
CMSC 341 BST

CMSC 341

Binary Search Trees

Announcements

• Homework #3 dues Thursday (10/5/2017)

• Exam #1 next Thursday (10/12/2017)

CMSC 341 BST

CMSC 341 BST

A Generic Tree

Binary Tree

CMSC 341 BST

CMSC 341 BST

The Binary Node Class
 private class BinaryNode<AnyType>
 {

 // Constructors
 BinaryNode(AnyType theElement)
 {

 this(theElement, null, null);
 }

 BinaryNode(AnyType theElement,
 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)

{
 element = theElement; left = lt; right = rt;

 }

AnyType element; // The data in the node
BinaryNode<AnyType> left; // Left child reference
BinaryNode<AnyType> right; // Right child reference

 }

CMSC 341 BST

Full Binary Tree

A full binary tree is a binary tree in which every
node is a leaf or has exactly two children.

Theorem: A FBT with n
internal nodes has n + 1
leaves (external nodes).

CMSC 341 BST

Perfect Binary Tree

n A Perfect Binary Tree is a Full Binary Tree in
which all leaves have the same depth.

Theorem:
The number
of nodes in a
PBT is 2h+1-1,
where h is
height.

CMSC 341 BST

Complete Binary Tree

• A Complete Binary Tree is a binary tree in which
every level is completed filled, except possibly the
bottom level which is filled from left to right.

CMSC 341 BST

Tree Traversals

n Inorder
n Preorder
n Postorder
n Levelorder

(left, root, right)
(root, left, right)
(left, right, root)
(per-level)

Example

2/24/2014 CMSC 341 BST 16

PreOrder - 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

InOrder - 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

PostOrder - 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

LevelOrder - 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

Binary Tree Construction

• Suppose that the elements in a binary tree are
distinct.

• Can you construct the binary tree from which a given
traversal sequence came?

• When a traversal sequence has more than one
element, the binary tree is not uniquely defined.

• Therefore, the tree from which the sequence was
obtained cannot be reconstructed uniquely.

CMSC 341 BST

Binary Tree Construction

Can you construct the binary tree,
given two traversal sequences?

Depends on which two sequences are
given.

CMSC 341 BST

Inorder And Preorder
inorder = g d h b e i a f j c
preorder = a b d g h e i c f j

• Scan the preorder left to right using the
inorder to separate left and right subtrees.

• a is the root of the tree; gdhbei are in the
left subtree; fjc are in the right subtree.

a

gdhbei fjc
CMSC 341 BST

Inorder And Preorder

• preorder = a b d g h e i c f j
• b is the next root; gdh are in the left

subtree; ei are in the right subtree.

a

gdhbei fjc

a

dh

fjc b

ei CMSC 341 BST

Inorder And Preorder

• preorder = a b d g h e i c f j
• d is the next root; g is in the left subtree; h

is in the right subtree.

a

gdh

fjc b

ei

a

g

fjc b

ei d

h CMSC 341 BST

Inorder And Postorder

• Scan postorder from right to left using
inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c
• postorder = g h d i e b j f c a
• Tree root is a; gdhbei are in left subtree;

fjc are in right subtree.

CMSC 341 BST

Inorder And Level Order

• Scan level order from left to right using
inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c
• level order = a b c d e f g h i j
• Tree root is a; gdhbei are in left subtree;

fjc are in right subtree.

CMSC 341 BST

CMSC 341 BST

Finding an element in a Binary Tree?
n  Return a reference to node containing x, return null if x is not found

public BinaryNode<AnyType> find(AnyType x)
{
 return find(root, x);
}
private BinaryNode<AnyType> find(BinaryNode<AnyType> node, AnyType x)
{

 BinaryNode<AnyType> t = null; // in case we don’t find it
 if (node.element.equals(x)) // found it here??

 return node;

 // not here, look in the left subtree
 if(node.left != null)

 t = find(node.left,x);

 // if not in the left subtree, look in the right subtree
 if (t == null)

 t = find(node.right,x);

 // return reference, null if not found
 return t;

}

CMSC 341 BST

Is this a full binary tree?

boolean isFBT (BinaryNode<AnyType> t)
{

// base case – an empty tee is a FBT
 if (t == null) return true;

 // determine if this node is “full”
// if just one child, return – the tree is not full

 if ((t.left == null && t.right != null)
 || (t.right == null && t.left != null))

 return false;

