CMSC 341
B-Trees

Based on slides from previous iterations of this course

Today’s Topics

Exam Overview

B-Trees
o M-Way Trees

B-Tree Operations
o Searching

UMBC CMSC 341 B-Trees

Introduction to B-Trees

An Alternative to BST's

Up until now we assumed that each node
In a BST stored the data

What about having the data stored only in the
leaves of the tree?

The Internal nodes simply guide our search to
the leaf, which contains the data we want

(We'll restrict this discussion of such trees to
those in which all leaves are at the same

level)

UMBC CMSC 341 B-Trees 4

12

P
<

~N N

Figure 1 - A BST with data stored in the leaves

20

12
15

18
19

UMBC CMSC 341 B-Trees

40

33
27 33
29 37
20

45

40
41

45

Properties

Store data only at leaves; all leaves at same
level

o Interior and exterior nodes have different structure

o Interior nodes store one key and two subtree pointers

o All search paths have |20
same length: [log n | ‘ 12/ \40 |
(assuming one / \ \
element per leaf) g 7 - >

o Can store multiple data
elements in a leaf

40 45

20 41

~1 h B

UMBC CMSC 341 B-Trees 6

M-Way Trees

A generalization of the previous BST model

o Each interior node has M subtrees pointers
and M-1 keys

0 e.g., ‘2-way tree” or “M-way tree of order 2°

As M increases, height decreases: | log,, n |
(assuming one element per leaf)

A perfect M-way tree of height h has M"
leaves

UMBC CMSC 341 B-Trees

B-Trees

A B-Tree i1s an M-Way Tree that satisfies two
Important properties:

It Is perfectly balanced
(All leaves are at the same height)

Every node is at least half full (>= M values)
(Possible exception for the root)

UMBC CMSC 341 B-Trees 8

‘ A B-Tree of Order 3

= B-Tree of order 3

2 M =3 and height = 2

h)

1

4

5
7

10
11

= Tree can su

A 12 20
15 18 26
27
21
15 18 30
12 16 19 24 34
42

oport 9 leaves (but it has only 8)

UMBC CMSC 341 B-Trees

9

Searching 1n a B-Tree

Different from standard BST search

o Search always terminates at a leaf node

o May scan more than one element at a leaf

o May scan more than one key at an interior node

Trade-offs

o Tree height decreases as M increases

o Computation at each node during search
Increases as M increases

UMBC CMSC 341 B-Trees

10

Searching in a B-Tree: Code

Search (MWayNode v, DataType element)

{
if (v == NULL) { return failure; }

if (v is a leaf) {
// search the list of values looking for element

// if found, return success
// otherwise, return failure

else { // if v is an interior node
// search the keys to find subtree element is in
// recursively search the subtree

UMBC CMSC 341 B-Trees 11

Everything in this
subtree is smaller

than key | 18 32
4
10 13 22 28 39
1 10 13 18 23 78 32 39
2 1 14 24 30 35 44
9 16 25 38

In any interior node, find the first key > search item, and traverse the link to the left of that key. Search for any
item >= the last key in the subtree pointed to by the rightmost link. Continue until search reaches a leaf.

UMBC CMSC 341 B-Trees 12

| 22| |36 || 48 |-
12 || 18 26 ||| 32 42 54
2| 6|14 |18]|22| |26] |32 38| |42 48| | 54
4|8 ||16| |19| |24] |28 |34 40| | 44 50| | 56
10 20 30 46 52

Figure 3 — searching in an B-Tree of order 4

UMBC CMSC 341 B-Trees

13

Is It Worth It?

Is it worthwhile to reduce the height of the
search tree by letting M increase?

Although the number of nodes visited
decreases, the amount of computation at
each node increases

Where's the payoff?

UMBC CMSC 341 B-Trees

14

An Example

Consider storing 107 = 10,000,000 items in a
balanced BST or in an B-Tree of order 10

The height of the BST will be log,(107) = 24.

