
CMSC 341

B-Trees

Based on slides from previous iterations of this course

Today’s Topics

 Exam Overview
 B-Trees

 M-Way Trees

 B-Tree Operations

 Searching

UMBC CMSC 341 B-Trees 2

Introduction to B-Trees

3

An Alternative to BSTs

 Up until now we assumed that each node

in a BST stored the data

 What about having the data stored only in the

leaves of the tree?

 The internal nodes simply guide our search to

the leaf, which contains the data we want

 (We’ll restrict this discussion of such trees to

those in which all leaves are at the same

level)

UMBC CMSC 341 B-Trees 4

UMBC CMSC 341 B-Trees 5

20

12 40

17 8 33 45

9

10

12

15

1

2

5

7

18

19

33

37
40

41

27

29

20

45

Figure 1 - A BST with data stored in the leaves

Properties

 Store data only at leaves; all leaves at same

level

 Interior and exterior nodes have different structure

 Interior nodes store one key and two subtree pointers

 All search paths have

same length: log n

(assuming one

element per leaf)

 Can store multiple data

elements in a leaf

UMBC CMSC 341 B-Trees 6

M-Way Trees

 A generalization of the previous BST model

 Each interior node has M subtrees pointers

and M-1 keys

 e.g., “2-way tree” or “M-way tree of order 2”

 As M increases, height decreases: logM n

(assuming one element per leaf)

 A perfect M-way tree of height h has Mh

leaves

UMBC CMSC 341 B-Trees 7

B-Trees

 A B-Tree is an M-Way Tree that satisfies two

important properties:

1. It is perfectly balanced

(All leaves are at the same height)

2. Every node is at least half full (>= M values)

(Possible exception for the root)

UMBC CMSC 341 B-Trees 8

A B-Tree of Order 3

 B-Tree of order 3

 M = 3 and height = 2

 Tree can support 9 leaves (but it has only 8)

UMBC CMSC 341 B-Trees 9

Searching in a B-Tree

 Different from standard BST search
 Search always terminates at a leaf node

 May scan more than one element at a leaf

 May scan more than one key at an interior node

 Trade-offs
 Tree height decreases as M increases

 Computation at each node during search

increases as M increases

UMBC CMSC 341 B-Trees 10

Searching in a B-Tree: Code
Search (MWayNode v, DataType element)

{

 if (v == NULL) { return failure; }

 if (v is a leaf) {

// search the list of values looking for element

// if found, return success

// otherwise, return failure

 }

 else { // if v is an interior node

// search the keys to find subtree element is in

// recursively search the subtree

 }

}

UMBC CMSC 341 B-Trees 11

UMBC CMSC 341 B-Trees 12

10

11

13

14

16

1

2

9

18
28

30

32

35

38

23

24

25

39

44

18 32

10 13 22 28 39

Everything in this

subtree is smaller

than this key

In any interior node, find the first key > search item, and traverse the link to the left of that key. Search for any

item >= the last key in the subtree pointed to by the rightmost link. Continue until search reaches a leaf.

UMBC CMSC 341 B-Trees 13

22 36 48

6 12 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

34

38

40

42

44

46

48

50

52

54

56

Figure 3 – searching in an B-Tree of order 4

Is It Worth It?

 Is it worthwhile to reduce the height of the

search tree by letting M increase?

 Although the number of nodes visited

decreases, the amount of computation at

each node increases

 Where’s the payoff?

UMBC CMSC 341 B-Trees 14

An Example

 Consider storing 107 = 10,000,000 items in a

balanced BST or in an B-Tree of order 10

 The height of the BST will be log2(107) ≈ 24.

 The height of the B-Tree will be log10(107) = 7

(assuming that we store just 1 record per leaf)

 In the BST, just one comparison will be done

at each interior node

 In the B-Tree, 9 will be done (worst case)

UMBC CMSC 341 B-Trees 15

Why Use B-Trees?

