
CMSC 341

Hashing

Based on slides from previous iterations of this course

Hashing

Searching

n Consider the problem of searching an array for a
given value
q  If the array is not sorted, the search requires O(n) time

n  If the value isn’t there, we need to search all n elements
n  If the value is there, we search n/2 elements on average

q  If the array is sorted, we can do a binary search
n  A binary search requires O(log n) time
n  About equally fast whether the element is found or not

q  It doesn’t seem like we could do much better
n  How about an O(1), that is, constant time search?
n  We can do it if the array is organized in a particular way

The Basic Problem

n We have lots of data to store.

n We desire efficient – O(1) – performance for
insertion, deletion and searching.

n Too much (wasted) memory is required if we
use an array indexed by the data’s key.

n The solution is a “hash table”.

Introduction

 If we wanted to find one person out of the

possible 322,071,600 in the US, how would

we do it?

 With no additional information, we may have to

search through all 322M people!

UMBC CMSC 341 Hashing

From: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk

Introduction

 However, if we were to organize each of the

people by the 50 states, we may greatly

increase the speed to find them.

UMBC CMSC 341 Hashing

Introduction

 Now, we know that the populations of the

states are not evenly distributed

 When our n = 322,071,600 we would expect

322,071,600 / 50 = 6,441,432 in each state

UMBC CMSC 341 Hashing

Introduction

 But, the important concept here is – as long

as we know which state to look in, we can

greatly reduce the data set to look in!

 Hashes take advantage of organizing the

data into buckets (or slots) to help make the

functions more efficient

UMBC CMSC 341 Hashing

Hash Tables

 A hash table is a data structure for storing

key-value pairs

 Unlike a basic array, which uses index

numbers for accessing elements, a hash

table uses keys to look up table entries

 Two major components to a hash:

 Bucket array (or slot)

 Hash function

UMBC CMSC 341 Hashing

Hash Table

n Basic Idea
q   The hash table is a bucket array of size ‘m’
q   The storage index for an item determined by a
hash function h(k): U → {0, 1, …, m-1}

n Desired Properties of h(k)
q   easy to compute
q   uniform distribution of keys over {0, 1, …,
m-1}

0 1 2 m-1

Bucket Array

 A bucket array for a hash table is an array

A of size N, where each cell of A is thought

of as a “bucket”

 Obviously, we can also implement this using

an array of linked lists as well

UMBC CMSC 341 Hashing

Hash Functions

 What if we had a “magic function” that, given

a value to search for, would tell us exactly

where in the array to look?

 If it’s in that location, it’s in the array

 If it’s not in that location, it’s not in the array

 This function would have no other purpose

 If we look at the function’s inputs and outputs,

they probably won’t “make sense”

 This function is called a hash function because it

“makes hash” of its inputs

UMBC CMSC 341 Hashing

Hash Function

 The hash function is used to transform the

key into the index (the hash) of an array

element (the slot or bucket) where the

corresponding value is to be sought

 A hash function takes in an item key as its

parameter and returns an index location for

that particular item

UMBC CMSC 341 Hashing

Example

n Dictionary Student Records
q  Keys are ID numbers (951000 - 952000), no

more than 100 students
q  Hash function: h(k) = k-951000 maps ID into

distinct table positions 0-1000
q  array table[1001]

...

0 1 2 3 1000

hash table

buckets

Analysis (Ideal Case)

n O(b) time to initialize hash table (b number
of positions or buckets in hash table)

n O(1) time to perform insert, remove,
search

Ideal Case is Unrealistic

n Many applications have key ranges that are too
large to have 1-1 mapping between buckets and
keys!

Example:
n Suppose key can take on values from 0 .. 65,535
n Expect ≈ 1,000 records at any given time
n Impractical to use hash table with 65,536 slots!

Hash Function

 Generally uses modulo arithmetic

 A key value is divided by the table length to

generate an index number in the table

 This index number refers to a location, or

bucket, in the hash table

UMBC CMSC 341 Hashing

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Hash Tables vs. Other Data Structures

 Implementations of the dictionary operations

Insert(), Delete() and Search()/Find()
 Arrays:

 Can accomplish in O(1) time

 But are not space efficient (assumes we leave empty

space for keys not currently in dictionary)

 Binary search trees
 Can accomplish in O(log n) time

 Are space efficient.

