
CMSC 341 

B-Trees

Based on slides from previous iterations of this course 



Today’s Topics 

 Exam Overview
 B-Trees

 M-Way Trees

 B-Tree Operations

 Searching 
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Introduction to B-Trees 
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An Alternative to BSTs 

 Up until now we assumed that each node

in a BST stored the data

 What about having the data stored only in the

leaves of the tree?

 The internal nodes simply guide our search to

the leaf, which contains the data we want

 (We’ll restrict this discussion of such trees to

those in which all leaves are at the same

level)
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Figure 1 - A BST with data stored in the leaves 



Properties 

 Store data only at leaves; all leaves at same

level

 Interior and exterior nodes have different structure

 Interior nodes store one key and two subtree pointers

 All search paths have

same length: log n

(assuming one

element per leaf)

 Can store multiple data

elements in a leaf
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M-Way Trees

 A generalization of the previous BST model

 Each interior node has M subtrees pointers

and M-1 keys

 e.g., “2-way tree” or “M-way tree of order 2”

 As M increases, height decreases: logM n

(assuming one element per leaf) 

 A perfect M-way tree of height h has Mh

leaves
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B-Trees

 A B-Tree is an M-Way Tree that satisfies two

important properties:

1. It is perfectly balanced

(All leaves are at the same height) 

2. Every node is at least half full (>= M values)

(Possible exception for the root) 
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A B-Tree of Order 3 

 B-Tree of order 3

 M = 3 and height = 2

 Tree can support 9 leaves (but it has only 8)
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Searching in a B-Tree 

 Different from standard BST search
 Search always terminates at a leaf node

 May scan more than one element at a leaf

 May scan more than one key at an interior node

 Trade-offs
 Tree height decreases as M increases

 Computation at each node during search

increases as M increases
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Searching in a B-Tree: Code 
Search (MWayNode v, DataType element) 

{ 

   if (v == NULL) { return failure; } 

   if (v is a leaf) { 

// search the list of values looking for element 

// if found,  return success 

// otherwise, return failure 

   } 

   else {   // if v is an interior node 

// search the keys to find subtree element is in 

// recursively search the subtree 

   } 

} 
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Figure 3 – searching in an B-Tree of order 4 



Is It Worth It? 

 Is it worthwhile to reduce the height of the

search tree by letting M increase?

 Although the number of nodes visited

decreases, the amount of computation at

each node increases

 Where’s the payoff?
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An Example 

 Consider storing 107 = 10,000,000 items in a

balanced BST or in an B-Tree of order 10

 The height of the BST will be log2(107) ≈ 24.

 The height of the B-Tree will be log10(107) = 7

(assuming that we store just 1 record per leaf)

 In the BST, just one comparison will be done

at each interior node

 In the B-Tree, 9 will be done (worst case)
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Why Use B-Trees? 

 If it takes longer to descend the tree than it

does to do the extra computation

 This is exactly the situation when the nodes are

stored externally (e.g., on disk)

 Compared to disk access time, the time for extra

computation is insignificant

 We can reduce the number of accesses by

sizing the B-Tree to match the disk block and

record size
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A Generic M-Way Tree Node 

public class MwayNode<Ktype, Dtype> 

{ 

// code for public interface here  

// constructors, accessors, mutators 

private boolean isLeaf;  // true if node is a leaf 

private int m;  // the “order” of the node 

private int nKeys;   // nr of actual keys used  

private ArrayList<Ktype> keys;   // array of keys(size = m - 1) 

private MWayNode subtrees[ ];    // array of pts (size = m) 

private int nElems;   // nr poss. elements in leaf 

private List<Dtype> data;   // data storage if leaf 

} 
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M-Way Trees and B-Trees
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Review: M-Way Trees 

 Data is stored only at the leaves

 A leaf may have multiple elements of data

 Interior nodes are used for “navigation”

 Locating a value

 But do not store any

information themselves

 As M increases, the

height decreases
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B-Tree Definition

 A B-Tree of order M is an M-Way tree with the

following constraints

 The root is either a leaf or has between 2 and M subtrees

 All interior node (except maybe the root) have between

M / 2 and M subtrees

 Each interior node is at least “half full”

 All leaves are at the same level

 A leaf stores between  L / 2 and L data elements

 Except when the tree has fewer than L/2 elements

 L is a fixed constant >= 1
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B-Tree Example

 For a B-Tree with M = 4 and L = 3

 The root node can have between 2 and 4

subtrees

 Each interior node can have between

 2 and 4 subtrees  M / 2 = 2

 Up to 3 keys  M – 1 = 3

 Each exterior node (leaf) can hold between

 2 and 3 data elements  L / 2 = 2
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B-Tree Example
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Designing a B-Tree 
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Why Use B-Trees? 

