AN HONORS UNIVERSITY IN MARYLAND

Disjoint Sets

Based on slides from previous iterations of this course www.umbc.edu

Today’s Topics

Exam Discussion

Introduction to Disjointed Sets
Disjointed Set Example
Operations of a Disjointed Set
Types of Disjointed Sets
Optimization of Disjointed Sets
Code for Disjointed Sets
Performance of Disjointed Sets

www.umbc.edu

Introduction to Disjointed Sets

www.umbc.edu

Disjoint Sets

* A data structure that keeps track of a set of
elements partitioned into a number of disjoint
(non-overlapping) subsets

www.umbc.edu

Universe of Iltems

* Universal set is made up of all of the items
that can be a member of a set

@ O

Universe of ltems Q

O O

www.umbc.edu

Disjoint Sets

* A group of sets where no item can be in more
than one set

S S3
S4

Universe of Iltems

S2

www.umbc.edu

Disjoint Sets

* A group of sets where no item can be in more
than one set

S1 S3

S4
Supported Operations:

Find(Q)
Union()
MakeSet()

S2

www.umbc.edu

Uses for Disjointed Sets

* Maze generation

e Kruskal's algorithm for computing the
minimum spanning tree of a graph

— Given a set of cities, C, and a set of roads, R, that
connect two cities (x, y) determine if it’s possible
to travel from any given city to another given city

* Determining if there are cycles in a graph

www.umbc.edu

Disjoint Set Example

www.umbc.edu

Disjoint Set with No Unions

0000000 0VOODOD®®

-1}j-1(-1}-1(-1|-1(-1|-1(-1|-1{-1|-1|-1|-1
O 1 2 3 4 5 6 7 8 9 10 11 12 13

* A negative number means we are at the root

« A positive number means we need to move or “walk” to that index to find our root
« The LONGER the path, the longer it takes to find, and moves farther away from
our goal of a constant timed function

www.umbc.edu

Disjoint Set with Some Unions

Q@Q/QQ @@@/dg ODO®O

b
819 |-1|-1]-1]-1|-1
7 8

|
1(-1|4]-
2 9 10 11 12 13

0 1

ENGN TN
;| e
o | -

1
3
Notice:

 Value of index is where the index is linked to

www.umbc.edu

Operations of a Disjoint Set

www.umbc.edu

Find()

e Determine which subset an element is in

e Returns the name of the subset

 Find() typically returns an item from this
set that serves as its "representative”

— By comparing the result of two Find()
operations, one can determine whether two
elements are in the same subset

www.umbc.edu

Find()

* Asks the question, what set does item E
belong to currently?

S1 S3
What does S4
Find(E) return?
Returns S2

S2

www.umbc.edu

Unton()

 Unton()
— Merge two sets (w/ one or more items) together

— Order can be important

— One of the roots from the 2 sets will become the
root of the merged set

www.umbc.edu

Unton()

* Join two subsets into a single subset.

81 S3
Before Unton(S2, S1) @ >4
After Union(S2, S1) H

82

www.umbc.edu

MakeSet ()

 Makes a set containing only a given element
(a singleton)

* I[mplementation is generally trivial

www.umbc.edu

Types of Disjoint Sets

www.umbc.edu

Types of Disjoint Sets

 There are two types of disjoint sets
1. Array Based Disjoint Sets
2. Tree Based Disjoint Sets
— (We can also implement with a linked list)

www.umbc.edu

Array Based Disjoint Sets

e We will assume that elementsareQton-1

* Maintain an array A: for each element 1,
A[1] is the name of the set containing 1

www.umbc.edu

Array Based Disjoint Sets

« Find(1) returns A[1]
— Runs in O(1)

 Unton(1,J) requiresscanning entire array
— Runs in O(n)

for (k = 0O;k < n; k++) {
it (ALK] == ADD A
ALKl = A[r]l; + &

www.umbc.edu

Tree Based Disjoint Sets

* Disjoint-set forests are data structures
— Each set is represented by a tree data structure
— Each node holds a reference to its parent node

* |n a disjoint-set forest, the representative of
each set is the root of that set's tree

www.umbc.edu

Tree Based Disjoint Sets

* FiInd() follows parent nodes until it reaches
the root

* Un1on() combines two trees into one by
attaching the root of one to the root of the
other

www.umbc.edu

A Worse Case for Union

Union can be done in O(1), but may cause find
to become O(n).