The height of the B-Tree will be log,,(107) =7
(assuming that we store just 1 record per leaf)

In the BST, just one comparison will be done
at each interior node
In the B-Tree, 9 will be done (worst case)

UMBC CMSC 341 B-Trees 15

Why Use B-Trees?

If it takes longer to descend the tree than it
does to do the extra computation

o This is exactly the situation when the nodes are
stored externally (e.g., on disk)

o Compared to disk access time, the time for extra
computation is insignificant

We can reduce the number of accesses by
sizing the B-Tree to match the disk block and
record size

UMBC CMSC 341 B-Trees 16

A Generic M-Way Tree Node

public class MwayNode<Ktype, Dtype>
{

// code for public interface here

// constructors, accessors, mutators

private boolean isLeaf; // true if node is a leaf
private int m; // the “order” of the node
private int nKeys; // nr of actual keys used
private ArrayList<Ktype> keys; // array of keys(size = m - 1)
private MWayNode subtrees|[]; // array of pts (size = m)
private int nElems; // nr poss. elements in leaf
private List<Dtype> data; // data storage if leaf

UMBC CMSC 341 B-Trees 17

M-Way Trees and B-Trees

18

Review: M-Way Trees

Data Is stored only at the leaves
o A leaf may have multiple elements of data

Interior nodes are used for “navigation”
o Locating a value

| 20 | S

o But do not store any — \40
iInformation themselves / ‘ ‘
As M increases, the g 17 53

45

height decreases

~1 h B

20

UMBC CMSC 341 B-Trees

B-Tree Definition

A B-Tree of order M is an M-Way tree with the
following constraints
o The root Is either a leaf or has between 2 and M subtrees

o All interior node (except maybe the root) have between
[M/2]and M subtrees

Each interior node is at least “half full”
o All leaves are at the same level

o A leaf stores between | L/ 2]and L data elements
Except when the tree has fewer than L/2 elements
L is a fixed constant >= 1

UMBC CMSC 341 B-Trees 20

B-Tree Example

ForaB-TreewithM=4andL =3

The root node can have between 2 and 4
subtrees

Each interior node can have between

2 2 and 4 subtrees > [M /2]|=2

o Upto3keys>M-1=3

Each exterior node (leaf) can hold between
2 2 and 3 data elements > |[L/2]=2

UMBC CMSC 341 B-Trees

21

‘ B-Tree Example

1221 36[448]-
6 [j[12],[18], I,[26],32 42 54
216|114 118|122/ 126/ |32 38| [42 48| |54
41|8|16| [19][24] 28 |34 40| |44 50| |56
10 20 30 46 52

UMBC CMSC 341 B-Trees

22

Designing a B-Tree

23

Why Use B-Trees?

B-trees are often used when there iIs too
much data to fit in memory

Each node/leaf access costs one disk access

When choosing M and L, keep in mind
a The size of the data stored in the leaves
o The size of the keys
o Pointers stored in the interior nodes
o The size of a disk block

UMBC CMSC 341 B-Trees 24

Example: B-Tree for Students Records

B-Tree stores student records:
o Name, address, other data, etc.

Total size of records is 1024 bytes

Assume that the key to each student record
IS 8 bytes long (SSN)

Assume that a pointer (really a disk block
number) requires 4 bytes

Assume that our disk block is 4096 bytes

UMBC CMSC 341 B-Trees 25

Example B-Tree: Calculating L

L i1s the number of data records that can be
stored In each leaf

Since we want to do just one disk access per
leaf, this should be the same as the number
of data records per disk block

Since a disk block is 4096 and a data record
IS 1024, we choose 4 data records per leaf

o L=| 4096 /1024 |

UMBC CMSC 341 B-Trees 26

Example B-Tree: Calculating M

To keep the tree flat and wide, we want to
maximize the value of M

o Also want just one disk access per interior node

Use the following relationship:
a0 4(M) + 8(M — 1) <= 4096

So 342 is the largest possible M that makes
the tree as shallow as possible

UMBC CMSC 341 B-Trees 27

Example B-Tree: Performance

With M = 342 the height of our tree for N
students will be [109z, N/ L1 |

For example, with N = 100,000 the height of
the tree with M = 342 would be no more than
2, because [log,,, [100000/ 4] |= 2