 If it takes longer to descend the tree than it

does to do the extra computation

 This is exactly the situation when the nodes are

stored externally (e.g., on disk)

 Compared to disk access time, the time for extra

computation is insignificant

 We can reduce the number of accesses by

sizing the B-Tree to match the disk block and

record size

UMBC CMSC 341 B-Trees 16

A Generic M-Way Tree Node

public class MwayNode<Ktype, Dtype>

{

// code for public interface here

// constructors, accessors, mutators

private boolean isLeaf; // true if node is a leaf

private int m; // the “order” of the node

private int nKeys; // nr of actual keys used

private ArrayList<Ktype> keys; // array of keys(size = m - 1)

private MWayNode subtrees[]; // array of pts (size = m)

private int nElems; // nr poss. elements in leaf

private List<Dtype> data; // data storage if leaf

}

UMBC CMSC 341 B-Trees 17

M-Way Trees and B-Trees

18

Review: M-Way Trees

 Data is stored only at the leaves

 A leaf may have multiple elements of data

 Interior nodes are used for “navigation”

 Locating a value

 But do not store any

information themselves

 As M increases, the

height decreases

UMBC CMSC 341 B-Trees 19

B-Tree Definition

 A B-Tree of order M is an M-Way tree with the

following constraints

 The root is either a leaf or has between 2 and M subtrees

 All interior node (except maybe the root) have between

M / 2 and M subtrees

 Each interior node is at least “half full”

 All leaves are at the same level

 A leaf stores between L / 2 and L data elements

 Except when the tree has fewer than L/2 elements

 L is a fixed constant >= 1

UMBC CMSC 341 B-Trees 20

B-Tree Example

 For a B-Tree with M = 4 and L = 3

 The root node can have between 2 and 4

subtrees

 Each interior node can have between

 2 and 4 subtrees  M / 2 = 2

 Up to 3 keys  M – 1 = 3

 Each exterior node (leaf) can hold between

 2 and 3 data elements  L / 2 = 2

UMBC CMSC 341 B-Trees 21

B-Tree Example

UMBC CMSC 341 B-Trees 22

Designing a B-Tree

23

Why Use B-Trees?

 B-trees are often used when there is too

much data to fit in memory

 Each node/leaf access costs one disk access

 When choosing M and L, keep in mind

 The size of the data stored in the leaves

 The size of the keys

 Pointers stored in the interior nodes

 The size of a disk block

UMBC CMSC 341 B-Trees 24

Example: B-Tree for Students Records

 B-Tree stores student records:

 Name, address, other data, etc.

 Total size of records is 1024 bytes

 Assume that the key to each student record

is 8 bytes long (SSN)

 Assume that a pointer (really a disk block

number) requires 4 bytes

 Assume that our disk block is 4096 bytes

UMBC CMSC 341 B-Trees 25

Example B-Tree: Calculating L

 L is the number of data records that can be

stored in each leaf

 Since we want to do just one disk access per

leaf, this should be the same as the number

of data records per disk block

 Since a disk block is 4096 and a data record

is 1024, we choose 4 data records per leaf

 L =  4096 / 1024 

UMBC CMSC 341 B-Trees 26

Example B-Tree: Calculating M

 To keep the tree flat and wide, we want to

maximize the value of M

 Also want just one disk access per interior node

 Use the following relationship:

 4(M) + 8(M – 1) <= 4096

 So 342 is the largest possible M that makes

the tree as shallow as possible

UMBC CMSC 341 B-Trees 27

Example B-Tree: Performance

 With M = 342 the height of our tree for N

students will be log342 N / L 

 For example, with N = 100,000 the height of

the tree with M = 342 would be no more than

2, because log342 100000 / 4  = 2

 So any record can be found in 3 disk accesses

 If the root is stored in memory, then only 2 disk

accesses are needed

UMBC CMSC 341 B-Trees 28

B-Tree Operations

Insertion

29

Inserting Into a B-Tree

 Search to find the leaf into which the new

value (X) should be inserted

 If the leaf has room (fewer than L elements),

insert X and write the leaf back to the disk

 If the leaf is full, split it into two leaves, each

containing half of the elements

 Insert X into the appropriate new leaf

UMBC CMSC 341 B-Trees 30

Inserting Into a B-Tree

 If a leaf has been split, we need to update the

keys in the parent interior

 To choose a new key for the parent interior

node, there are a variety of methods

 One is to use the median data value as the key

 If the parent node is already full, split it in the

same manner; splits propagate up to the root

 This is how the tree grows in height

UMBC CMSC 341 B-Trees 31

Insertion Example

 Insert 33, 35, and 21 into the tree below

UMBC CMSC 341 B-Trees 32

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

34

38

40

42

44

46

48

50

52

54

56

directional guide

real data

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert

UMBC CMSC 341 B-Trees 33

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

34

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Insert value

UMBC CMSC 341 B-Trees 34

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert

UMBC CMSC 341 B-Trees 35

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Insert value – no room!

UMBC CMSC 341 B-Trees 36

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

35

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Find the median for the new key in the parent

UMBC CMSC 341 B-Trees 37

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

35

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Update the parent node

UMBC CMSC 341 B-Trees 37

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

35

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Split the leaf into two leaves

UMBC CMSC 341 B-Trees 38

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert

UMBC CMSC 341 B-Trees 39

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Insert value – no room!

UMBC CMSC 341 B-Trees 40

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

21

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 And no room to add directly to the parent node!

UMBC CMSC 341 B-Trees 41

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

21

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Split the root as well

 But now the parent of these needs to be split

UMBC CMSC 341 B-Trees 42

6 14 20

2

4

6

8

10

14

16

18

19

20

21

22 38 48

6 14 18

2

4

6

8

10

14

16

18

19

20

21

Original Node

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Keep splitting up the tree as needed

UMBC CMSC 341 B-Trees 43

38

42

38

40

42

44

46

54

48

50

52

54

56

26 32 34

22

24

26

28

30

32

33

34

35

6 14

2

4

6

8

10

14

16

20

18

19

20

21

14 22 48

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Keep splitting up the tree as needed

UMBC CMSC 341 B-Trees 44

38

42

38

40

42

44

46

54

48

50

52

54

56

26 32 34

22

24

26

28

30

32

33

34

35

14 22 48

6 14

2

4

6

8

10

14

16

20

18

19

20

21

B-Tree Operations

Deletion

45

B-Tree Deletion

 Find leaf containing element to be deleted

 If that leaf is still full enough (still has L / 2

elements after remove) write it back to disk

without that element

 And change the key in the ancestor if necessary

 If leaf is now too empty (has less than L / 2

elements after remove), take an element

from a neighbor

UMBC CMSC 341 B-Trees 46

B-Tree Deletion

 When “taking” an element from a neighbor

 If neighbor would be too empty, combine two

leaves into one

 This combining requires updating the parent

which may now have too few subtrees

 If necessary, continue the combining up the tree

 Does it matter which neighbor we borrow

from?

UMBC CMSC 341 B-Trees 47

Other Implementations of B-Trees

48

Interior Nodes Store Data

 There are often multiple ways to implement a

given data structure

 B-Trees can also be implemented where the

interior nodes store data as well

 The leaves can store much more, however

UMBC CMSC 341 B-Trees 49

Effects on Data in Interior Nodes

 What kind of effect would this have on

performance and implementation?

 Does it change the way that insert works?

 What about deletion? Is it simpler or does this

change make it more complicated?

 Why would you choose one implementation

over another?

UMBC CMSC 341 B-Trees 50

Announcements

 Homework 4

 Due Thursday, October 26th at 8:59:59 PM

 Project 3
 Due Tuesday, October 31st at 8:59:59 PM

 Next Time:

 Heaps

UMBC CMSC 341 B-Trees 51

