
CMSC 341 BST 

CMSC 341 

Binary Search Trees 



Announcements 

• Homework #3 dues Thursday (10/5/2017)

• Exam #1 next Thursday (10/12/2017) 
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A Generic Tree 



Binary Tree 
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The Binary Node Class 
 private class BinaryNode<AnyType> 
 { 

 // Constructors 
 BinaryNode( AnyType theElement ) 
 {  

 this( theElement, null, null );  
 } 

 BinaryNode( AnyType theElement, 
 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt ) 

{  
 element  = theElement; left = lt; right = rt;  

 } 

AnyType element;            // The data in the node 
BinaryNode<AnyType> left;   // Left child reference 
BinaryNode<AnyType> right;  // Right child reference 

    } 



CMSC 341 BST 

Full Binary Tree 

A full binary tree is a binary tree in which every 
node is a leaf or has exactly two children. 

Theorem: A FBT with n 
internal nodes has n + 1 
leaves (external nodes). 
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Perfect Binary Tree 

n A Perfect Binary Tree is a Full Binary Tree in
which all leaves have the same depth.

Theorem: 
The number 
of nodes in a 
PBT is 2h+1-1, 
where h is 
height. 
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Complete Binary Tree 

• A Complete Binary Tree is a binary tree in which
every level is completed filled, except possibly the
bottom level which is filled from left to right.
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Tree Traversals 

n Inorder
n Preorder
n Postorder
n Levelorder

(left, root, right) 
(root, left, right) 
(left, right, root) 
(per-level) 



Example 

2/24/2014 CMSC 341 BST 16 

PreOrder - 8, 5, 9, 7, 1, 12, 2, 4, 11, 3  

InOrder - 9, 5, 1, 7, 2, 12, 8, 4, 3, 11  

PostOrder - 9, 1, 2, 12, 7, 5, 3, 11, 4, 8  

LevelOrder - 8, 5, 4, 9, 7, 11, 1, 12, 3, 2 



Binary Tree Construction 

• Suppose that the elements in a binary tree are
distinct.

• Can you construct the binary tree from which a given 
traversal sequence came?

• When a traversal sequence has more than one
element, the binary tree is not uniquely defined.

• Therefore, the tree from which the sequence was
obtained cannot be reconstructed uniquely.
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Binary Tree Construction 

Can you construct the binary tree, 
given two traversal sequences? 

Depends on which two sequences are 
given. 
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Inorder And Preorder 
inorder = g d h b e i a f j c 
preorder = a b d g h e i c f j 

• Scan the preorder left to right using the
inorder to separate left and right subtrees.

• a is the root of the tree; gdhbei are in the
left subtree; fjc are in the right subtree.

a 

gdhbei fjc 
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Inorder And Preorder 

• preorder = a b d g h e i c f j
• b is the next root; gdh are in the left

subtree; ei are in the right subtree.

a 

gdhbei fjc 

a 

dh 

fjc b 

ei  CMSC 341 BST 



Inorder And Preorder 

• preorder = a b d g h e i c f j
• d is the next root; g is in the left subtree; h

is in the right subtree.

a 

gdh 

fjc b 

ei 

a 

g 

fjc b 

ei d 
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Inorder And Postorder 

• Scan postorder from right to left using
inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c
• postorder = g h d i e b j f c a
• Tree root is a; gdhbei are in left subtree;

fjc are in right subtree.
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Inorder And Level Order 

• Scan level order from left to right using
inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c
• level order = a b c d e f g h i j
• Tree root is a; gdhbei are in left subtree;

fjc are in right subtree.
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Finding an element in a Binary Tree? 
n  Return a reference to node containing x, return null if x is not found

public BinaryNode<AnyType> find(AnyType x) 
{ 
    return find(root, x); 
} 
private BinaryNode<AnyType> find( BinaryNode<AnyType> node, AnyType x) 
{ 

 BinaryNode<AnyType> t = null;    // in case we don’t find it 
 if ( node.element.equals(x) )  // found it here??

 return node;   

 // not here, look in the left subtree 
 if(node.left != null) 

 t = find(node.left,x); 

 // if not in the left subtree, look in the right subtree 
 if ( t == null) 

 t = find(node.right,x); 

 // return reference, null if not found 
 return t; 

} 
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Is this a full binary tree? 

boolean  isFBT (BinaryNode<AnyType> t) 
{ 

// base case – an empty tee is a FBT 
 if (t == null) return true; 