So any record can be found in 3 disk accesses

o If the root is stored in memory, then only 2 disk
accesses are needed

UMBC CMSC 341 B-Trees 28

B-Tree Operations
Insertion

29

Inserting Into a B-Tree

Search to find the leaf into which the new
value (X) should be inserted

If the leaf has room (fewer than L elements),
Insert X and write the leaf back to the disk

If the leaf Is full, split it into two leaves, each
containing half of the elements

o Insert X into the appropriate new leaf

UMBC CMSC 341 B-Trees 30

Inserting Into a B-Tree

If a leaf has been split, we need to update the
keys In the parent interior

To choose a new key for the parent interior
node, there are a variety of methods

o One Is to use the median data value as the key

If the parent node Is already full, split it in the
same manner; splits propagate up to the root

o This is how the tree grows in height

UMBC CMSC 341 B-Trees 31

Insertion Example

Insert 33, 35, and 21 into the tree below

T~

-

22

/

38

48

/

directional guide

6 1| 14 |,| 18 26 || 32 42 (54)
p -
2| 16 |l14] 18] 22] 26| |32 38| | 42 48 \([54
41l8ll16] |19] (24| |28]]34 40| | 44 50 l| 56
10 20 30 46 52 p—
UMBC CMSC 341 B-Trees 32

Insertion Example

Insert 33, 35, and 21 into the tree below

o Traverse to find place to insert

(22)] 38| 48

~

N

UMBC CMSC 341 B-Trees

6 11l 14 || 18 26)((32) 42 54
—-—rf |
2|16 |14| [18]]22] [26f32 38| |42 48| | 54
4ll8l|l16] [19]]|24] |28 34 40| | 44 50| | 56
10 20 30|\ 46 52

33

Insertion Example

Insert 33, 35, and 21 into the tree below

o Insert value

UMBC CMSC 341 B-Trees

6 1| 14 |,| 18 (26 M 42 54
p -
2|16 |14] |18] |22 38| |42 48| |54
4118 l16] |19] |24 40| | 44 50| | 56
10 20 46 52

34

Insertion Example

Insert 33, 35, and 21 into the tree below

o Traverse to find place to insert

38 |{ 48

~

N

UMBC CMSC 341 B-Trees

6 42 54
2 38| |42 48| | 54
4 40| | 44 50| |56
46 52

35

Insertion Example

Insert 33, 35, and 21 into the tree below
o Insert value — no room!

UMBC CMSC 341 B-Trees

6 14 18 54
2 6|14 18 48 | | 54
4 8|16 19 50| | 56
10 20 52

36

Insertion Example

Insert 33, 35, and 21 into the tree below
o Find the median for the new key in the parent

IERE R
6 1| 14 |,| 18 26 || 32 42 54
2|16 |l14] 18] |22] 26|32 38| |42 48| |54
8 | |16| |19]|24| | 28| |33 40| | 44 50| |56

10 20 30 (34) 46 52
\g5

UMBC CMSC 341 B-Trees

Insertion Example

Insert 33, 35, and 21 into the tree below

o Update the parent node

UMBC CMSC 341 B-Trees

IERE R
6 1| 14 |,| 18 26 || 32 || 34 42 54
2|16 |l14] 18] |22] 26|32 38| |42 48| |54
4|8 |16] |19||24] 28] |33 40| | 44 50| |56
10 20 30 (34) 46 52

\g5

37

Insertion Example

Insert 33, 35, and 21 into the tree below
o Split the leaf into two leaves

UMBC CMSC 341 B-Trees

| 22|]38 | 48 |4
6 |(| 14| 18 26 |,| 32 |,| 34 42 54
2| 6| |14| 18] |22| |26 |32| |34| |38 |42 48| |54
4|8 ||16| |19| 24| (28| (33| |35| |40| |44 50| | 56
10 20 30 46 52

38

Insertion Example

Insert 33, 35, and 21 into the tree below

o Traverse to find place to insert

UMBC CMSC 341 B-Trees

N

(22) |38 | 48 |-

~/ \

32 | | 34 42 54
26| |32| |34 [38] |42 48| |54
28| 33| |35 [40| |44 50| |56
30 46 52

39

Insertion Example

Insert 33, 35, and 21 into the tree below

o Insert value — no room!

