CMSC 341 B-Trees

Based on slides from previous iterations of this course

Today's Topics

- Exam Overview
- B-Trees
 - M-Way Trees
- B-Tree Operations
 - Searching

Introduction to B-Trees

An Alternative to BSTs

- Up until now we assumed that each node in a BST stored the data
- What about having the data stored only in the leaves of the tree?
- The internal nodes simply guide our search to the leaf, which contains the data we want
- (We'll restrict this discussion of such trees to those in which all leaves are at the same level)

Figure 1 - A BST with data stored in the leaves

Properties

- Store data only at leaves; all leaves at same level
 - Interior and exterior nodes have different structure
 - Interior nodes store one key and two subtree pointers
 - All search paths have same length: [log n] (assuming one element per leaf)
 - Can store multiple data elements in a leaf

M-Way Trees

- A generalization of the previous BST model
 Each interior node has M subtrees pointers and M-1 keys
 - □ *e.g.*, "2-way tree" or "M-way tree of order 2"
- As M increases, height decreases: log_M n
 (assuming one element per leaf)
- A perfect M-way tree of height h has M^h leaves

B-Trees

- A B-Tree is an M-Way Tree that satisfies two important properties:
- It is perfectly balanced (All leaves are at the same height)
 Every node is at least half full (>= M values) (Possible exception for the root)

A B-Tree of Order 3

Searching in a B-Tree

- Different from standard BST search
 - Search always terminates at a leaf node
 - May scan more than one element at a leaf
 - May scan more than one key at an interior node

Trade-offs

- Tree height decreases as M increases
- Computation at each node during search increases as M increases

```
Searching in a B-Tree: Code
Search (MWayNode v, DataType element)
Ł
   if (v == NULL) { return failure; }
   if (v is a leaf) {
      // search the list of values looking for element
      // if found, return success
      // otherwise, return failure
   }
   else { // if v is an interior node
      // search the keys to find subtree element is in
      // recursively search the subtree
   }
```


In any interior node, find the *first* key > search item, and traverse the link to the left of that key. Search for any item \geq the last key in the subtree pointed to by the rightmost link. Continue until search reaches a leaf.

Figure 3 – searching in an B-Tree of order 4

Is It Worth It?

- Is it worthwhile to reduce the height of the search tree by letting M increase?
- Although the number of nodes visited decreases, the amount of computation at each node increases

Where's the payoff?

An Example

- Consider storing 10⁷ = 10,000,000 items in a balanced BST or in an B-Tree of order 10
- The height of the BST will be $\log_2(10^7) \approx 24$.
- The height of the B-Tree will be log₁₀(10⁷) = 7 (assuming that we store just 1 record per leaf)
- In the BST, just one comparison will be done at each interior node
- In the B-Tree, 9 will be done (worst case)

Why Use B-Trees?

- If it takes longer to descend the tree than it does to do the extra computation
 - This is exactly the situation when the nodes are stored externally (*e.g.*, on disk)
 - Compared to disk access time, the time for extra computation is insignificant
- We can reduce the number of accesses by sizing the B-Tree to match the disk block and record size

A Generic M-Way Tree Node

public class MwayNode<Ktype, Dtype>

// code for public interface here

// constructors, accessors, mutators

private boolean isLeaf;

private int m;

{

}

private int nKeys;

private ArrayList<Ktype> keys;

private MWayNode subtrees[];

private int nElems;

private List<Dtype> data;

// true if node is a leaf // the "order" of the node // nr of actual keys used // array of keys(size = m - 1) // array of pts (size = m) // nr poss. elements in leaf // data storage if leaf

M-Way Trees and B-Trees

Review: M-Way Trees

- Data is stored only at the leaves
 - A leaf may have multiple elements of data
- Interior nodes are used for "navigation"
 - Locating a value
 - But do not store any information themselves
- As M increases, the height decreases

B-Tree Definition

- A B-Tree of order M is an M-Way tree with the following constraints
 - □ The root is either a leaf or has between 2 and M subtrees
 - All interior node (except maybe the root) have between
 M / 2 and M subtrees
 - Each interior node is at least "half full"
 - All leaves are at the same level
 - A leaf stores between $\lceil L / 2 \rceil$ and L data elements
 - Except when the tree has fewer than L/2 elements
 - L is a fixed constant >= 1

B-Tree Example

- For a B-Tree with M = 4 and L = 3
- The root node can have between 2 and 4 subtrees
- Each interior node can have between
 - □ 2 and 4 subtrees \rightarrow $\lceil M / 2 \rceil = 2$
 - □ Up to 3 keys \rightarrow M 1 = 3
- Each exterior node (leaf) can hold between
 - □ 2 and 3 data elements $\rightarrow [L/2] = 2$

B-Tree Example

Designing a B-Tree

Why Use B-Trees?