 // determine if this node is “full” 
// if just one child, return – the tree is not full 

 if ((t.left == null && t.right != null) 
 ||  (t.right == null && t.left != null)) 

 return false; 

 // if this node is full, “ask” its subtrees if they are full 
// if both are FBTs, then the entire tree is an FBT 
// if either of the subtrees is not FBT, then the tree is not 

 return isFBT( t.right ) && isFBT( t.left ); 

} 
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Other Recursive Binary Tree Functions 

n Count number of interior nodes
int countInteriorNodes( BinaryNode<AnyType> t);

n Determine the height of a binary tree.  By
convention (and for ease of coding) the
height of an empty tree is -1
int height( BinaryNode<AnyType> t);

n Many others



CMSC 341 BST 

Other Binary Tree Operations 

n How do we insert a new element into a binary
tree?

n How do we remove an element from a binary
tree?
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Binary Search Tree 
n A Binary Search Tree is a Binary Tree in which,

at every node v, the values stored in the left
subtree of v are less than the value at v and the
values stored in the right subtree are greater.

n The elements in the BST must be comparable.

n Duplicates are not allowed in our discussion.

n Note that each subtree of a BST is also a BST.
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A BST of integers 

42 

20 50 

60 

99 
35 

32 

27 

25 

A 

B 
C D 

Describe the values which might appear in the 
subtrees labeled A, B, C, and D 
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BST Implementation 
public class 
BinarySearchTree<AnyType extends Comparable<? super AnyType>> 
{ 
    private static class BinaryNode<AnyType> 
 { 

// Constructors 
BinaryNode( AnyType theElement ) 
{ this( theElement, null, null ); } 

BinaryNode( AnyType theElement,  
 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt ) 

{ element  = theElement; left = lt; right = rt; } 

AnyType element;            // The data in the node 
BinaryNode<AnyType> left;   // Left child reference 
BinaryNode<AnyType> right;  // Right child reference 

    } 
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BST Implementation (2) 

 

 private BinaryNode<AnyType> root; 

    public BinarySearchTree( ) 
    {  

 root = null;  
 } 

    public void makeEmpty( ) 
    {  

 root = null;  
 } 

    public boolean isEmpty( ) 
 {  

 return root == null;  
 } 
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BST “contains” Method 
 public boolean contains( AnyType x ) 

    {  
 return contains( x, root );  

 } 

 private boolean contains( AnyType x, BinaryNode<AnyType> t ) 
 { 

if( t == null ) 
return false; 

int compareResult = x.compareTo( t.element ); 

if( compareResult < 0 ) 
return contains( x, t.left ); 

else if( compareResult > 0 ) 
return contains( x, t.right ); 

else 
return true;    // Match 

    } 
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Performance of “contains” 

n Searching in randomly built BST is O(lg n) on
average
q  but generally, a BST is not randomly built

n Asymptotic performance is O(height) in all
cases
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Implementation of printTree 

 public void printTree() 
 { 

 printTree(root); 

 } 

 private void printTree( BinaryNode<AnyType> t ) 
    { 

if( t != null ) 

{ 

printTree( t.left ); 

System.out.println( t.element ); 

printTree( t.right ); 

} 

 } 
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BST Implementation (3) 

 public AnyType findMin( ) 
 {  

 if( isEmpty( ) ) throw new UnderflowException( ); 
 return findMin( root ).element; 

 } 
 public AnyType findMax( ) 
 {  

 if( isEmpty( ) ) throw new UnderflowException( ); 
 return findMax( root ).element; 

 } 
    public void insert( AnyType x ) 

 {  
 root = insert( x, root );  

 } 
    public void remove( AnyType x ) 

 {  
 root = remove( x, root );  

 } 
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The insert Operation 

 private BinaryNode<AnyType>  
 insert( AnyType x,  BinaryNode<AnyType> t ) 

    { 
if( t == null ) 

return new BinaryNode<AnyType>( x, null, null ); 

int compareResult = x.compareTo( t.element ); 

if( compareResult < 0 ) 
t.left = insert( x, t.left );

else if( compareResult > 0 ) 
t.right = insert( x, t.right );

else 
;  // Duplicate; do nothing 

return t; 
    } 
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The remove Operation 
 private BinaryNode<AnyType>  
 remove( AnyType x,  BinaryNode<AnyType> t ) 
 { 
  if( t == null ) 

  return t;   // Item not found; do nothing 
  int compareResult = x.compareTo( t.element ); 
  if( compareResult < 0 ) 

t.left = remove( x, t.left );
  else if( compareResult > 0 ) 

t.right = remove( x, t.right );
  else if( t.left != null && t.right != null ){ // 2 children 

t.element = findMin( t.right ).element;
t.right = remove( t.element, t.right );