 // if this node is full, “ask” its subtrees if they are full
// if both are FBTs, then the entire tree is an FBT
// if either of the subtrees is not FBT, then the tree is not

 return isFBT(t.right) && isFBT(t.left);

}

CMSC 341 BST

Other Recursive Binary Tree Functions

n Count number of interior nodes
int countInteriorNodes(BinaryNode<AnyType> t);

n Determine the height of a binary tree. By
convention (and for ease of coding) the
height of an empty tree is -1
int height(BinaryNode<AnyType> t);

n Many others

CMSC 341 BST

Other Binary Tree Operations

n How do we insert a new element into a binary
tree?

n How do we remove an element from a binary
tree?

CMSC 341 BST

Binary Search Tree
n A Binary Search Tree is a Binary Tree in which,

at every node v, the values stored in the left
subtree of v are less than the value at v and the
values stored in the right subtree are greater.

n The elements in the BST must be comparable.

n Duplicates are not allowed in our discussion.

n Note that each subtree of a BST is also a BST.

CMSC 341 BST

A BST of integers

42

20 50

60

99
35

32

27

25

A

B
C D

Describe the values which might appear in the
subtrees labeled A, B, C, and D

CMSC 341 BST

BST Implementation
public class
BinarySearchTree<AnyType extends Comparable<? super AnyType>>
{
 private static class BinaryNode<AnyType>
 {

// Constructors
BinaryNode(AnyType theElement)
{ this(theElement, null, null); }

BinaryNode(AnyType theElement,
 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)

{ element = theElement; left = lt; right = rt; }

AnyType element; // The data in the node
BinaryNode<AnyType> left; // Left child reference
BinaryNode<AnyType> right; // Right child reference

 }

CMSC 341 BST

BST Implementation (2)

 private BinaryNode<AnyType> root;

 public BinarySearchTree()
 {

 root = null;
 }

 public void makeEmpty()
 {

 root = null;
 }

 public boolean isEmpty()
 {

 return root == null;
 }

CMSC 341 BST

BST “contains” Method
 public boolean contains(AnyType x)

 {
 return contains(x, root);

 }

 private boolean contains(AnyType x, BinaryNode<AnyType> t)
 {

if(t == null)
return false;

int compareResult = x.compareTo(t.element);

if(compareResult < 0)
return contains(x, t.left);

else if(compareResult > 0)
return contains(x, t.right);

else
return true; // Match

 }

CMSC 341 BST

Performance of “contains”

n Searching in randomly built BST is O(lg n) on
average
q  but generally, a BST is not randomly built

n Asymptotic performance is O(height) in all
cases

CMSC 341 BST

Implementation of printTree

 public void printTree()
 {

 printTree(root);

 }

 private void printTree(BinaryNode<AnyType> t)
 {

if(t != null)

{

printTree(t.left);

System.out.println(t.element);

printTree(t.right);

}

 }

CMSC 341 BST

BST Implementation (3)

 public AnyType findMin()
 {

 if(isEmpty()) throw new UnderflowException();
 return findMin(root).element;

 }
 public AnyType findMax()
 {

 if(isEmpty()) throw new UnderflowException();
 return findMax(root).element;

 }
 public void insert(AnyType x)

 {
 root = insert(x, root);

 }
 public void remove(AnyType x)

 {
 root = remove(x, root);

 }

CMSC 341 BST

The insert Operation

 private BinaryNode<AnyType>
 insert(AnyType x, BinaryNode<AnyType> t)

 {
if(t == null)

return new BinaryNode<AnyType>(x, null, null);

int compareResult = x.compareTo(t.element);

if(compareResult < 0)
t.left = insert(x, t.left);

else if(compareResult > 0)
t.right = insert(x, t.right);

else
; // Duplicate; do nothing

return t;
 }

CMSC 341 BST

The remove Operation
 private BinaryNode<AnyType>
 remove(AnyType x, BinaryNode<AnyType> t)
 {
 if(t == null)

 return t; // Item not found; do nothing
 int compareResult = x.compareTo(t.element);
 if(compareResult < 0)

t.left = remove(x, t.left);
 else if(compareResult > 0)

t.right = remove(x, t.right);
 else if(t.left != null && t.right != null){ // 2 children

t.element = findMin(t.right).element;
t.right = remove(t.element, t.right);

