Asymptotic Analysis

The Theory

- the ability to reduce complicated algorithms to mathematical equations
- this gives us the ability to predict the speed and overall time an algorithm will take with any given input

The Basics

- time and space are required to solve problems of given size "n"
- is the study of how algorithms behave as the size of data grows to infinity
 - o so this really means SCALING!!
 - how does a function scale and react with limited data to lots of data
- O(n)
 - \circ 'n' is the size of the data input
 - input could be number of bits, or commonly used number of items
 - has to be > 0
 - since you can't have NEGATIVE or HALF pieces of data
 - \circ running time of the problem
 - this is a mathematical model
 - will not account for speed of computer, compiler, etc...
- f(n)
 - is a 'real world' function (or your coded application)
 - o describes a process, running cost of a program
 - \circ we watch f(n) grow as the number of "n" increases
- g(n) **or** c g(n)
 - another function (and graph line) that we are trying to mimic the same graph line as f(n), but will be above or below the f(n) line to determine worst/best case

Asymptotic Bounds

• bounds

- o think as *bound*ary
- given a graph line of f(n), we will find a line that tightly mimics that graph line, but depending on the bound, will be above, below, etc...
- tightly also means that the graph line is close/parallels
- three types of bounds (covered later) always around f(n), but called c * g(n)
 - \circ Big O (above f(n) graph line) upper bound of f(n)
 - so $f(n) \le c * g(n)$ for all $n > n_0$
 - Big Ω (below f(n) graph line) lower bound of f(n)
 - Big Θ (below AND above f(n) graph line)
- used to relate the growth in one function relative to another simpler function

Equations for each type of line

• Big O

 \circ 0 < f(n) <= c * g(n) for all n > n₀ (What is c??)

- Big Ω
 - $0 < c * g(n) \le f(n)$ for all $n > n_0$
- Big Θ \circ $c_1 * g(n) \ge f(n) \ge c_2 * g(n)$ for all $n \ge n_0$

Formal definition of Big-O

- O(f(n)) is a <u>set</u> of ALL functions g(n) that will satisfy that there exists a positive constant c and n respectfully such that for all n >= n₀, f(n) <= c*g(n)
 - very very big set of functions!!!
 - \circ "n₀" is this vertical line on the X axis where
 - f(n) and c*g(n) meet
 - c*g(n) will be > f(n)
 - is called a "threshold" in some texts

Is $f(n) \in O(n^3)$ given that f(n) = n and $O(n^3)$. == TRUE Is $f(n) \in O(n^2)$ given that f(n) = n and $O(n^2)$. == TRUE Is $f(n) \in O(n^{10000})$ given that f(n) = n and $O(n^{1000})$. == TRUE

Building tightly bound Big-? functions

- to get the bounds to work and be as close as possible, we have a few options
 - we use both options below simultaneously
 - \circ multiply the bound (called f(n)) by a positive constant "c"
 - this will move the graph line left/right
 - \circ threshold
 - called n₀
 - where the exact bound BEGINS
 - must be furthest <u>left</u> as graph lines increase in time and input

Choosing the constant "c" manually and how to work it

- just messing with "c" can do some interesting things with a function/graph line g(n)
- we are ONLY allowed positive values for "c"
- notice how I can change the positioning of g(n)
 - \circ which is x² in this example

Determining if f(n) is in Big-O (??) – Visually

- hard way, but visual
- not to be used as an answer
- remember, we want f(n) <= c*g(n) SOMEWHERE if we were to graph it out
 there may be a point where they intersect while n > 0
 - left of intersection $f(n) \ge c^*g(n)$
 - ignore, as long as we get below
 - right of intersection f(n) <= c*g(n)

- notice c = 20 and $n_0 (x axis) = 1000$ (both are positive!!)
- n_0 (threshold) = 1000!!!

Finalizing the proof

- as long as a vertical line (n on the x axis, called a threshold) exists we have a proof
- in our previous example
 - for any $n \ge 1000$, $f(n) \le c^*g(n)$
 - \circ therefore
 - $f(n) \in O(g(n))$

The Constant "c" – used, then ignored

- Big-O really does not care about "c"
 - this why we see $f(n) \in O(g(n))$ and not $f(n) \in O(c^*g(n))$
 - c is considered a "lower order term"
 - which comes up again later
- but we use it to prove that an equation is in Big-O (O(??))
- remember a few things

o c

- has to be > 0
- is constant "cost"
 - it could be how long it takes to read EACH data piece
 0 100 seconds now, could be 5 seconds in a few years!!
 - it could be how much data it needs to be read in

Pick a "c" that should fit f(n) <= c*g(n). Try to keep it simple!! When graphing, g(n) is the same, no changes, just try different "c"s' and see when it could intersect

1,000,000n <= c n, try c = 1,000,000!!!

