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Introduction to Disjointed Sets
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Disjoint Sets

* A data structure that keeps track of a set of
elements partitioned into a number of disjoint
(non-overlapping) subsets
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Universe of Iltems

* Universal set is made up of all of the items
that can be a member of a set
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Disjoint Sets

* A group of sets where no item can be in more
than one set
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Universe of Iltems
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Disjoint Sets

* A group of sets where no item can be in more
than one set

S1 S3

S4
Supported Operations:

Find(Q)
Union()
MakeSet()

S2
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Uses for Disjointed Sets

* Maze generation

e Kruskal's algorithm for computing the
minimum spanning tree of a graph

— Given a set of cities, C, and a set of roads, R, that
connect two cities (x, y) determine if it’s possible
to travel from any given city to another given city

* Determining if there are cycles in a graph
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Disjoint Set Example
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Disjoint Set with No Unions
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* A negative number means we are at the root

« A positive number means we need to move or “walk” to that index to find our root
« The LONGER the path, the longer it takes to find, and moves farther away from
our goal of a constant timed function
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Disjoint Set with Some Unions
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Notice:

 Value of index is where the index is linked to
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Operations of a Disjoint Set
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Find()

e Determine which subset an element is in

e Returns the name of the subset

 Find() typically returns an item from this
set that serves as its "representative”

— By comparing the result of two Find()
operations, one can determine whether two
elements are in the same subset
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Find()

* Asks the question, what set does item E
belong to currently?

S1 S3
What does S4
Find(E) return?
Returns S2

S2

www.umbc.edu



Unton()

 Unton()
— Merge two sets (w/ one or more items) together

— Order can be important

— One of the roots from the 2 sets will become the
root of the merged set
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Unton()

* Join two subsets into a single subset.

81 S3
Before Unton(S2, S1) @ >4
After Union(S2, S1) H
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MakeSet ()

 Makes a set containing only a given element
(a singleton)

* I[mplementation is generally trivial
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Types of Disjoint Sets
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Types of Disjoint Sets

 There are two types of disjoint sets
1. Array Based Disjoint Sets
2. Tree Based Disjoint Sets
— (We can also implement with a linked list)
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Array Based Disjoint Sets

e We will assume that elementsareQton-1

* Maintain an array A: for each element 1,
A[ 1] is the name of the set containing 1
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Array Based Disjoint Sets

« Find(1) returns A[ 1]
— Runs in O(1)

 Unton(1,J) requiresscanning entire array
— Runs in O(n)

for (k = 0O;k < n; k++) {
it (ALK] == ADD A
ALKl = A[r]l; + &
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Tree Based Disjoint Sets

* Disjoint-set forests are data structures
— Each set is represented by a tree data structure
— Each node holds a reference to its parent node

* |n a disjoint-set forest, the representative of
each set is the root of that set's tree
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Tree Based Disjoint Sets

* FiInd() follows parent nodes until it reaches
the root

* Un1on() combines two trees into one by
attaching the root of one to the root of the
other
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A Worse Case for Union

Union can be done in O(1), but may cause find
to become O(n).

®) © ©® ®

Consider the result of the following sequence of operations:

Union (A, B)
Union (B, ©)
Union (C, D)
Union (D, E)



Optimization of Disjointed Sets
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Optimization

 Three main optimization operations:
1. Union-by-rank (size)
2. Union-by-rank (height)
3. Path Compression
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* Be very clear about how the array
representations change for different things
(union by size, union by height, etc.)
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Union-by-Rank (size)

e Size = number of nodes (including root) in
given set

e A strategy to keep items in a tree from getting
too deep (large paths) by uniting sets
intelligently

* At each root, we record the size of its sub-tree

— The number of nodes in the collective tree
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Union-by-Rank (size)
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Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number size
of the root increases (see 4 and 9)
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Union-by-Rank (height)

* A strategy to keep items in a tree from getting too
deep (large paths) by uniting sets intelligently

At each root, we record the height of its sub-tree

* When uniting two trees, make the smaller tree a sub-
tree of the larger one

— So that the tree that is larger does not add
another level!!
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Union-by-Rank (height)
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Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number height
of the root increases (see 4 and 9)
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Union-by-Rank (height)

QQQ/Q@QQ DOO®

-1

-1

41-1(-2|-1{-1|18|9|-3|-1|-1|-1(-1

0

1

2 3 4 5 6 7 8 910 11 12 13

What if we merge {2,4} with {7, 8, 9}?

Because 9 has a greater height than 4, 4 would be absorbed into 9.
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Union-by-Rank (height)
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| Update 4 to pointto 9
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When uniting two trees, make the smaller tree a sub-tree of the larger

one so that the one tree that is larger does not add another level!!
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Example of Unions

* |f we union 5 and 9, how will they be joined?
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Example of Unions

* By rank (size)?

— 9 becomes a child of 5
* By rank (height)?

— 5 becomes a child of 9

rrrrrrrr
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Path Compression

If our path gets longer, operations take longer

We can shorten this (literally and figuratively)
by updating the element values of each child
directly to the root node value

— No more walking through to get to the root
Done as part of FIind()

— So the speed up will be eventual

www.umbc.edu



Path Compression

Theoretically flattens out a tree
Uses recursion

Base case
— Until you find the root
— Return the root value

Reassign as the call stack collapses
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Path CompreSSiOn Before Path

Compression

QOC(QOQ
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During a Find(), we update the index to point to the root
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Path Compression ...

