
CMSC 341

B-Trees

Based on slides from previous iterations of this course

Today’s Topics

 Exam Overview
 B-Trees

 M-Way Trees

 B-Tree Operations

 Searching

UMBC CMSC 341 B-Trees 2

Introduction to B-Trees

3

An Alternative to BSTs

 Up until now we assumed that each node

in a BST stored the data

 What about having the data stored only in the

leaves of the tree?

 The internal nodes simply guide our search to

the leaf, which contains the data we want

 (We’ll restrict this discussion of such trees to

those in which all leaves are at the same

level)

UMBC CMSC 341 B-Trees 4

UMBC CMSC 341 B-Trees 5

20

12 40

17 8 33 45

9

10

12

15

1

2

5

7

18

19

33

37
40

41

27

29

20

45

Figure 1 - A BST with data stored in the leaves

Properties

 Store data only at leaves; all leaves at same

level

 Interior and exterior nodes have different structure

 Interior nodes store one key and two subtree pointers

 All search paths have

same length: log n

(assuming one

element per leaf)

 Can store multiple data

elements in a leaf

UMBC CMSC 341 B-Trees 6

M-Way Trees

 A generalization of the previous BST model

 Each interior node has M subtrees pointers

and M-1 keys

 e.g., “2-way tree” or “M-way tree of order 2”

 As M increases, height decreases: logM n

(assuming one element per leaf)

 A perfect M-way tree of height h has Mh

leaves

UMBC CMSC 341 B-Trees 7

B-Trees

 A B-Tree is an M-Way Tree that satisfies two

important properties:

1. It is perfectly balanced

(All leaves are at the same height)

2. Every node is at least half full (>= M values)

(Possible exception for the root)

UMBC CMSC 341 B-Trees 8

A B-Tree of Order 3

 B-Tree of order 3

 M = 3 and height = 2

 Tree can support 9 leaves (but it has only 8)

UMBC CMSC 341 B-Trees 9

Searching in a B-Tree

 Different from standard BST search
 Search always terminates at a leaf node

 May scan more than one element at a leaf

 May scan more than one key at an interior node

 Trade-offs
 Tree height decreases as M increases

 Computation at each node during search

increases as M increases

UMBC CMSC 341 B-Trees 10

Searching in a B-Tree: Code
Search (MWayNode v, DataType element)

{

 if (v == NULL) { return failure; }

 if (v is a leaf) {

// search the list of values looking for element

// if found, return success

// otherwise, return failure

 }

 else { // if v is an interior node

// search the keys to find subtree element is in

// recursively search the subtree

 }

}

UMBC CMSC 341 B-Trees 11

UMBC CMSC 341 B-Trees 12

10

11

13

14

16

1

2

9

18
28

30

32

35

38

23

24

25

39

44

18 32

10 13 22 28 39

Everything in this

subtree is smaller

than this key

In any interior node, find the first key > search item, and traverse the link to the left of that key. Search for any

item >= the last key in the subtree pointed to by the rightmost link. Continue until search reaches a leaf.

UMBC CMSC 341 B-Trees 13

22 36 48

6 12 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

34

38

40

42

44

46

48

50

52

54

56

Figure 3 – searching in an B-Tree of order 4

Is It Worth It?

 Is it worthwhile to reduce the height of the

search tree by letting M increase?

 Although the number of nodes visited

decreases, the amount of computation at

each node increases

 Where’s the payoff?

UMBC CMSC 341 B-Trees 14

An Example

 Consider storing 107 = 10,000,000 items in a

balanced BST or in an B-Tree of order 10

 The height of the BST will be log2(107) ≈ 24.

 The height of the B-Tree will be log10(107) = 7

(assuming that we store just 1 record per leaf)

 In the BST, just one comparison will be done

at each interior node

 In the B-Tree, 9 will be done (worst case)

UMBC CMSC 341 B-Trees 15

Why Use B-Trees?