- B-trees are often used when there is too much data to fit in memory
- Each node/leaf access costs one disk access

- When choosing M and L, keep in mind
 - The size of the data stored in the leaves
 - The size of the keys
 - Pointers stored in the interior nodes
 - The size of a disk block

Example: B-Tree for Students Records

- B-Tree stores student records:
 - Name, address, other data, etc.
- Total size of records is 1024 bytes
- Assume that the key to each student record is 8 bytes long (SSN)
- Assume that a pointer (really a disk block number) requires 4 bytes
- Assume that our disk block is 4096 bytes

Example B-Tree: Calculating L

- L is the number of data records that can be stored in each leaf
- Since we want to do just one disk access per leaf, this should be the same as the number of data records per disk block
- Since a disk block is 4096 and a data record is 1024, we choose 4 data records per leaf
 L = 4096 / 1024

Example B-Tree: Calculating M

- To keep the tree flat and wide, we want to maximize the value of M
 - Also want just one disk access per interior node
- Use the following relationship:

$$\square$$
 4(M) + 8(M - 1) <= 4096

 So 342 is the largest possible M that makes the tree as shallow as possible

Example B-Tree: Performance

- With M = 342 the height of our tree for N students will be $\lceil \log_{342} \lceil N / L \rceil \rceil$
- For example, with N = 100,000 the height of the tree with M = 342 would be no more than 2, because \[log_{342} \[100000 / 4 \] \] = 2
- So any record can be found in 3 disk accesses
 If the root is stored in memory, then only 2 disk accesses are needed

B-Tree Operations Insertion Inserting Into a B-Tree

- Search to find the leaf into which the new value (X) should be inserted
- If the leaf has room (fewer than L elements), insert X and write the leaf back to the disk

- If the leaf is full, split it into two leaves, each containing half of the elements
 - Insert X into the appropriate new leaf

Inserting Into a B-Tree

- If a leaf has been split, we need to update the keys in the parent interior
- To choose a new key for the parent interior node, there are a variety of methods
 One is to use the median data value as the key
- If the parent node is already full, split it in the same manner; splits propagate up to the root
 This is how the tree grows in height
 - UMBC CMSC 341 B-Trees

Insert 33, 35, and 21 into the tree below

Insert <u>33</u>, 35, and 21 into the tree below

Traverse to find place to insert

Insert <u>33</u>, 35, and 21 into the tree below

Insert value

Insert 33, <u>35</u>, and 21 into the tree below

Traverse to find place to insert

Insert 33, <u>35</u>, and 21 into the tree below

Insert value – no room!

Insert 33, <u>35</u>, and 21 into the tree below

□ Find the median for the new key in the parent

Insert 33, <u>35</u>, and 21 into the tree below

Update the parent node

Insert 33, <u>35</u>, and 21 into the tree below

Split the leaf into two leaves

Insert 33, 35, and <u>21</u> into the tree below

Traverse to find place to insert

Insert 33, 35, and <u>21</u> into the tree below

Insert value – no room!

Insert 33, 35, and <u>21</u> into the tree below

And no room to add directly to the parent node!

Insert 33, 35, and <u>21</u> into the tree below

- Split the root as well
- But now the parent of these needs to be split

Insert 33, 35, and <u>21</u> into the tree below

Keep splitting up the tree as needed

Insert 33, 35, and <u>21</u> into the tree below

Keep splitting up the tree as needed

B-Tree Operations Deletion

B-Tree Deletion

Find leaf containing element to be deleted

- If that leaf is still full enough (still has [L / 2] elements after remove) write it back to disk without that element
 - And change the key in the ancestor if necessary
- If leaf is now too empty (has less than [L / 2] elements after remove), take an element from a neighbor

B-Tree Deletion

- When "taking" an element from a neighbor
- If neighbor would be too empty, combine two leaves into one
 - This combining requires updating the parent which may now have too few subtrees
 - □ If necessary, continue the combining up the tree
- Does it matter which neighbor we borrow from?

Other Implementations of B-Trees

Interior Nodes Store Data

- There are often multiple ways to implement a given data structure
- B-Trees can also be implemented where the interior nodes store data as well
 - □ The leaves can store much more, however

Effects on Data in Interior Nodes

- What kind of effect would this have on performance and implementation?
 - Does it change the way that insert works?
 - What about deletion? Is it simpler or does this change make it more complicated?
- Why would you choose one implementation over another?

Announcements

- Homework 4
 - Due Thursday, October 26th at 8:59:59 PM
- Project 3
 - Due Tuesday, October 31st at 8:59:59 PM
- Next Time:Heaps