime number (16908799) Is very large so
hashVval doesn’t go over size for integers

UMBC CMSC 341 Hashing

Hornetr's Rule

static 1nt hash(String key, 1nt tableSize)

{
int hashVval = 0;

for (int 1 = 0; i1 < key.length(); i++)
hashVal = 37 * hashVal + key.charAt(1i);

hashVal %= tableSize;
1f (hashVal < 0)
hashVal += tableSize;

return hashVal;

UMBC CMSC 341 Hashing

Designing Hash Functions

Hash functions can perform differently on
different types of input

o Should always test a hash function on sample
Input to evaluate performance

Probably not a good idea to design your own
hash function when you need one
o There are good hash functions available, that

were created by more experienced programmers
and have been extensively tested

UMBC CMSC 341 Hashing

Hash Table Size

Important to keep in mind two things when
choosing a hash table size

Interaction with hash function
o Either table size needs to be prime

o Or hash function needs to contain a prime
o (Preferably both)

Load factor
o How full the table will be, and the rate of collisions

UMBC CMSC 341 Hashing

IL.oad Factor

Load factor refers to the percentage of
buckets in the array containing entries

o General rule is below 75% - 80%

o Balance between minimizing the space needed
for storage and the number of collisions

—or iImplementations with multiple entries per
oucket, want to consider list size as well

f actual load factor is much higher/lower than
ideal, we might consider resizing hash table

UMBC CMSC 341 Hashing

Collisions

Collisions are when two keys map to the
same index in the hash table

o Affected by function, table size, and load factor
Collisions are unavoidable In practice

Collision-resolution strategy greatly affects
effectiveness and performance of hash table

o Many different strategies are available

UMBC CMSC 341 Hashing

Handling Collisions

Methods of Handling Collisions

Chalining
o Lists (linked list, array, etc.)
o Data structures (BST)
Only worth it if minimizing delay is super important
Open addressing (probing)
o (Entries stored directly in the bucket array)
o Linear probing
o Quadratic probing
o Double hashing

UMBC CMSC 341 Hashing

Chaining

Chaining “accepts” the collisions, and allows
storage of multiple entries in one index

— [3 [F»[19

The bucket array

contains pointers to a

——>»[28 [F>»[11
data structure tha_t can [yrq3z
hold multiple entries 1 o=

(list, BST, etc.)

——>»[7 F>»[53

UMBC CMSC 341 Hashing

Chaining Example - Division Method

Exercise:

o For a table of size 7, insert the following keys
(where the hash function is just key % 7)

0 1,4,7,8,9, 10, 14, 15, 17, 20, 21, 24, 27, 29
index O 1 2 3 4 5 6

I 1 91110 | 4 20
141 | 8 17 27
21| |15 24

29

UMBC CMSC 341 Hashing

Chaining Pertformance

Insert
o For linked lists is O(1)
o For BSTs is O(log n)

Delete and Find

o Worst case for linked lists: O(n)
All of the entries are in one index’s list
(This means the hash function is pretty terrible)

o Average case for linked lists:
O(1) when load factor is less than 100%

UMBC CMSC 341 Hashing

Probing

Other option is open addressing, or “probing”
o Each index holds only one entry

If an Index already holds an entry, the question
becomes — what index do we try next?

2 Random would be great — but isn’t repeatable
Three common choices

o Linear Probing

o Quadratic Probing

o Double Hashing

UMBC CMSC 341 Hashing

Linear Probing

Linear probing handles collisions by finding
the next available index in the bucket array

o If it reaches the end of the bucket array,
it wraps back around to the first index

Each table cell inspected is one “probe”

Linear probing is normally sequential, but can
be implemented to probe with larger
‘lumps” (c)

UMBC CMSC 341 Hashing

Linear Probing

Use a linear function for f(i)
f(i)=c*i
Example:
h’(k)=kmod 10 in a table of size 10, f(i) =i
So that
h(k,i)=(kmod10 +i)mod 10

Insert the values U={89,18,49,58,69} into the hash
table

Linear Probing Example

Exercise:

o For a table of size 13, insert the following keys
(where the hash function is just key % 13)

0 1,14,3,15,2,9,22,4,7
2 What do you notice?

ndex 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1|14]3f15] 2|47 9 |22

pushed off by: 1 2 3 2 1

UMBC CMSC 341 Hashing

Linear Probing (cont.)

Problem: Clustering

2 When the table starts to fill up, performance —
O(N)

Asymptotic Performance

o Insertion and unsuccessful find, average
A is the “load factor” — what fraction of the table is used
Number of probes = (¥2) (1+1/(1-\)?)

if L = 1, the denominator goes to zero and the number of
probes goes to infinity

Clustering

Clustering Is when indexes in the hash table
become filled in long unbroken stretches

Most commonly occurs with linear probing
o Especially sequential probing

Severely degrades performance of all the
operations of the hash table

o Drops from ideal O(1) to close to O(n)

UMBC CMSC 341 Hashing

Linear Probing Performance

Insert and Find
o Best case is O(1)
o Worst case can become O(n)

Delete is complicated

o We can't just delete the entry! (Why not?)
The empty space will confuse future probing

o We'll discuss the details of deleting later

UMBC CMSC 341 Hashing

QQuadratic Probing

Quadratic probing is similar to linear probing

Rather than checking in sequence, “jump”
further away with each consecutive probe

o Helps to prevent clustering problems
Quadratic function implementation can vary

o (k +i* i), i>=1:1,4, 09,16, 25, etc.
o (k + i+ i?%), i >= 1:2,6, 12, 20, 30, etc.