 B-trees are often used when there is too

much data to fit in memory

 Each node/leaf access costs one disk access

 When choosing M and L, keep in mind

 The size of the data stored in the leaves

 The size of the keys

 Pointers stored in the interior nodes

 The size of a disk block
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Example: B-Tree for Students Records 

 B-Tree stores student records:

 Name, address, other data, etc.

 Total size of records is 1024 bytes

 Assume that the key to each student record

is 8 bytes long (SSN)

 Assume that a pointer (really a disk block

number) requires 4 bytes

 Assume that our disk block is 4096 bytes

UMBC CMSC 341 B-Trees 25 



Example B-Tree: Calculating L 

 L is the number of data records that can be

stored in  each leaf

 Since we want to do just one disk access per

leaf, this should be the same as the number

of data records per disk block

 Since a disk block is 4096 and a data record

is 1024,  we choose 4 data records per leaf

 L =  4096 / 1024 
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Example B-Tree: Calculating M 

 To keep the tree flat and wide, we want to

maximize the value of M

 Also want just one disk access per interior node

 Use the following relationship:

 4(M) + 8(M – 1) <= 4096

 So 342 is the largest possible M that makes

the  tree as shallow as possible
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Example B-Tree: Performance 

 With M = 342 the height of our tree for N

students will be log342 N / L  

 For example, with N = 100,000 the height of

the tree with  M = 342 would be no more than

2, because log342 100000 / 4  = 2 

 So any record can be found in 3 disk accesses

 If the root is stored in memory, then only 2 disk

accesses are needed
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B-Tree Operations

Insertion 
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Inserting Into a B-Tree 

 Search to find the leaf into which the new

value (X) should be inserted

 If the leaf has room (fewer than L elements),

insert X and write the  leaf back to the disk

 If the leaf is full, split it into two leaves, each

containing half of the elements

 Insert X into the appropriate new leaf
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Inserting Into a B-Tree 

 If a leaf has been split, we need to update the

keys in the parent interior

 To choose a new key for the parent interior

node, there are a variety of methods

 One is to use the median data value as the key

 If the parent node is already full, split it in the

same manner; splits propagate up to the root

 This is how the tree grows in height

UMBC CMSC 341 B-Trees 31 



Insertion Example 

 Insert 33, 35, and 21 into the tree below
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Insert value
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Insert value – no room!
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Find the median for the new key in the parent
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Update the parent node
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Split the leaf into two leaves
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Insert value – no room!
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 And no room to add directly to the parent node!
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Split the root as well

 But now the parent of these needs to be split
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Keep splitting up the tree as needed
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Insertion Example 

 Insert 33, 35, and 21 into the tree below

 Keep splitting up the tree as needed
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B-Tree Operations

Deletion 
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B-Tree Deletion

 Find leaf containing element to be deleted

 If that leaf is still full enough (still has L / 2

elements after remove) write it back to disk

without that element

 And change the key in the ancestor if necessary

 If leaf is now too empty (has less than L / 2

elements after remove),  take an element

from a neighbor
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B-Tree Deletion

 When “taking” an element from a neighbor

 If neighbor would be too empty, combine two

leaves into one

 This combining requires updating the parent

which may now have too few subtrees

 If necessary, continue the combining up the tree

 Does it matter which neighbor we borrow

from?
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Other Implementations of B-Trees 
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Interior Nodes Store Data 

 There are often multiple ways to implement a

given data structure

 B-Trees can also be implemented where the

interior nodes store data as well

 The leaves can store much more, however
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Effects on Data in Interior Nodes 

 What kind of effect would this have on

performance and implementation?

 Does it change the way that insert works?

 What about deletion?  Is it simpler or does this

change make it more complicated?

 Why would you choose one implementation

over another?
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Announcements 

 Homework 4

 Due Thursday, October 26th at 8:59:59 PM

 Project 3
 Due Tuesday, October 31st at 8:59:59 PM

 Next Time:

 Heaps
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