
Asymptotic Analysis

The Theory

 the ability to reduce complicated algorithms to mathematical equations

 this gives us the ability to predict the speed and overall time an algorithm will

take with any given input

The Basics

 time and space are required to solve problems of given size “n”

 is the study of how algorithms behave as the size of data grows to infinity

o so this really means SCALING!!

 how does a function scale and react with limited data to lots of data

 O(n)

o „n‟ is the size of the data input

 input could be number of bits, or commonly used number of items

 has to be > 0

 since you can‟t have NEGATIVE or HALF pieces of data

o running time of the problem

 this is a mathematical model

 will not account for speed of computer, compiler, etc…

 f(n)

o is a „real world‟ function (or your coded application)

o describes a process, running cost of a program

o we watch f(n) grow as the number of “n” increases

 g(n) or c g(n)

o another function (and graph line) that we are trying to mimic the same

graph line as f(n), but will be above or below the f(n) line to determine

worst/best case

Asymptotic Bounds

 bounds

o think as boundary

o given a graph line of f(n), we will find a line that tightly mimics that

graph line, but depending on the bound, will be above, below, etc…

o tightly also means that the graph line is close/parallels

 three types of bounds (covered later) always around f(n), but called c * g(n)

o Big O (above f(n) graph line) upper bound of f(n)

 so f(n) <= c * g(n) for all n > n0

o Big Ω (below f(n) graph line) lower bound of f(n)

o Big Θ (below AND above f(n) graph line)

 used to relate the growth in one function relative to another simpler function

Big-O

f(n) <= c * g(n) for all n > n0

notice where the n > n0 comes in

 determines the upper bounds on a

function

 O (Omicron) (mathematical term)

 we think of it as always

representing the worst time, but not

always

o since ABOVE or UPPER

bound of a given g(n)

 f(n) € O(g(n)) therefore f(n) <=

c*g(n)

o € = is in

o YOU get to pick the constant

to make the above equation

work!

o whenever n is big enough for

some large c
o So how Big is Big?

 “n” needs to be big

enough to have the first

function (g(n)) fit the

2
nd

 f(n) fits c*g(n)

Big-Ω

f(n) >= c * g(n) for all n > n0

 opposite/reverse of Big O

Big Θ

c1 * g(n) >= f(n) >= c2 * g(n) for all n > n0

Notice how g(n) is the same for both
upper and lower bound lines, but it’s
the constants c1 and c2 that are
different each time.

Equations for each type of line

 Big O

o 0 < f(n) <= c * g(n) for all n > n0 (What is c??)

 Big Ω

o 0 < c * g(n) <= f(n) for all n > n0

 Big Θ

o c1 * g(n) >= f(n) >= c2 * g(n) for all n > n0

Formal definition of Big-O

 O(f(n)) is a set of ALL functions g(n) that will satisfy that there exists a

positive constant c and n respectfully such that for all n >= n0, f(n) <= c*g(n)

o very very big set of functions!!!

o “n0” is this vertical line on the X axis where

 f(n) and c*g(n) meet

 c*g(n) will be > f(n)

 is called a “threshold” in some texts

Is f(n) € O(n
3
) given that f(n) = n and O(n

3
). == TRUE

Is f(n) € O(n
2
) given that f(n) = n and O(n

2
). == TRUE

Is f(n) € O(n
10000

) given that f(n) = n and O(n
1000

). == TRUE

Tightest Bound

Which one of these is the tightest bound to a constant y???

Building tightly bound Big-? functions

 to get the bounds to work and be as close as possible, we have a few options

o we use both options below simultaneously

o multiply the bound (called f(n)) by a positive constant “c”

 this will move the graph line left/right

o threshold

 called n0

 where the exact bound BEGINS

 must be furthest left as graph lines increase in time and input

What a tightly Big-O answer looks like

f(n) € O(g(n)) therefore f(n) <= c*g(n) again, for Big-O

Choosing the constant “c” manually and how to work it

 just messing with “c” can do some interesting things with a function/graph line g(n)

 we are ONLY allowed positive values for “c”

 notice how I can change the positioning of g(n)

o which is x
2
 in this example

Variation of c * g(n) where g(n) = x2

What did c of 2 and 3 do? What did c of .1 do?

Determining if f(n) is in Big-O (??) – Visually

 hard way, but visual

 not to be used as an answer

 remember, we want f(n) <= c*g(n) SOMEWHERE if we were to graph it out

o there may be a point where they intersect while n > 0

 left of intersection f(n) >= c*g(n)

 ignore, as long as we get below

 right of intersection f(n) <= c*g(n)

g(n) versus just f(n)

 remember we want g(n) or really c*g(n) < f(n)

o which is definitely not the case here

o so let‟s adjust c!

 notice we are only interested in the positive “c” and “n” values

g(n) versus new “c” f(n)

 “c” we now made 20!!!

 ignore the graph BEFORE the intersection since our data “n” will only grow

larger!!

 notice c = 20 and n0 (x axis) = 1000 (both are positive!!)

 n0 (threshold) = 1000!!!