 }
 else // one child or leaf

 t = (t.left != null) ? t.left : t.right;
 return t;
 }

CMSC 341 BST

Implementations of find Max and Min
 private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)

 {
if(t == null)

return null;
else if(t.left == null)

return t;
return findMin(t.left);

 }

 private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
 {

if(t != null)
while(t.right != null)

t = t.right;

return t;
 }

Remove a node
Constraint: delete a node, maintain BST property

1. Deleting a leaf. Easy. Just do it. BST property is not affected.

2. Deleting a non-leaf node v
a. v has no left child -- replace v by its right child
b. v has no right child -- replace v by its left child
c. v has both left and right children, either:

1. Replace data in v by data of predecessor and delete predecessor
2. Replace data in v by data in successor and delete successor

CMSC 341 BST

CMSC 341 BST

Performance of BST methods

n What is the asymptotic performance of each of the
BST methods?

Best Case Worst Case Average Case

contains

insert

remove

findMin/
Max

makeEmpty

CMSC 341 BST

Predecessor in BST
n Predecessor of a node v in a BST is the node

that holds the data value that immediately
precedes the data at v in order.

n Finding predecessor
q  v has a left subtree

n  then predecessor must be the largest value in the left
subtree (the rightmost node in the left subtree)

q  v does not have a left subtree
n  predecessor is the first node on path back to root that

does not have v in its left subtree

CMSC 341 BST

Successor in BST
n Successor of a node v in a BST is the node

that holds the data value that immediately
follows the data at v in order.

n Finding Successor
q  v has right subtree

n  successor is smallest value in right subtree
(the leftmost node in the right subtree)

q  v does not have right subtree
n  successor is first node on path back to root that does not

have v in its right subtree

CMSC 341 BST

Tree Iterators

n As we know there are several ways to
traverse through a BST. For the user to do
so, we must supply different kind of iterators.
The iterator type defines how the elements
are traversed.
q  InOrderIterator<T> inOrderIterator();
q  PreOrderIterator<T> preOrderIterator();
q  PostOrderIterator<T> postOrderIterator();
q  LevelOrderIterator<T> levelOrderIterator();

BST as Arrays

CMSC 341 BST

Parent:

Binary Search Tree Operations Review

Basic BST Operations

 (BST Setup) → set up a BST

 (Node Setup) → set up a BST Node

 void insert(x) → insert x into the BST

 void remove(x) → remove x from the BST

 <type> findMin() → find min value in the BST

 <type> findMax() → find max value in the BST

 boolean contains(x) → is x in the BST?

 boolean isEmpty() → is the BST empty?

 void makeEmtpy() → make the BST empty

 void PrintTree() → print the BST

UMBC CMSC 341 Binary Search Trees

Public and Private Functions

 Many of the operations we want to use will

have two (overloaded) versions

 Public function takes in zero or one arguments

 Calls the private function

 Private function takes in one or two arguments

 Additional argument is the “root” of the subtree

 Private function recursively calls itself

 Changes the “root” each time to go further down the tree

UMBC CMSC 341 Binary Search Trees

Insert

void insert(x)

15

Inserting a Node

 Insertion will always create a new leaf node

 In determining what to do, there are 4 choices

 Go down the left subtree (visit the left child)
 Value we want to insert is smaller than current

 Go down the right subtree (visit the right child)
 Value we want to insert is greater than current

 Insert the node at the current spot
 The current “node” is NULL (we’ve reached a leaf)

 Do nothing (if we’ve found a duplicate)

UMBC CMSC 341 Binary Search Trees

Insert Functions

 Two versions of insert

 Public version (one argument)

 Private version (two arguments, recursive)

 Public version immediately calls private one
void insert(const Comparable & x)

{

 // calls the overloaded private insert()

 insert(x, root);

}

UMBC CMSC 341 Binary Search Trees

Starting at the Root of a (Sub)tree

 First check if the “root” of the tree is NULL

 If it is, create and insert the new node

 Send left and right children to NULL

// overloaded function that allows recursive calls

void insert(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) // no node here (make a leaf)

t = new BinaryNode(x, NULL, NULL);

 // rest of function…

}

UMBC CMSC 341 Binary Search Trees

Insert New Node (Left or Right)

 If the “root” we have is not NULL

 Traverse down another level via its children

 Call insert() with new sub-root (recursive)

// value in CURRENT root 't' < new value

else if(x < t->element) {

insert(x, t->left); }

// value in CURRENT root 't' > new value

else if(t->element < x) {

 insert(x, t->right); }

else; // Duplicate; do nothing

UMBC CMSC 341 Binary Search Trees

Full Insert() Function

 Remember, this function is recursive!