  } 
  else  // one child or leaf 

   t = ( t.left != null ) ? t.left : t.right; 
  return t; 
 } 
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Implementations of find Max and Min 
 private BinaryNode<AnyType> findMin( BinaryNode<AnyType> t ) 

    { 
if( t == null ) 

return null; 
else if( t.left == null ) 

return t; 
return findMin( t.left ); 

    } 

 private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t ) 
    { 

if( t != null ) 
while( t.right != null ) 

t = t.right; 

return t; 
    } 



Remove a node 
Constraint: delete a node, maintain BST property 

1. Deleting a leaf. Easy. Just do it. BST property is not affected.

2. Deleting a non-leaf node v
a. v has no left child -- replace v by its right child
b. v has no right child -- replace v by its left child
c. v has both left and right children, either:

1. Replace data in v by data of predecessor and delete predecessor
2. Replace data in v by data in successor and delete successor

CMSC 341 BST 
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Performance of BST methods 

n What is the asymptotic performance of each of the
BST methods?

Best Case Worst Case Average Case 

contains 

insert 

remove 

findMin/ 
Max 

makeEmpty 
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Predecessor  in BST 
n Predecessor of a node v in a BST is the node

that holds the data value that immediately
precedes the data at v in order.

n Finding predecessor
q  v has a left subtree

n  then predecessor must be the largest value in the left
subtree (the rightmost node in the left subtree)

q  v does not have a left subtree 
n  predecessor is the first node on path back to root that

does not have v in its left subtree
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Successor in  BST 
n Successor of a node v in a BST is the node

that holds the data value that immediately
follows the data at v in order.

n Finding Successor
q  v has right subtree

n  successor is smallest value in right subtree
(the leftmost node in the right subtree)

q  v does not have right subtree 
n  successor is first node on path back to root that does not

have v in its right subtree
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Tree Iterators 

n As we know there are several ways to
traverse through a BST.  For the user to do
so, we must supply different kind of iterators.
The iterator type defines how the elements
are traversed.
q  InOrderIterator<T>    inOrderIterator();
q  PreOrderIterator<T>   preOrderIterator();
q  PostOrderIterator<T>  postOrderIterator();
q  LevelOrderIterator<T> levelOrderIterator();



BST as Arrays 

CMSC 341 BST 

Parent:  



Binary Search Tree Operations Review 



Basic BST Operations 

 (BST Setup) → set up a BST

 (Node Setup) → set up a BST Node

 void insert(x) → insert x into the BST

 void remove(x) → remove x from the BST

 <type> findMin() → find min value in the BST

 <type> findMax() → find max value in the BST

 boolean contains(x) → is x in the BST?

 boolean isEmpty() → is the BST empty?

 void makeEmtpy() → make the BST empty

 void PrintTree() → print the BST
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Public and Private Functions 

 Many of the operations we want to use will

have two (overloaded) versions

 Public function takes in zero or one arguments

 Calls the private function

 Private function takes in one or two arguments

 Additional argument is the “root” of the subtree

 Private function recursively calls itself

 Changes the “root” each time to go further down the tree
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Insert 

void insert( x ) 

15 



Inserting a Node 

 Insertion will always create a new leaf node

 In determining what to do, there are 4 choices

 Go down the left subtree (visit the left child)
 Value we want to insert is smaller than current

 Go down the right subtree (visit the right child)
 Value we want to insert is greater than current

 Insert the node at the current spot
 The current “node” is NULL (we’ve reached a leaf)

 Do nothing (if we’ve found a duplicate)
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Insert Functions 

 Two versions of insert

 Public version (one argument)

 Private version (two arguments, recursive)

 Public version immediately calls private one
void insert( const Comparable & x ) 

{ 

   // calls the overloaded private insert() 

   insert( x, root ); 

} 
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Starting at the Root of a (Sub)tree 

 First check if the “root” of the tree is NULL

 If it is, create and insert the new node

 Send left and right children to NULL

// overloaded function that allows recursive calls 

void insert( const Comparable & x, BinaryNode * & t ) 

{ 

if( t == NULL ) // no node here (make a leaf) 

t = new BinaryNode( x, NULL, NULL ); 

   // rest of function… 

} 

UMBC CMSC 341 Binary Search Trees 



Insert New Node (Left or Right) 

 If the “root” we have is not NULL

 Traverse down another level via its children

 Call insert() with new sub-root (recursive)

// value in CURRENT root 't' < new value 

else if( x < t->element ) { 

insert( x, t->left ); } 

// value in CURRENT root 't' > new value 

else if( t->element < x ) { 

   insert( x, t->right ); } 

else;  // Duplicate; do nothing 
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Full Insert() Function 

 Remember, this function is recursive!