UMBC CMSC 341 B-Trees

NN

(22) 38 | 48 |-

- /4 \\

32 |.| 34 42 54
26| 32| |34 |38] |42 48| |54
28| (33| |35| |40] |44 50| |56
30 46 52

40

Insertion Example

Insert 33, 35, and 21 into the tree below
o And no room to add directly to the parent node!

| 22|]38 | 48 |4
26 |,| 32 |,| 34 42 54
2| 6| |14| 18] |22| |26 |32| |34| |38 |42 48| |54
4|8 ||16| |19| 24| (28| (33| |35| |40| |44 50| | 56
10 20 30 46 52
21

UMBC CMSC 341 B-Trees

Insertion Example

Insert 33, 35, and 21 into the tree below

o Split the root as well
o But now the parent of these needs to be split

22 | | 38 | | 48
Original Node \
6 14 |,| 18 §) 14 20
2 6| (14| |18 : 2 6 14 18| |20
4 8 ||16] |19 4 8 16 19| |21
10 20 10
21

UMBC CMSC 341 B-Trees

Insertion Example

Insert 33, 35, and 21 into the tree below

o Keep splitting up the tree as needed

38

UMBC CMSC 341 B-Trees

J1a|22]] J 48
14 20 26/,/32},/ 34 42 54
\ 4 VL \ 4 A\ 4 A 4 \ 4 VL A\ 4 v \ 4 V} \ 4 \ 4
2] (6] [14] [18] |20 22| [26] [32] [34] [38] [42 48 [54
418/ |16] |19 |21 24| |28 (33| [35| |40| 44 50| |56
10 30 46 52

43

Insertion Example

Insert 33, 35, and 21 into the tree below

o Keep splitting up the tree as needed

UMBC CMSC 341 B-Trees

54
56

44

B-Tree Operations
Deletion

45

B-Tree Deletion

Find leaf containing element to be deleted

If that leaf is still full enough (still has L/ 2]
elements after remove) write it back to disk

without that element
o And change the key in the ancestor if necessary

If leaf is now too empty (has less than[L /2]
elements after remove), take an element

from a neighbor

UMBC CMSC 341 B-Trees 46

B-Tree Deletion

When “taking” an element from a neighbor

If neighbor would be too empty, combine two
leaves into one

o This combining requires updating the parent
which may now have too few subtrees

o If necessary, continue the combining up the tree

Does it matter which neighbor we borrow
from?

UMBC CMSC 341 B-Trees 47

Other Implementations ot B-Trees

48

Interior Nodes Store Data

There are often multiple ways to implement a
given data structure

B-Trees can also be implemented where the
Interior nodes store data as well

o The leaves can store much more, however

- e,
- —
—
——
e
—
_—

H,rﬂﬂﬂ? J008 JHJDQEE 0048
-~ -
P / \ - / \
- e
.--"'-. el
0025 0028 0029 0045 0052 0053 0055

0001 00D2 0005 0007 0012 0014 0018 p0as

UMBC CMSC 341 B-Trees 49

Effects on Data in Interior Nodes

What kind of effect would this have on
performance and implementation?

o Does it change the way that insert works?

o What about deletion? Is it simpler or does this
change make it more complicated?

Why would you choose one implementation
over another?

UMBC CMSC 341 B-Trees

50

Announcements

Homework 4
o Due Thursday, October 26th at 8:59:59 PM

Project 3
o Due Tuesday, October 31st at 8:59:59 PM

Next Time:
o Heaps

UMBC CMSC 341 B-Trees

51