Finalizing the proof

 as long as a vertical line (n on the x axis, called a threshold) exists we have a

proof

 in our previous example

o for any n >= 1000, f(n) <= c*g(n)

o therefore

 f(n) € O(g(n))

The Constant “c” – used, then ignored

 Big-O really does not care about “c”

o this why we see f(n) € O(g(n)) and not f(n) € O(c*g(n))

o c is considered a “lower order term”

 which comes up again later

 but we use it to prove that an equation is in Big-O (O(??))

 remember a few things

o c

 has to be > 0

 is constant “cost”

 it could be how long it takes to read EACH data piece

o 100 seconds now, could be 5 seconds in a few years!!

 it could be how much data it needs to be read in

The used and ignored “c”

Prove g(n) is in Big-O (n)

g(n) = 1,000,000n

O(n)

Is f(n) € O(n)??

1. Graph as it stands now!!

2. Pick a “c” that should fit f(n) <= c*g(n). Try to keep it simple!! When

graphing, g(n) is the same, no changes, just try different “c”s‟ and see when it

could intersect

1,000,000n <= c n, try c = 1,000,000!!!

1,000,000n <= 1,000,000 n == TRUE!!!

f(n) € 1,000,000 O(n) but we only want the algorithm (n portion), not the constant

3. Given “c”, solve for n0 (n), which has to be > 0

therefore the given f(n) € O(n) is indeed true, where C = 1,000,000, and because of

c, n0 = 0

Determining if f(n) is in Big-O – Easy(ish) Way

 all math

 but the same steps apply

o place into formula based on type of bound

o reduce terms (n) to get “c” by itself

o determine value for “c”

o determine n0 using found “c”

Solving if 2n2 € O(n3)

* remember, this means “Is n
3
 above the 2n

2
 line on a graph?”

* if you just look at the terms (eye ball test), you SHOULD know it does

* I will ask you to prove, that would look like what I have below

1. Place into formula based on type of bound

0 ≤ f(n) ≤ O(n) This is the definition of O(g(n)) REALLY IMPORTANT!

0 ≤ f(n) ≤ c * g(n) This is the definition of O(g(n)) REALLY IMPORTANT!

0 ≤ 2n
2
 ≤ cn

3
 Place in values from question

2. reduce terms to get “c” by itself

⁄ Divide by n

3
 to get c by itself

0 ≤

 ≤ c

3. determine value for “c”.

Remember n is the number of inputs, it must be positive and a whole value. We

can start at 0, and go to infinity to determine where n is maximum! So I graphed.

so n = 1

now we can solve for c using value n

0 ≤

 ≤ c

c = 2

4. determine n0 using found “c”. Replace n with n0 since we want to find the

threshold.

0 ≤

 ≤ 2

0 ≤

 ≤ n0 when we multiply everything by n0 and divide by 2

0 ≤ ≤ n0

so n0 = 1 (again, since n0 HAS to be > 0, can‟t have 0 inputs!!)

5. Now test the given equation with our found “c” and see if n0 still stands.

0 ≤ 2n
2
 ≤ 2n

3 can reduce if we want!! 2 is “c”

0 ≤ n
2
 ≤ n

3 when n0 ≥1 and C = 2

which means:

1. 2n
2
 € O(n

3
)

2. n
3
 is larger than 2n

2
 ON AND AFTER n0 of 1 when c = 2

Complete Example - Prove f(n) € O(n)

given that f(n) = 500 + 10n and O(n). Make sure to find “c” and n0

// thanks Benjamin “Spiderman” Yankowski „F14

f(n) = 500 + 10n g(n) = n

 Solve for c

500 + 10n =< cn
== 500/n + (10n)/n =< (cn)/n
== 500/n + 10 =< c (Chose n = 1)

== 500/(1) + 10 =< c

== 510 c

c = 510

 Solve for n0

500 + 10n0 =< cn (where c = 510 and n = 1)

== (-500) + 500 + 10n0 =< (510)(1) + (-500)

== 10n0 =< 10

== n0 =< 1

n0 = 1

 Proof: (explanation) video here!!

 Base Case:
500 + 10(1) =< 510(1)

== 510 =< 510

 Induction:

Assume: 500 + 10(k) =< 510(k) to be true.
To show: 500 + 10(k + 1) =< 510(k+1)

500 + 10(k + 1)

== [500 + 10k] + 10

=<510k +10

=<510k + 510

== 510(k + 1)

http://www.youtube.com/watch?v=nL24Cqj7dC8&list=UUZJcTYOTPIwo5UfFpsdd-Sg

But why are we doing Proof by Induction?

 remember, we want to prove our Big-O will work for n, n+1, n+2,n+..

 In proof by induction

o is the only proof that works with n, n+1, n+2, etc…

o n is changed to k while doing the proof

Why induction?

Determining if f(n) is in Big-O – Hunt &Peck Way

 last ditch effort

 we could try some positive values of c and n and try to find the threshold that

way

o chart it out

 still need the equation and what Big-? we are trying to prove

Is 4n
2
 + 16n + 2 => O(n

4
)

When c = 1

n equation Big ?