 Hash Tables:
 A generalization of an array that under reasonable

assumptions is O(1) for Insert/Delete/Search of a key

UMBC CMSC 341 Hashing

Different Implementations

 As with almost all of the data structures that

we have discussed so far, there are a variety

of ways to implement them

 Let’s start by looking at some “real world”

examples to help illustrate the data structure

as well as some possible issues

UMBC CMSC 341 Hashing

Hash Function: Example 1

ASCII Values

UMBC CMSC 341 Hashing

Hash Function – Example 1

 Suppose our hash function

 Takes in a string as its parameter

 It adds up the ASCII values of all of the

characters in that string to get an integer

 The performs modulo math with the table size

UMBC CMSC 341 Hashing

int hash(string key)

{

 int value = 0;

 for (int i = 0; i < key.length(); i++)

 value += key[i];

 return value % tableLength;

}

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Hash Function – Example 1

 If the key is “pumpkin,” then the sum of the

ASCII values would be 772

 For a table of size 13, the modulus of this

number gives us an index of 5

 So the item with the key

“pumpkin,” would go into

bucket # 5 in the hash table

UMBC CMSC 341 Hashing

Char Dec

p 112

u 117

m 109

p 112

k 107

i 105

n 110

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Bad Hash Function

 This isn’t a very good hash function – why?

 Words tend to use certain letters more often

than other

 Words tend to be rather short

 With a large table size, we wouldn’t

necessarily use the full length

 But it illustrates one way that we could

implement a hash function

UMBC CMSC 341 Hashing

Hash Function – Example 2

UMBC CMSC 341 Hashing

Hash Function – Example 2

 Suppose our hash

function gave us the

following values:
hashCode("apple") = 5
hashCode("watermelon") = 3
hashCode("grapes") = 8
hashCode("cantaloupe") = 7
hashCode("kiwi") = 0
hashCode("strawberry") = 9
hashCode("mango") = 6
hashCode("banana") = 2

0

1

2

3

4

5

6

7

8

9

Hash Function – Example 2

 Suppose our hash

function gave us the

following values:
hashCode("apple") = 5
hashCode("watermelon") = 3
hashCode("grapes") = 8
hashCode("cantaloupe") = 7
hashCode("kiwi") = 0
hashCode("strawberry") = 9
hashCode("mango") = 6
hashCode("banana") = 2

0 kiwi

1

2 banana

3 watermelon

4

5 apple

6 mango

7 cantaloupe

8 grapes

9 strawberry

Now, this is an IDEAL situation because the results put each in their own spot!

Hash Function – Example 2

 What happens if we add

honeydew?
hashCode("apple") = 5
hashCode("watermelon") = 3
hashCode("grapes") = 8
hashCode("cantaloupe") = 7
hashCode("kiwi") = 0
hashCode("strawberry") = 9
hashCode("mango") = 6
hashCode("banana") = 2

hash("honeydew") = 6

0 kiwi

1

2 banana

3 watermelon

4

5 apple

6 mango

7 cantaloupe

8 grapes

9 strawberry

What happens now?

Hash Example – Using SSN

 A social security application keeping track of
people where the primary search key is a
person’s social security number (SSN)

 You can use an array to hold references to all
the person objects

 Use an array with range 0 - 999,999,999

 Using the SSN as a key, you have O(1) access to
any person object

Hash Example – Using SSN

 Unfortunately, the number of active keys
(Social Security Numbers) is much less than
the array size (1 billion entries)

 Est. US population, November 2015: 322,071,600

 Over 60% of the array would be unused

Example 3 – Hash Functions

Hash Function – Example 3

We have a small group of people who wish to

join a club (say about 40 folks). Then, if each

of these people have an ID# associated with

them (from 1 to 40) we could store their

information in an array and access it using

the ID# as the array index.

Hash Function – Example 3

Now, we have 7 of these clubs, with

consecutive ID#s going up to 280. Now

what?

 We COULD create a 280 element array for each

club and use 40 elements of the array.

(wasteful?)

 We COULD create a 40 element array and

calculate the index of each person using a

mapping. (index = ID# % 40).

Hash Function – Example 3

Now, imagine that we are hosting a club on

campus open to all students. We could use

the PC ID# (8 digits long). How big should

our array be?