®) © ©® ®

Consider the result of the following sequence of operations:

Union (A, B)
Union (B, ©)
Union (C, D)
Union (D, E)

Optimization of Disjointed Sets

www.umbc.edu

Optimization

 Three main optimization operations:
1. Union-by-rank (size)
2. Union-by-rank (height)
3. Path Compression

www.umbc.edu

* Be very clear about how the array
representations change for different things
(union by size, union by height, etc.)

www.umbc.edu

Union-by-Rank (size)

e Size = number of nodes (including root) in
given set

e A strategy to keep items in a tree from getting
too deep (large paths) by uniting sets
intelligently

* At each root, we record the size of its sub-tree

— The number of nodes in the collective tree

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Union-by-Rank (size)

QQQ/QQQO @6

: : R,
1|14 |-1|-2|-1|-1|8|9|-5[9]9]|-1]-1
012 3 4586 7 8 91011 1213

Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number size
of the root increases (see 4 and 9)

www.umbc.edu

Union-by-Rank (height)

* A strategy to keep items in a tree from getting too
deep (large paths) by uniting sets intelligently

At each root, we record the height of its sub-tree

* When uniting two trees, make the smaller tree a sub-
tree of the larger one

— So that the tree that is larger does not add
another level!!

www.umbc.edu

Union-by-Rank (height)

QQQ/Q@QQ DOO®

. . bbb
1|-1|4|-1]-2]-1]-1{8]9|-3]-1]|-1]-1]-1
0123 456 7 8 9101 1213

Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number height
of the root increases (see 4 and 9)

www.umbc.edu

Union-by-Rank (height)

QQQ/Q@QQ DOO®

-1

-1

41-1(-2|-1{-1|18|9|-3|-1|-1|-1(-1

0

1

2 3 4 5 6 7 8 910 11 12 13

What if we merge {2,4} with {7, 8, 9}?

Because 9 has a greater height than 4, 4 would be absorbed into 9.

www.umbc.edu

Union-by-Rank (height)

00 © 00 DOO®

| Update 4 to pointto 9

-1j-1/4|-1,9|-1(-1|{8|9|-3(-1|-1|-1|-1
O 1 2 3 4 5 6 7 8 9 10 11 12 13

When uniting two trees, make the smaller tree a sub-tree of the larger

one so that the one tree that is larger does not add another level!!

www.umbc.edu

Example of Unions

* |f we union 5 and 9, how will they be joined?

V.
\
N
(5 \ { o \
/}l\\ /l\ / \ /l
e, /% T o YN\ X
\ e J :‘ = ’: 7 ‘:
/ s N/ L « /
7T P \/
1 (
"/ A 4

www.umbc.edu

Example of Unions

* By rank (size)?

— 9 becomes a child of 5
* By rank (height)?

— 5 becomes a child of 9

rrrrrrrr
‘‘‘‘‘

www.umbc.edu

Path Compression

If our path gets longer, operations take longer

We can shorten this (literally and figuratively)
by updating the element values of each child
directly to the root node value

— No more walking through to get to the root
Done as part of FIind()

— So the speed up will be eventual

www.umbc.edu

Path Compression

Theoretically flattens out a tree
Uses recursion

Base case
— Until you find the root
— Return the root value

Reassign as the call stack collapses

www.umbc.edu

Path CompreSSiOn Before Path

Compression

QOC(QOQ

-1]-1(4|-1(-1{-1(10{ 8|9 |-1{9]|9 11|12
O 1 2 3 4 5 6 7 8 9 10 11 12 13

During a Find(), we update the index to point to the root

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Path Compression ...

Compression
0O dg o o

-1(-1(4(-1(-1|(-1/{9(9(9|-1{9|9|9/|9
O 1 2 3 4 5 6 7 8 9101 12 13

After we run Find(6)we update it to point to 9
After we run Find(13)and Find (7)we update them to pointto 9

Along with all other nodes between 13 and 9!
www.umbc.edu

Code for Disjoint Sets

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Generic Code

function MakeSet(x)
X.parent = X

function Find(x)
iIT X_parent ==
return X
else

return Find(x.parent)

function Union(x, Yy)
XRoot := Find(x)
yRoot := Find(y)
XRoot.parent := yRoot

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

C++ Implementation

class UnionFind {
int[] u;