0 4(0)
2
 + 16(0) + 2 = 2 0

1 4(1)
2
 + 16(1) + 2 = 22 1

2 4(2)
2
 + 16(2) + 2 = 50 16

3 4(3)
2
 + 16(3) + 2 = 86 81

4

5

Solve for when n = 4 and 5. Was a threshold reached?

Answerb:

Just remember “c” may NOT be 1!!!! But the easiest to try!!

Solutions to Big-? problems

1. Place into formula based on type of bound

2. reduce terms to get “c” by itself

3. determine value for “c”.

Remember n is the number of inputs, it must be positive and a whole value. We

can start at 0, and go to infinity to determine where n is maximum!

4. determine n0 using found “c”. Replace n with n0 since we want to find the

threshold.

5. Now test the given equation with our found “c” and see if n0 still stands.

Try:

1. Prove f(n) € O(n
3
) given that f(n) = n and O(n

3
). Make sure to find “c” and n0

a. Answerb:

2. Prove f(n) € O(n
3
) given that f(n) = n

3
 + n

2
 + n and O(n

3
). Make sure to find

“c” and n0

a. Answerb:

Why ignore the lower terms?

 let‟s start with an exercise to find out why

Assume that each of the expressions below gives the processing time g(n) spent by

an algorithm for solving a problem of size n. Select the dominant term(s) having the

steepest increase in n and specify the lowest Big-O complexity of each algorithm.

Expression Dominant term(s) O(. . .)

Highest Term Exercise

Answerb:

 in the example g(n) = n
3
 + n

2
 + n

o the other terms (n
2
 + n) will add less and less to the overall equation as

n
3
 (or highest term) gets bigger and n gets bigger

 here is where you identities help!!

Why ignore the lower terms?

Notice +n2 + n is negligible
Notice the graph is NOT at the origin

How about Logs??

How functions are a set of g(n)

 remember, we are looking for f(n) € O(???)

 several “pre-set” functions already contain this info just in their track on a

graph

How functions stack up in O(??)

Green function are considered efficient

Yellow functions depend on “n” (ex: rubik‟s cube solver)

Red functions are useless

O(1) € O(log n) € O(log
2
 n) € O(sqrt √) …

since a is WITHIN the upper bound of b

Comparing Big-Os

1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

3. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) + f2(n) = O(max (g1(n), g2(n)))

4. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) * f2(n) = O(g1(n) * g2(n))

Draw what each of these scenarios above would look like on a graph

Worst case vs best case vs average case.

 What particular input (of given size) gives worst/best/average complexity?

 Best Case

o If there is a permutation of the input data that minimizes the “run time

efficiency”, then that minimum is the best case run time efficiency

 Worst Case

o If there is a permutation of the input data that maximizes the “run time

efficiency”, then that maximum is the best case run time efficiency

 Average case

o is the “run time efficiency” over all possible inputs.

Mileage example: how much gas does it take to go 20 miles?

Worst case: all uphill

Best case: all downhill, just coast

Average case: “average” terrain

Case Example

Consider sequential search on an unsorted array of length n, what is time

complexity?

Best case:

Worst case:

Average case:

Draw this out!!

Answer Section

Is 4n
2
 + 16n + 2 => O(n

4
)

Yes, when c = 1 and n0 = 4

f(n) € O(n
3
) given that g(n) = n and O(n

3
)

1. Graph as it stands now

2. Pick a “c” that should fit f(n) <= c*g(n). Try to keep it simple!!

Since they already intersect, let‟s just make c = 1!!!

f(n) € 1 O(n
3
)

3. Given “c”, solve for N (n), which has to be > 0

therefore the given f(n) € O(n
3
) is indeed true, where C = 1 and because of c, N = 1

f(n) € O(n
3
) given that g(n) = n

3
 + n

2
 + n and O(n

3
)

c = 3

N = 1

btw, when N(n) = 1, 1
3
 + 1

2
 + 1 = 3, which is our constant

Highest Term Exercise

Sources

Asymptotic Lectures

http://www.youtube.com/watch?v=VIS4YDpuP98

http://www.youtube.com/watch?v=ca3e7UVmeUc

Basics

http://www.youtube.com/watch?v=6Ol2JbwoJp0

Solving Big-O mathematically

http://www.youtube.com/watch?v=ei-A_wy5Yxw

Online Graphing Calculator

https://www.desmos.com/calculator

Highest term

http://www.cs.auckland.ac.nz/compsci220s1t/lectures/lecturenotes/GG-

lectures/220exercises1.pdf

Big – Oh charts

http://filipwolanski.com/2013/03/08/big-o/

http://www.youtube.com/watch?v=VIS4YDpuP98
http://www.youtube.com/watch?v=ca3e7UVmeUc
http://www.youtube.com/watch?v=6Ol2JbwoJp0
http://www.youtube.com/watch?v=ei-A_wy5Yxw
https://www.desmos.com/calculator
http://www.cs.auckland.ac.nz/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf
http://www.cs.auckland.ac.nz/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf
http://filipwolanski.com/2013/03/08/big-o/