THINGS TO CONSIDER:

 How many students do we expect to join?

 How can we create a key based on this number?

Hash Function – Example 3

 If we expect no more than 100 club

members, we can use the last two digits of

the PC ID# as our index (aka KEY). Do we

see any problems with this?

 How do we get this number?

 Take the remainder

 (PC ID# % 100)

Hash Functions

 Taking the remainder is called the Division-

remainder technique (MOD) and is an

example of a uniform hash function

 A uniform hash function is designed to

distribute the keys roughly evenly into the

available positions within the array (or hash

table)

Collisions

Collisions

 If no two values are able to map into the

same position in the hash table, we have

what is known as an “ideal hashing”.

 Usually, ideal hashing is not possible (or at

least not guaranteed). Some data is bound

to hash to the same table element, in which

case, we have a collision

 How do we solve this problem?

Collisions

 Ideally the hash function should map each

possible key to a different slot index; but this

goal is rarely achievable in practice.

 Most hash table designs assume that hash

collisions — pairs of different keys with the

same hash values — are normal

occurrences, and accommodate them in

some way.

Collisions

 We can think of each table location as a
“bucket” that contains several slots.

 Each slot is filled with one piece of data.

 This approach involves “chaining” the data.

 Thankfully, we can create an “array of arrays”
or an “array of linked lists” as a way to help
deal with collisions.

Collisions

 This is a common approach when the
hash table is used as disk storage.

 For each element of the table, a linked list
is maintained to hold data that map to the
same location.

 Do we want to sort items upon entering
them into the list?

 Unsorted: easier to enter

 Sorted: easier to retrieve

UMBC CMSC 341 Hashing

Collisions

n If key range too large, use hash table with
fewer buckets and a hash function which maps
multiple keys to same bucket:

h(k1) = β = h(k2): k1 and k2 have collision at slot β

n Popular hash functions: hashing by division
h(k) = k%D, where D number of buckets in hash table

Collision

n Example: hash table with 11 buckets
h(k) = k%11

80 → 3 (80%11= 3)
40 → 7
65 → 10
58 → 3 collision!

Division Method
n The hash function:

 h(k) = k mod m where m is the table size.

n m must be chosen to spread keys evenly
q  Poor choice: m = a power of 10
q  Poor choice: m = 2b, b> 1

n A good choice of m is a prime number.

Multiplication Method
n  The hash function:

n A very good choice of A is the inverse of the “golden ratio.
A = (sqrt(5) - 1)/2

n An advantage of the multiplication method is that the value
of m is not critical.

n Given two positive numbers x and y, the ratio x/y is the
“golden ratio” if φ = x/y = (x+y)/x

n  The golden ratio:
x2 - xy - y2 = 0 ⇒
φ = (1 + sqrt(5))/2 =

φ2 - φ - 1 = 0
1.618033989…

 ~= Fibi/Fibi-1

 h(k) = ⎣ m(kA mod1) ⎦
 where 0< A < 1

Multiplication Method (cont.)
n Because of the relationship of the golden ratio to

Fibonacci numbers, this particular value of A in the
multiplication method is called “Fibonacci hashing.”

n Some values of
 h(k) = ⎣m(k φ-1 - ⎣k φ-1 ⎦)⎦

= 0 for k = 0
 = 0.618m for k = 1 (φ-1 = 1/ 1.618… = 0.618…)
 = 0.236m for k = 2
 = 0.854m for k = 3
 = 0.472m for k = 4
 = 0.090m for k = 5
 = 0.708m for k = 6
 = 0.326m for k = 7
 = …

 = 0.777m for k = 32

Finding the Optimal Hash Function

 When a collision occurs, there are a variety of

ways that we can address the collision

 In a perfect world, we could come up with a

magic function that helps us deal with

collisions

Finding the Optimal Hash Function

 How can we come up with this magic function?

 In general, we cannot--there is no such magic

function

 In a few specific cases, where all the possible values

are known in advance, it has been possible to

compute a perfect hash function

 What is the next best thing?

 A perfect hash would tell us exactly where to look

 In general, the best we can do is a function that tells

us where to start looking!