1,000,000n <= 1,000,000 n == TRUE!!!

 $f(n) \in 1,000,000$ O(n) but we only want the algorithm (n portion), not the constant

3. Given "c", solve for n_0 (n), which has to be > 0

therefore the given $f(n) \in O(n)$ is indeed true, where C = 1,000,000, and because of $c, n_0 = 0$

Determining if f(n) is in Big-O – Easy(ish) Way

- all math
- but the same steps apply
 - place into formula based on type of bound
 - \circ reduce terms (n) to get "c" by itself
 - o determine value for "c"
 - \circ determine n₀ using found "c"

Solving if $2n^2 \in O(n^3)$

* remember, this means "Is n^3 above the $2n^2$ line on a graph?"

- * if you just look at the terms (eye ball test), you SHOULD know it does
- * I will ask you to prove, that would look like what I have below

1. Place into formula based on type of bound

$0 \leq f(n) \leq O(n)$	This is the definition of <mark>O</mark> (g(n))	REALLY IMPORTANT!
$0 \leq f(n) \leq c * g(n)$	This is the definition of $O(g(n))$	REALLY IMPORTANT!
2 2		

 $0 \le 2n^2 \le cn^3$ Place in values from question

2. reduce terms to get "c" by itself

$$\frac{0}{n^3} \le \frac{2n^2}{n^3} \le \frac{Cn^3}{n^3} / \frac{1}{n^3}$$
 Divide by n³ to get c by itself

$$0 \leq \frac{2}{n} \leq c$$

3. determine value for "c".

Remember n is the number of inputs, it must be **positive** and a **whole value**. We can start at 0, and go to infinity to determine where n is maximum! So I graphed.

4. determine n_0 using found "c". Replace n with n_0 since we want to find the threshold.


```
Complete Example - Prove f(n) € O( n )
given that f(n) = 500 + 10n and O(n). Make sure to find "c" and n_0
// thanks Benjamin "Spiderman" Yankowski 'F14
f(n) = 500 + 10n g(n) = n
  Solve for c
     500 + 10n =< cn
     == 500/n + (10n)/n = < (cn)/n
     == 500/n + 10 = < c (Chose n = 1)
     == 500/(1) + 10 =< c
     == 510 c
     c = 510
  Solve for n.
500 + 10n_0 = < cn (where c = 510 and n = 1)
== (-500) + 500 + 10n_0 = < (510)(1) + (-500)
== 10n<sub>0</sub> =< 10
== n<sub>0</sub> =< 1
n₀ = 1
   Proof: (explanation) ← video here!!
   Base Case:
     500 + 10(1) = < 510(1)
     == 510 =< 510
   Induction:
Assume: 500 + 10(k) = 510(k) to be true.
To show: 500 + 10(k + 1) = < 510(k+1)
500 + 10(k + 1)
== [500 + 10k] + 10
=<<mark>510k</mark> +10
=<510k + 510
== 510(k + 1)
```

But why are we doing Proof by Induction?

- remember, we want to prove our Big-O will work for n, n+1, n+2,n+...
- In proof by induction
 - \circ is the only proof that works with n, n+1, n+2, etc...
 - o n is changed to k while doing the proof

Determining if f(n) is in Big-O – Hunt & Peck Way

- *last ditch effort*
- we could try some positive values of **c** and **n** and try to find the threshold that way
 - \circ chart it out
- still need the equation and what Big-? we are trying to prove

Is $4n^2 + 16n + 2 => O(n^4)$

When $c = 1$			
n	equation	Big ?	
0	$4(0)^2 + 16(0) + 2 = 2$	0	
1	$4(1)^2 + 16(1) + 2 = 22$	1	
2	$4(2)^2 + 16(2) + 2 = 50$	16	
3	$4(3)^2 + 16(3) + 2 = 86$	81	
4			
5			

Solve for when n = 4 and 5. Was a threshold reached?

Answer_b:

Just remember "c" may NOT be 1!!!! But the easiest to try!!

Solutions to Big-? problems

- 1. Place into formula based on type of bound
- 2. reduce terms to get "c" by itself
- 3. determine value for "c".

Remember n is the number of inputs, it must be **positive** and a **whole value**. We can start at 0, and go to infinity to determine where n is maximum!

- 4. determine n_0 using found "c". Replace n with n_0 since we want to find the threshold.
- 5. Now test the given equation with our found "c" and see if n_0 still stands.