UMBC CMSC 341 Hashing

Quadratic Probing

Use a quadratic function for f(1)

f(i)=c,i?+ c4i+C

The simplest quadratic function is f(i) = i?
Example:

Sot

Letf(i)=iFandm=10
Lleth’ (k)=kmod 10
nat

N(k,i)=(kmod10 +i?) mod 10

Insert the value U={89, 18, 49, 58, 69 } into an
initially empty hash table

Quadratic Probing (cont.)

Advantage:
2o Reduced clustering problem

Disadvantages:

o Reduced number of sequences

o No guarantee that empty slot will be found if
A 2 0.5, even if mis prime

o If mis not prime, may not find an empty slot
evenif A<0.5

Quadratic Probing Example

Exercise:

o For a table of size 7, insert the following keys:
8, 16, 15, 2, 23

o Using quadratic formula (k + i * i)

iIndex O 1 2 3 4 5 6

8 | |16 2 15| | 23

AL

UMBC CMSC 341 Hashing

Quadratic Probing Concerns

With many common quadratic functions, it is
best to keep the table less than half full

o No guarantee of finding an empty cell!

o ftwo keys have the same initial probe position,
then their probe sequences are the same.

o (Depends on interaction between size and probe)
Trade off

o Faster probing and clustering is less common

o Table cannot have a load factor greater than 50%

UMBC CMSC 341 Hashing

Double Hashing

Double hashing is a form of collision-handling where
a second hash function determines how much the
probe “jlumps” by for each probe

Both hash functions should give uniform distributions,
and should be independent

o Second hash function cannot evaluate to 0! Why?
We will continually probe the same Iindex

Unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key k (h'(k)
and h2(k)).

UMBC CMSC 341 Hashing

Double Hashing

Let f(1) use another hash function
f(1)=1"hy(k)
Thenh(k,i)=(h"(k)+ i*hy(k))modm
and probes are performed at distances of
h,(k),2*h,(k),3*hy(k),4*h,(k), etc

Choosing h,(k)
o Don’ tallow h,(k) =0 for any k.

o A good choice:
h,(k)=R-(kmodR) with R a prime smaller than m

Characteristics

o No clustering problem
o Requires a second hash function

Double Hashing Example

Exercise:
o For a table of size 7, insert numbers 9, 16, 23, 30
hl = key % 7 h2 = 11 - (key % 11)
16 $ 7 = 2
11-(16%11) = 6 30 $ 7 = 2
(2 +6) 7=1 11-(30%11) = 3
9 %7 =2 (2 + 3) 7 =05
23 § 7 = 2 (5 +3) 37 =1
11-(23%11) = 10 (L +3) %7 =4
(2 + 10) & 7 =

5
iIndex O 1 2 3 4 5 6
16 9 301 |23

UMBC CMSC 341 Hashing

Hash Tables: Other Details

When to Use a Hash Table?

Good for when you need fast access
o Average find/insert/delete is O(1)

Very poor choice if sorting is a concern
o Indexing is essentially random based on value

Hash functions are also used in cryptography

o The primary goal with crypto Is to have hash
functions that can’t be reverse-engineered

UMBC CMSC 341 Hashing

Deleting from a Hash Table

With open addressing, deletion is a concern
o “Empty” indexes affect search pattern

Lazy deletion

o Mark an element as deleted
Treat element as empty when inserting
Treat element as occupied when searching

Rehash the entire table
o Time consuming, but makes sense in some cases

UMBC CMSC 341 Hashing

Resizing a Hash Table

|deally, hash tables should be resized when
the load factor becomes too high

o May also be resized if load factor is very low

Performance of resizing a hash table?
o O(n)
o All (key, value) pairs are rehashed to new indexes

If run-time Is critical (such as in real-time
systems) we may use another option

UMBC CMSC 341 Hashing

Incremental Resizing

Incremental resizing is a method of resizing
a hash table that is done incrementally

o Often used for real-time and disk-based tables

Allocate a new hash table, but keep old one
o Find and Delete look for value in both tables

o Insert new values only into new table

At each insertion, also move some number of
elements from the old table to the new table

0 “Incrementally” rehashing the values

UMBC CMSC 341 Hashing

Multiple Copies of a Key
How do we handle data that has duplicate

keys, with unigue associated values?
o Depends heavily on the purpose of hash table

Insert both, search/delete picks one arbitrarily
o Pros? Cons?

Replace the original entry with the new one
o Pros? Cons?

UMBC CMSC 341 Hashing

Announcements

Homework 6 will be out tomorrow (11/15)
o Due Thursday, November 30th at 8:59:59 PM

Project 5 will be out soon
o Due Tuesday, December 12th at 8:59:59 PM

Next Time:
o Exam 2 Review

UMBC CMSC 341 Hashing