Collision Resolution Policies

n Two classes:
q  (1) Open hashing, a.k.a. separate chaining
q  (2) Closed hashing, a.k.a. open addressing

n Difference has to do with whether collisions
are stored outside the table (open hashing)
or whether collisions result in storing one of
the records at another slot in the table
(closed hashing)

Hash Function Methods

Hash Functions

 As we have mentioned, there are a variety of

ways to implement hash functions. We will

discuss:

1. Chaining – This is where we put additional

information into a bucket

2. Linear Probing

3. Quadratic Probing

Linear Probing

 Have you ever been to a theatre or sports

event where the tickets were numbered?

 Has someone ever sat in your seat?

 How did you resolve this problem?

Linear Probing

Linear Probing involves seeing an item in the

hashed location and then moving by 1

through the array (circling to the beginning if

necessary) until an open location is found.

Linear Probing

 Let’s say that we have 1000 numbered

tickets to an event, but only sell 400. If we

move the event to a smaller venue, we

must also renumber the tickets. The hash

function would work like this:

 (ticket number) % 400.

 How many folks can get the same hashed

number? (3 - for example, tickets 42, 442,

and 842)

Linear Probing

 The idea is that even though these number

hash to the same location, they need to be

given a slot based on their hash number

index. Using linear probing, the entries are

placed into the next available position.

Linear Probing

n Associated with closed hashing is a rehash strategy:
“If we try to place x in bucket h(x) and find it occupied,
find alternative location h1(x), h2(x), etc. Try each in
order, if none empty table is full,”

n h(x) is called home bucket
n Simplest rehash strategy is called linear hashing

hi(x) = (h(x) + i) % D
n In general, our collision resolution strategy is to generate

a sequence of hash table slots (probe sequence) that
can hold the record; test each slot until find empty one
(probing)

Linear Probing

 Consider the data with keys: 24, 42, 34,62,73

into a table of size 10. These entries can be

placed into the table at the following

locations:

Linear Probing

 24 % 10 = 4. Position is free. 24 placed into element 4

 42 % 10 = 2. Position is free. 42 placed into element 2

 34 % 10 = 4. Position is occupied. Try next place in the
table (5). 34 placed into position 5.

 62 % 10 = 2. Position is occupied. Try next place in the
table (3). 62 placed into position 3.

 73 % 10 = 3. Position is occupied. Try next place in the
table (4). Same problem. Try (5). Then (6). 73 is placed
into position 6.

Linear Probing

 How would it look if the numbers were:

 28, 19, 59, 68, 89??

Finding and Deleting
 Finding?

 Given a key, look it up with the hashing function
and then if it’s not there, keep looking one bucket
down until it is or is not found. Search until you
find an empty slot or search the whole array.

 Deleting?
 We must be more careful. Having found the

element, we can’t just remove it. Why?
 Removing an element from the hash table would cause

the table to need “reordering” so that we wouldn’t lose
other data (What if we needed element 73 but element
62 had been removed? Would we ever find it?)

 Use lazy deletion (Mark an element as deleted
instead of erasing it)

Primary Clustering

 Sometimes, data will cluster – this is caused

when many elements hash to the same (or

similar) location and linear probing has been

used often.

 We can help with this problem by choosing

our divisor carefully in our hash function and

by carefully choosing our table size.

Designing a Good Hash Function

 If the divisor is even and there are more even
than odd key values, the hash function will
produce an excess of even values. This is also
true if there are an excessive amount of odd
values.

 However, if the divisor is odd, then either kind of
excess of key values would still give a balanced
distribution of odd/even results.

 Thus, the divisor should be odd. But, this is not
enough.

Designing a Good Hash Function

 Thus, the divisor should be odd. But, this
is not enough.

 If the divisor itself is divisible by a small
odd number (like 3, 5, or 7) the results are
unbalanced again

 Ideally, it should be a prime number
(close to m).

 If no such prime number works for our
table size (the divisor, remember?), we
should use an odd number with no small
factors.

Problems of Linear Probing

 The majority of the problems are caused by

clustering. These problems can be helped by

using Quadratic probing or better double
hashing instead.

 We’ll cover this next time!

Announcements

 Homework 5

 Due Thursday, November 9th at 8:59:59 PM

 Exam 2 is Tuesday, November 21st

 Next Time:

 More on Hashing

UMBC CMSC 341 Hashing