// overloaded function that allows recursive calls 

void insert( const Comparable & x, BinaryNode * & t ) 

{ 

 if( t == NULL ) // no node here (make a new leaf) 

   t = new BinaryNode( x, NULL, NULL ); 

// value in CURRENT root 't' < new value 

 else if( x < t->element ) { insert( x, t->left ); } 

 // value in CURRENT root 't' > new value 

 else if( t->element < x ) { insert( x, t->right ); } 

 else;  // Duplicate; do nothing 

} 
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What’s Up With BinaryNode * & t? 

 The code “ * & t ” is a reference to a pointer

 Remember that passing a reference allows us

to change the value of a variable in a function

 And have that change “stick” outside the function

 When we pass a variable, we pass its value

 It just so happens that a pointer’s “value” is the

address of something else in memory
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Find Minimum 

Comparable findMin( ) 



Finding the Minimum 

 What do we do?

 Go all the way down to the left

Comparable findMin(BinaryNode *t ) 
{ 
   // empty tree 
   if (t == NULL) { return NULL; } 

   // no further nodes to the left 
  if (t->left == NULL) { 

 return node->value;   } 
else { 

 return findMin(t->left);   } 
} 
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Find Maximum 

Comparable findMax( ) 



Finding the Maximum 

 What do we do?

 Go all the way down to the right

Comparable findMax(BinaryNode *t ) 
{ 
   // empty tree 
   if (t == NULL) { return NULL; } 

   // no further nodes to the right 
  if (t->right == NULL) { 

 return node->value;   } 
else { 

 return findMin(t->right);   } 
} 
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Recursive Finding of Min/Max 

 Just like insert() and other functions,

findMin() and findMax() have 2 versions

 Public (no arguments):

 Comparable findMin( );

 Comparable findMax( );

 Private (one argument):

 Comparable findMax (BinaryNode *t);

 Comparable findMax (BinaryNode *t);

UMBC CMSC 341 Binary Search Trees 



Delete the Entire Tree 

void makeEmpty ( ) 



Memory Management 

 Remember, we don’t want to lose any

memory by freeing things out of order!

 Nodes to be carefully deleted

 BST nodes are only deleted when

 A single node is removed

 We are finished with the entire tree

Call the destructor
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Destructor 

 The destructor for the tree simply calls the
makeEmpty() function

// destructor for the tree 

~BinarySearchTree( ) 

{ 

   // we call a separate function 

 // so that we can use recursion 

makeEmpty( root ); 

} 
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Make Empty 

 A recursive call will make sure we hang onto

each node until its children are deleted

void makeEmpty( BinaryNode * & t ) 
{ 

if( t != NULL ) 
{ 

 // delete both children, then t 
 makeEmpty( t->left ); 
 makeEmpty( t->right ); 
 delete t; 
 // set t to NULL after deletion 
 t = NULL; 

} 
} 
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Find a Specific Value 

boolean contains( x ) 



Finding a Node 

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains( const Comparable & x ) const  { 

 return contains( x, root ); } 

bool contains( const Comparable & x, BinaryNode *t ) const 

{ 

 if( t == NULL ) { return false; } 

 // our value is lower than the current node's 

 else if( x < t->element ) { return contains( x, t->left ); } 

 // our value is higher than the current node's 

 else if( t->element < x ) { return contains( x, t->right );} 

 else { return true; }   // Match 

 } 
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Finding a Node 

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains( const Comparable & x ) const  { 

 return contains( x, root ); } 

bool contains( const Comparable & x, BinaryNode *t ) const 

{ 

 if( t == NULL ) { return false; } 

// our value is lower than the current node's 

else if( x < t->element ) { return contains( x, t->left ); }

 // our value is higher than the current node's 

 else if( t->element < x ) { return contains( x, t->right );} 

 else { return true; }   // Match 

 } 
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We have to have a defined 
overloaded comparison 
operator for this to work! 