Compression
0O dg o o

-1(-1(4(-1(-1|(-1/{9(9(9|-1{9|9|9/|9
O 1 2 3 4 5 6 7 8 9101 12 13

After we run Find(6)we update it to point to 9
After we run Find(13)and Find (7)we update them to pointto 9

Along with all other nodes between 13 and 9!
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Code for Disjoint Sets
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Generic Code

function MakeSet(x)
X.parent = X

function Find(x)
iIT X_parent ==
return X
else

return Find(x.parent)

function Union(x, Yy)
XRoot := Find(x)
yRoot := Find(y)
XRoot.parent := yRoot
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C++ Implementation

class UnionFind {
int[] u;

UntonFind(int n) {
u = new int[n];

for (int 1 = 0; 1 < nj; 1++)

ufr] = -1;
}

int find(int 1) {
int j,root;

for ( = i; uljl >= 0; j = uliD) :

root = j;

while (u[i1] >=0) { jJ = u[i1]; u[1]

return root;

by
void unton(int 1,int j) {
1 = find(i);
J = findd);
it (i 1=j) {
it (uli] < uliD
{ ul1]l += ulh]; ulil
else
{ ubd1 += uli]; u[i]
¥
by
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The Unt1onFind class

class UnionFind {
int[] u;

UnionFind(int n) {
u = new Int[n];
for (int i = O, 1 < n; 1++)

ufr] = -
}
int find(int 1) { ... }
void unton(int 1,int j) { -.. }

}
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Trick 1: lterative find

int find(aint 1) {
int j, root;

for (j = i; u[j] >=0; j = uliD :

root = J;

while (uf1] >= 0)
{ 3 = ul1]; ulr] = root; 1 = j; }

return root,
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Trick 2: Union by size

void union(int 1,int jJ) {

1 = find(1);
J = findQ);
it (1 1= )) {

it (ulr] <ulgl)
{ uli] +=ugl; ulyl
else

{ ulg] += uli]; ulil = 35 }

1
-
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Disjointed Sets Performance
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Performance
* |n a nutshell

— Running time complexity: O(1) for union
* Using ONE pointer to connect from one root to another
— Running time of find depends on implementation
e Union by size: Find is O(log(n))
* Union by height: Find is O(log(n))

* Union operations obviously take ©(1) time

— Code has no loops or recursion
* O(f(n)) is when the worst case and best case are identical
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Performance

 The average running time of any find and
union operations in the quick-union data
structure is so close to a constant that it's
hardly worth mentioning that, in an asymptotic
sense, it's slightly slower in real life
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Performance

— A sequence of f find and u union operations (in any order

and possibly interleaved) takes Theta(u + f a(f + u, u)) time
in the worst case

— a is an extremely slowly-growing function
— Known as the inverse Ackermann function.

* This function is never larger than 4 for any values of f and u you
could ever use (though it can get arbitrarily large—for
unimaginably large values of f and u).

* Hence, for all practical purposes think of quick-union as having
find operations that run, on average, in constant time.
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A Union-Find Application

A random maze generator can use union-
find. Consider a 5x5 maze:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24




Maze Generator

Initially, 25 cells, each isolated by walls from
the others.

This corresponds to an equivalence relation -
- two cells are equivalent if they can be
reached from each other (walls been
removed so there is a path from one to the

other).



Maze Generator (cont.)

To start, choose an entrance and an exit.
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Maze Generator (cont.)

Randomly remove walls until the entrance
and exit cells are in the same set.

Removing a wall is the same as doing a
union operation.

Do not remove a randomly chosen wall if the
cells it separates are already in the same set.



MakeMaze

MakeMaze (1nt size) {

entrance = 0; exit = size-1;

while (find(entrance) != find(exit)) {
celll = a randomly chosen cell
cell? = a randomly chosen adjacent cell
if (find(celll) !'!= find(cell?2)

union(celll, cell?2)



‘ Initial State

10 | 11 12 | 13 | 14

15 16 | 17 18 [ 19

20 | 21 | 22 | 23 | 24

(0} {1} {2} {3} {4} {S} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20} {21}
{22} {23} {24}




Intermediate State

= Algorithm selects wall between 8 and 13. What
happens?

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 | 21 | 22 | 23 | 24

{0, 1} {2} {3} {4.6,7,8,9, 13, 14} {5} {10, 11, 15} {12} {16, 17, 18, 22} {19} {20} {21} {23} {24}




‘ A Different Intermediate State

= Algorithm selects wall between 18 and 19.
What happens?

0 1 2 3 4

5 6 7 8 9

10 11 12 | 13 14

15 16 17 18 19

20 | 21 | 22 | 23 | 24

{0,1} {2} {3} {4,6,7,8,9, 13, 14, 16, 17, 18,22} {5} {10, 11, 15} {12} {19} {20} {21} {23} {24}




Final State

10 11 12 | 13 14

15 16 ) 18 ‘ 19

20 21 ‘ 22 23 24

{0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}