// overloaded function that allows recursive calls

void insert(const Comparable & x, BinaryNode * & t)

{

 if(t == NULL) // no node here (make a new leaf)

 t = new BinaryNode(x, NULL, NULL);

// value in CURRENT root 't' < new value

 else if(x < t->element) { insert(x, t->left); }

 // value in CURRENT root 't' > new value

 else if(t->element < x) { insert(x, t->right); }

 else; // Duplicate; do nothing

}

UMBC CMSC 341 Binary Search Trees

What’s Up With BinaryNode * & t?

 The code “ * & t ” is a reference to a pointer

 Remember that passing a reference allows us

to change the value of a variable in a function

 And have that change “stick” outside the function

 When we pass a variable, we pass its value

 It just so happens that a pointer’s “value” is the

address of something else in memory

UMBC CMSC 341 Binary Search Trees

Find Minimum

Comparable findMin()

Finding the Minimum

 What do we do?

 Go all the way down to the left

Comparable findMin(BinaryNode *t)
{
 // empty tree
 if (t == NULL) { return NULL; }

 // no further nodes to the left
 if (t->left == NULL) {

 return node->value; }
else {

 return findMin(t->left); }
}

UMBC CMSC 341 Binary Search Trees

Find Maximum

Comparable findMax()

Finding the Maximum

 What do we do?

 Go all the way down to the right

Comparable findMax(BinaryNode *t)
{
 // empty tree
 if (t == NULL) { return NULL; }

 // no further nodes to the right
 if (t->right == NULL) {

 return node->value; }
else {

 return findMin(t->right); }
}

UMBC CMSC 341 Binary Search Trees

Recursive Finding of Min/Max

 Just like insert() and other functions,

findMin() and findMax() have 2 versions

 Public (no arguments):

 Comparable findMin();

 Comparable findMax();

 Private (one argument):

 Comparable findMax (BinaryNode *t);

 Comparable findMax (BinaryNode *t);

UMBC CMSC 341 Binary Search Trees

Delete the Entire Tree

void makeEmpty ()

Memory Management

 Remember, we don’t want to lose any

memory by freeing things out of order!

 Nodes to be carefully deleted

 BST nodes are only deleted when

 A single node is removed

 We are finished with the entire tree

Call the destructor

UMBC CMSC 341 Binary Search Trees

Destructor

 The destructor for the tree simply calls the
makeEmpty() function

// destructor for the tree

~BinarySearchTree()

{

 // we call a separate function

 // so that we can use recursion

makeEmpty(root);

}

UMBC CMSC 341 Binary Search Trees

Make Empty

 A recursive call will make sure we hang onto

each node until its children are deleted

void makeEmpty(BinaryNode * & t)
{

if(t != NULL)
{

 // delete both children, then t
 makeEmpty(t->left);
 makeEmpty(t->right);
 delete t;
 // set t to NULL after deletion
 t = NULL;

}
}

UMBC CMSC 341 Binary Search Trees

Find a Specific Value

boolean contains(x)

Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains(const Comparable & x) const {

 return contains(x, root); }

bool contains(const Comparable & x, BinaryNode *t) const

{

 if(t == NULL) { return false; }

 // our value is lower than the current node's

 else if(x < t->element) { return contains(x, t->left); }

 // our value is higher than the current node's

 else if(t->element < x) { return contains(x, t->right);}

 else { return true; } // Match

 }

UMBC CMSC 341 Binary Search Trees

Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains(const Comparable & x) const {

 return contains(x, root); }

bool contains(const Comparable & x, BinaryNode *t) const

{

 if(t == NULL) { return false; }

// our value is lower than the current node's

else if(x < t->element) { return contains(x, t->left); }

 // our value is higher than the current node's

 else if(t->element < x) { return contains(x, t->right);}

 else { return true; } // Match

 }

UMBC CMSC 341 Binary Search Trees

We have to have a defined
overloaded comparison
operator for this to work!