(Both of the else if statements 
use < so we only need to write one) 



Removing a Node 

void remove( x ) 



Complicated Removal 

 Similar to a linked list, removal is often much

more complicated than insertion or complete

deletion

 We must first traverse the tree to find the

target we want to remove
 If we “disconnect” a link, we need to reestablish

 Possible scenarios
 No children (leaf)

 One child

 Two children
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Removing A Node – Example 1 

 Remove 4

 Any issues?
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Removing A Node – Example 2 

 Remove 6

 Any issues?
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Removing A Node – Example 3 

 Remove 8

 Any issues?
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Removing a Node – No Children 

 Simplest scenario for removal

 No children to worry about managing

 Reminder: nodes with no children are leaves

 We still have to find the target node first

 To remove a node with no children, we need

to do the following:

 Cut the link from the parent node

 Free the memory
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Removing a Node – One Child 

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to

do the following:
 Connect node’s parent to its child (custody)

 Free the memory
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Example Removal – One Child 

 Remove “18” from this BST:

 Grandparent takes custody
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Source: http://www.algolist.net/Data_structures/Binary_search_tree/Removal 



Code for Removal 

void remove( const Comparable & x, BinaryNode * & t ) 

{ 

// code to handle two children prior to this 

else 

{ 

// "hold" the position of node we'll delete 

BinaryNode *oldNode = t; 

// ternary operator 

t = ( t->left != NULL ) ? t->left : t->right; 

delete oldNode; 

   } 

} 
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Ternary Operator – Removal Code 

 The ternary operator code for removal
// ternary operator 

t = ( t->left != NULL ) ? t->left : t->right; 

 Can also be expressed as
// if the left child isn't NULL 

if ( t->left != NULL) { 

 t = t->left;      // replace t with left child 

} else { 

 t = t->right;     // else replace with right child 

} 
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Actually the same 
code works for one or 
zero children! Why? 



Removing a Node – One Child 

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to

do the following:
 Connect node’s parent to its child (custody)

 Free the memory
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Removing a Node – Two Children 

 Most difficult scenario for removal
 Everyone in the subtree will be affected

 Instead of completely deleting the node, we

will replace its value with another node’s
 The smallest value in the right subtree
 Use findMin() to locate this value

 Then delete the node whose value we moved
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Removing a Node – Two Children 

UMBC CMSC 341 Binary Search Trees 

Remove node z

We find z’s successor y,which lies in z’s right subtree 
and has no left child. We want to splice y out of its 
current location and have it replace z in the tree. If y is 
z’s right child then we replace z by y, leaving y’s right 
child alone.
Otherwise, y lies within z’s right subtree but is not z’s 
right child. In this case, we first replace y by its own 
right child, and then we replace z by y.



Remove Function 
void remove( const Comparable & x, BinaryNode * & t ) 

{ 

if( t == NULL ) { return; }  // item not found; do nothing 

// continue to traverse until we find the element 

   if( x < t->element ) { remove( x, t->left ); } 

else if( t->element < x ) { remove( x, t->right ); } 

else if( t->left != NULL && t->right != NULL ) // two children 

{ 

 // find right’s lowest value 

 t->element = findMin( t->right )->element; 

 // now delete that found value 

 remove( t->element, t->right );  

} 

else // zero or one child 

{ 

 BinaryNode *oldNode = t; 

 // ternary operator 

 t = ( t->left != NULL ) ? t->left : t->right; 

   delete oldNode; 

} 

} UMBC CMSC 341 Binary Search Trees 



Printing a Tree 

void printTree( ) 



Printing a Tree 

 Printing is simple – only question is which

order we want to traverse the tree in?

// ostream &out is the stream we want to print to 

// (it maybe cout, it may be a file – our choice) 

void printTree( BinaryNode *t, ostream & out ) const 

{ 

 // if the node isn't null 

 if( t != NULL ) 

 { 

   // print an in-order traversal 

   printTree( t->left, out ); 

   out << t->element << endl; 

   printTree( t->right, out ); 

 } 

} 
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Performance 

Run Time of BST Operations 



Big O of BST Operations 

Operation Big O 

contains( x ) O(log n) 

insert( x ) O(log n) 

remove( x ) O(log n) 

findMin/findMax( x ) O(log n) 

isEmpty( ) O(1) 

printTree( ) O(n) 
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