 If it takes longer to descend the tree than it

does to do the extra computation

 This is exactly the situation when the nodes are

stored externally (e.g., on disk)

 Compared to disk access time, the time for extra

computation is insignificant

 We can reduce the number of accesses by

sizing the B-Tree to match the disk block and

record size

UMBC CMSC 341 B-Trees 16

A Generic M-Way Tree Node

public class MwayNode<Ktype, Dtype>

{

// code for public interface here

// constructors, accessors, mutators

private boolean isLeaf; // true if node is a leaf

private int m; // the “order” of the node

private int nKeys; // nr of actual keys used

private ArrayList<Ktype> keys; // array of keys(size = m - 1)

private MWayNode subtrees[]; // array of pts (size = m)

private int nElems; // nr poss. elements in leaf

private List<Dtype> data; // data storage if leaf

}

UMBC CMSC 341 B-Trees 17

M-Way Trees and B-Trees

18

Review: M-Way Trees

 Data is stored only at the leaves

 A leaf may have multiple elements of data

 Interior nodes are used for “navigation”

 Locating a value

 But do not store any

information themselves

 As M increases, the

height decreases

UMBC CMSC 341 B-Trees 19

B-Tree Definition

 A B-Tree of order M is an M-Way tree with the

following constraints

 The root is either a leaf or has between 2 and M subtrees

 All interior node (except maybe the root) have between

M / 2 and M subtrees

 Each interior node is at least “half full”

 All leaves are at the same level

 A leaf stores between L / 2 and L data elements

 Except when the tree has fewer than L/2 elements

 L is a fixed constant >= 1

UMBC CMSC 341 B-Trees 20

B-Tree Example

 For a B-Tree with M = 4 and L = 3

 The root node can have between 2 and 4

subtrees

 Each interior node can have between

 2 and 4 subtrees M / 2 = 2

 Up to 3 keys M – 1 = 3

 Each exterior node (leaf) can hold between

 2 and 3 data elements L / 2 = 2

UMBC CMSC 341 B-Trees 21

B-Tree Example

UMBC CMSC 341 B-Trees 22

Designing a B-Tree

23

Why Use B-Trees?

 B-trees are often used when there is too

much data to fit in memory

 Each node/leaf access costs one disk access

 When choosing M and L, keep in mind

 The size of the data stored in the leaves

 The size of the keys

 Pointers stored in the interior nodes

 The size of a disk block

UMBC CMSC 341 B-Trees 24

Example: B-Tree for Students Records

 B-Tree stores student records:

 Name, address, other data, etc.

 Total size of records is 1024 bytes

 Assume that the key to each student record

is 8 bytes long (SSN)

 Assume that a pointer (really a disk block

number) requires 4 bytes

 Assume that our disk block is 4096 bytes

UMBC CMSC 341 B-Trees 25

Example B-Tree: Calculating L

 L is the number of data records that can be

stored in each leaf

 Since we want to do just one disk access per

leaf, this should be the same as the number

of data records per disk block

 Since a disk block is 4096 and a data record

is 1024, we choose 4 data records per leaf

 L = 4096 / 1024

UMBC CMSC 341 B-Trees 26

Example B-Tree: Calculating M

 To keep the tree flat and wide, we want to

maximize the value of M

 Also want just one disk access per interior node

 Use the following relationship:

 4(M) + 8(M – 1) <= 4096

 So 342 is the largest possible M that makes

the tree as shallow as possible

UMBC CMSC 341 B-Trees 27

Example B-Tree: Performance

 With M = 342 the height of our tree for N

students will be log342 N / L

 For example, with N = 100,000 the height of

the tree with M = 342 would be no more than

2, because log342 100000 / 4 = 2

 So any record can be found in 3 disk accesses

 If the root is stored in memory, then only 2 disk

accesses are needed

UMBC CMSC 341 B-Trees 28

B-Tree Operations

Insertion

29

Inserting Into a B-Tree

 Search to find the leaf into which the new

value (X) should be inserted

 If the leaf has room (fewer than L elements),

insert X and write the leaf back to the disk

 If the leaf is full, split it into two leaves, each

containing half of the elements

 Insert X into the appropriate new leaf

UMBC CMSC 341 B-Trees 30

Inserting Into a B-Tree

 If a leaf has been split, we need to update the

keys in the parent interior

 To choose a new key for the parent interior

node, there are a variety of methods

 One is to use the median data value as the key

 If the parent node is already full, split it in the

same manner; splits propagate up to the root

 This is how the tree grows in height

UMBC CMSC 341 B-Trees 31

Insertion Example

 Insert 33, 35, and 21 into the tree below

UMBC CMSC 341 B-Trees 32

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

34

38

40

42

44

46

48

50

52

54

56

directional guide

real data

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert

UMBC CMSC 341 B-Trees 33

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

34

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Insert value

UMBC CMSC 341 B-Trees 34

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert

UMBC CMSC 341 B-Trees 35

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Insert value – no room!

UMBC CMSC 341 B-Trees 36

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

35

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Find the median for the new key in the parent

UMBC CMSC 341 B-Trees 37

22 38 48

6 14 18 26 32 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

35

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Update the parent node

UMBC CMSC 341 B-Trees 37

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

34

35

38

40

42

44

46

48

50

52

54

56

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Split the leaf into two leaves

UMBC CMSC 341 B-Trees 38

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Traverse to find place to insert

UMBC CMSC 341 B-Trees 39

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Insert value – no room!

UMBC CMSC 341 B-Trees 40

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

21

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 And no room to add directly to the parent node!

UMBC CMSC 341 B-Trees 41

22 38 48

6 14 18 26 32 34 42 54

2

4

6

8

10

14

16

18

19

20

21

22

24

26

28

30

32

33

38

40

42

44

46

48

50

52

54

56

34

35

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Split the root as well

 But now the parent of these needs to be split

UMBC CMSC 341 B-Trees 42

6 14 20

2

4

6

8

10

14

16

18

19

20

21

22 38 48

6 14 18

2

4

6

8

10

14

16

18

19

20

21

Original Node

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Keep splitting up the tree as needed

UMBC CMSC 341 B-Trees 43

38

42

38

40

42

44

46

54

48

50

52

54

56

26 32 34

22

24

26

28

30

32

33

34

35

6 14

2

4

6

8

10

14

16

20

18

19

20

21

14 22 48

Insertion Example

 Insert 33, 35, and 21 into the tree below

 Keep splitting up the tree as needed

UMBC CMSC 341 B-Trees 44

38

42

38

40

42

44

46

54

48

50

52

54

56

26 32 34

22

24

26

28

30

32

33

34

35

14 22 48

6 14

2

4

6

8

10

14

16

20

18

19

20

21

B-Tree Operations

Deletion

45

B-Tree Deletion

 Find leaf containing element to be deleted

 If that leaf is still full enough (still has L / 2

elements after remove) write it back to disk

without that element

 And change the key in the ancestor if necessary

 If leaf is now too empty (has less than L / 2

elements after remove), take an element

from a neighbor

UMBC CMSC 341 B-Trees 46

B-Tree Deletion

 When “taking” an element from a neighbor

 If neighbor would be too empty, combine two

leaves into one

 This combining requires updating the parent

which may now have too few subtrees

 If necessary, continue the combining up the tree

 Does it matter which neighbor we borrow

from?

UMBC CMSC 341 B-Trees 47

Other Implementations of B-Trees

48

Interior Nodes Store Data

 There are often multiple ways to implement a

given data structure

 B-Trees can also be implemented where the

interior nodes store data as well

 The leaves can store much more, however

UMBC CMSC 341 B-Trees 49

Effects on Data in Interior Nodes

 What kind of effect would this have on

performance and implementation?

 Does it change the way that insert works?

 What about deletion? Is it simpler or does this

change make it more complicated?

 Why would you choose one implementation

over another?

UMBC CMSC 341 B-Trees 50

Announcements

 Homework 4

 Due Thursday, October 26th at 8:59:59 PM

 Project 3
 Due Tuesday, October 31st at 8:59:59 PM

 Next Time:

 Heaps

UMBC CMSC 341 B-Trees 51