(Both of the else if statements
use < so we only need to write one)

Removing a Node

void remove(x)

Complicated Removal

 Similar to a linked list, removal is often much

more complicated than insertion or complete

deletion

 We must first traverse the tree to find the

target we want to remove
 If we “disconnect” a link, we need to reestablish

 Possible scenarios
 No children (leaf)

 One child

 Two children

UMBC CMSC 341 Binary Search Trees

Removing A Node – Example 1

 Remove 4

 Any issues?

UMBC CMSC 341 Binary Search Trees

Removing A Node – Example 2

 Remove 6

 Any issues?

UMBC CMSC 341 Binary Search Trees

Removing A Node – Example 3

 Remove 8

 Any issues?

UMBC CMSC 341 Binary Search Trees

Removing a Node – No Children

 Simplest scenario for removal

 No children to worry about managing

 Reminder: nodes with no children are leaves

 We still have to find the target node first

 To remove a node with no children, we need

to do the following:

 Cut the link from the parent node

 Free the memory

UMBC CMSC 341 Binary Search Trees

Removing a Node – One Child

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to

do the following:
 Connect node’s parent to its child (custody)

 Free the memory

UMBC CMSC 341 Binary Search Trees

Example Removal – One Child

 Remove “18” from this BST:

 Grandparent takes custody

UMBC CMSC 341 Binary Search Trees

Source: http://www.algolist.net/Data_structures/Binary_search_tree/Removal

Code for Removal

void remove(const Comparable & x, BinaryNode * & t)

{

// code to handle two children prior to this

else

{

// "hold" the position of node we'll delete

BinaryNode *oldNode = t;

// ternary operator

t = (t->left != NULL) ? t->left : t->right;

delete oldNode;

 }

}

UMBC CMSC 341 Binary Search Trees

Ternary Operator – Removal Code

 The ternary operator code for removal
// ternary operator

t = (t->left != NULL) ? t->left : t->right;

 Can also be expressed as
// if the left child isn't NULL

if (t->left != NULL) {

 t = t->left; // replace t with left child

} else {

 t = t->right; // else replace with right child

}

UMBC CMSC 341 Binary Search Trees

Actually the same
code works for one or
zero children! Why?

Removing a Node – One Child

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to

do the following:
 Connect node’s parent to its child (custody)

 Free the memory

UMBC CMSC 341 Binary Search Trees

Removing a Node – Two Children

 Most difficult scenario for removal
 Everyone in the subtree will be affected

 Instead of completely deleting the node, we

will replace its value with another node’s
 The smallest value in the right subtree
 Use findMin() to locate this value

 Then delete the node whose value we moved

UMBC CMSC 341 Binary Search Trees

Removing a Node – Two Children

UMBC CMSC 341 Binary Search Trees

Remove node z

We find z’s successor y,which lies in z’s right subtree
and has no left child. We want to splice y out of its
current location and have it replace z in the tree. If y is
z’s right child then we replace z by y, leaving y’s right
child alone.
Otherwise, y lies within z’s right subtree but is not z’s
right child. In this case, we first replace y by its own
right child, and then we replace z by y.

Remove Function
void remove(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) { return; } // item not found; do nothing

// continue to traverse until we find the element

 if(x < t->element) { remove(x, t->left); }

else if(t->element < x) { remove(x, t->right); }

else if(t->left != NULL && t->right != NULL) // two children

{

 // find right’s lowest value

 t->element = findMin(t->right)->element;

 // now delete that found value

 remove(t->element, t->right);

}

else // zero or one child

{

 BinaryNode *oldNode = t;

 // ternary operator

 t = (t->left != NULL) ? t->left : t->right;

 delete oldNode;

}

} UMBC CMSC 341 Binary Search Trees

Printing a Tree

void printTree()

Printing a Tree

 Printing is simple – only question is which

order we want to traverse the tree in?

// ostream &out is the stream we want to print to

// (it maybe cout, it may be a file – our choice)

void printTree(BinaryNode *t, ostream & out) const

{

 // if the node isn't null

 if(t != NULL)

 {

 // print an in-order traversal

 printTree(t->left, out);

 out << t->element << endl;

 printTree(t->right, out);

 }

}

UMBC CMSC 341 Binary Search Trees

Performance

Run Time of BST Operations

Big O of BST Operations

Operation Big O

contains(x) O(log n)

insert(x) O(log n)

remove(x) O(log n)

findMin/findMax(x) O(log n)

isEmpty() O(1)

printTree() O(n)

UMBC CMSC 341 Binary Search Trees

	Blank Page