UntonFind(int n) {
u = new int[n];

for (int 1 = 0; 1 < nj; 1++)

ufr] = -1;
}

int find(int 1) {
int j,root;

for (= i; uljl >= 0; j = uliD) :

root = j;

while (u[i1] >=0) { jJ = u[i1]; u[1]

return root;

by
void unton(int 1,int j) {
1 = find(i);
J = findd);
it (i 1=j) {
it (uli] < uliD
{ ul1]l += ulh]; ulil
else
{ ubd1 += uli]; u[i]
¥
by

www.umbc.edu

The Unt1onFind class

class UnionFind {
int[] u;

UnionFind(int n) {
u = new Int[n];
for (int i = O, 1 < n; 1++)

ufr] = -
}
int find(int 1) { ... }
void unton(int 1,int j) { -.. }

}

www.umbc.edu

Trick 1: lterative find

int find(aint 1) {
int j, root;

for (j = i; u[j] >=0; j = uliD :

root = J;

while (uf1] >= 0)
{ 3 = ul1]; ulr] = root; 1 = j; }

return root,

www.umbc.edu

Trick 2: Union by size

void union(int 1,int jJ) {

1 = find(1);
J = findQ);
it (1 1=)) {

it (ulr] <ulgl)
{ uli] +=ugl; ulyl
else

{ ulg] += uli]; ulil = 35 }

1
-

www.umbc.edu

Disjointed Sets Performance

www.umbc.edu

Performance
* |n a nutshell

— Running time complexity: O(1) for union
* Using ONE pointer to connect from one root to another
— Running time of find depends on implementation
e Union by size: Find is O(log(n))
* Union by height: Find is O(log(n))

* Union operations obviously take ©(1) time

— Code has no loops or recursion
* O(f(n)) is when the worst case and best case are identical

www.umbc.edu

Performance

 The average running time of any find and
union operations in the quick-union data
structure is so close to a constant that it's
hardly worth mentioning that, in an asymptotic
sense, it's slightly slower in real life

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Performance

— A sequence of f find and u union operations (in any order

and possibly interleaved) takes Theta(u + f a(f + u, u)) time
in the worst case

— a is an extremely slowly-growing function
— Known as the inverse Ackermann function.

* This function is never larger than 4 for any values of f and u you
could ever use (though it can get arbitrarily large—for
unimaginably large values of f and u).

* Hence, for all practical purposes think of quick-union as having
find operations that run, on average, in constant time.

www.umbc.edu

A Union-Find Application

A random maze generator can use union-
find. Consider a 5x5 maze:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

Maze Generator

Initially, 25 cells, each isolated by walls from
the others.

This corresponds to an equivalence relation -
- two cells are equivalent if they can be
reached from each other (walls been
removed so there is a path from one to the

other).

Maze Generator (cont.)

To start, choose an entrance and an exit.

[N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

-0y

Maze Generator (cont.)

Randomly remove walls until the entrance
and exit cells are in the same set.

Removing a wall is the same as doing a
union operation.

Do not remove a randomly chosen wall if the
cells it separates are already in the same set.

MakeMaze

MakeMaze (1nt size) {

entrance = 0; exit = size-1;

while (find(entrance) != find(exit)) {
celll = a randomly chosen cell
cell? = a randomly chosen adjacent cell
if (find(celll) !'!= find(cell?2)

union(celll, cell?2)

‘ Initial State

10 | 11 12 | 13 | 14

15 16 | 17 18 [19

20 | 21 | 22 | 23 | 24

(0} {1} {2} {3} {4} {S} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20} {21}
{22} {23} {24}

Intermediate State

= Algorithm selects wall between 8 and 13. What
happens?

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 | 21 | 22 | 23 | 24

{0, 1} {2} {3} {4.6,7,8,9, 13, 14} {5} {10, 11, 15} {12} {16, 17, 18, 22} {19} {20} {21} {23} {24}

‘ A Different Intermediate State

= Algorithm selects wall between 18 and 19.
What happens?

0 1 2 3 4

5 6 7 8 9

10 11 12 | 13 14

15 16 17 18 19

20 | 21 | 22 | 23 | 24

{0,1} {2} {3} {4,6,7,8,9, 13, 14, 16, 17, 18,22} {5} {10, 11, 15} {12} {19} {20} {21} {23} {24}

Final State

10 11 12 | 13 14

15 16) 18 ‘ 19

20 21 ‘ 22 23 24

{0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