Try:

- 1. Prove $f(n) \in O(n^3)$ given that f(n) = n and $O(n^3)$. Make sure to find "c" and n_0 a. Answer_b:
- 2. Prove f(n) € O(n³) given that f(n) = n³ + n² + n and O(n³). Make sure to find "c" and n₀
 a. Answer_b:

Why ignore the lower terms?

• let's start with an exercise to find out why

Assume that each of the expressions below gives the processing time g(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest Big-O complexity of each algorithm. Expression Dominant term(s) O(...)

Highest Term Exercise					
Expression	Dominant term(s)	$O(\ldots)$			
$5 + 0.001n^3 + 0.025n$	0.001n ³	O(n ³)			
$500n + 100n^{1.5} + 50n \log_{10} n$					
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$					
$n^2 \log_2 n + n (\log_2 n)^2$					
$n \log_3 n + n \log_2 n$					
$3\log_8 n + \log_2 \log_2 \log_2 n$					
$100n + 0.01n^2$					
$0.01n + 100n^2$					
$2n + n^{0.5} + 0.5n^{1.25}$					
$0.01n\log_2 n + n(\log_2 n)^2$					
$100n \log_3 n + n^3 + 100n$					
$0.003 \log_4 n + \log_2 \log_2 n$					

Answer_b:

- in the example $g(n) = n^3 + n^2 + n$
 - the other terms $(n^2 + n)$ will add less and less to the overall equation as n^3 (or highest term) gets bigger and n gets bigger
- here is where you identities help!!

How functions are a <u>set</u> of g(n)

- remember, we are looking for $f(n) \in O(???)$
- several "pre-set" functions already contain this info just in their track on a graph

Comparing Big-Os

1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

3. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$

4. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$

Draw what each of these scenarios above would look like on a graph

Worst case vs best case vs average case.

- What particular input (of given size) gives worst/best/average complexity?
- Best Case
 - If there is a permutation of the input data that minimizes the "run time efficiency", then that minimum is the best case run time efficiency
- Worst Case
 - If there is a permutation of the input data that maximizes the "run time efficiency", then that maximum is the best case run time efficiency
- Average case
 - o is the "run time efficiency" over all possible inputs.

Mileage example: how much gas does it take to go 20 miles?

Worst case: all uphill Best case: all downhill, just coast Average case: "average" terrain

Case Example

Consider sequential search on an unsorted array of length n, what is time complexity?

Best case:

Worst case:

Average case:

Draw this out!!

Answer Section

Is $4n^2 + 16n + 2 \implies O(n^4)$

Yes, when c = 1 and $n_0 = 4$

$f(n) \in O(n^3)$ given that g(n) = n and $O(n^3)$

1. Graph as it stands now

2. Pick a "c" that should fit $f(n) \le c^*g(n)$. Try to keep it simple!!

Since they already intersect, let's just make c = 1!!!

 $f(n) \in \mathbf{1} O(\mathbf{n}^3)$

3. Given "c", solve for N (n), which has to be > 0

therefore the given $f(n) \in O(n^3)$ is indeed true, where C = 1 and because of c, N = 1

f(n) € O(n^3) given that g(n) = $n^3 + n^2 + n$ and O(n^3)

c = 3N = 1

btw, when N(n) = 1, $1^3 + 1^2 + 1 = 3$, which is our constant

Highest Te	erm Exercise	
Expression	Dominant term(s)	$O(\ldots)$
$5 + 0.001n^3 + 0.025n$	$0.001n^{3}$	$O(n^3)$
$500n + 100n^{1.5} + 50n \log_{10} n$	$100n^{1.5}$	$O(n^{1.5})$
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$	$2.5n^{1.75}$	$O(n^{1.75})$
$n^2 \log_2 n + n (\log_2 n)^2$	$n^2 \log_2 n$	$O(n^2 \log n)$
$n\log_3 n + n\log_2 n$	$n\log_3 n, n\log_2 n$	$O(n\log n)$
$3\log_8 n + \log_2 \log_2 \log_2 n$	$3\log_8 n$	$O(\log n)$
$100n + 0.01n^2$	$0.01n^{2}$	$O(n^2)$
$0.01n + 100n^2$	$100n^{2}$	$O(n^2)$
$2n + n^{0.5} + 0.5n^{1.25}$	$0.5n^{1.25}$	$O(n^{1.25})$
$0.01n\log_2 n + n(\log_2 n)^2$	$n(\log_2 n)^2$	$O(n(\log n)^2)$
$100n \log_3 n + n^3 + 100n$	n^3	$O(n^3)$
$0.003 \log_4 n + \log_2 \log_2 n$	$0.003 \log_4 n$	$O(\log n)$

Sources

Asymptotic Lectures <u>http://www.youtube.com/watch?v=VIS4YDpuP98</u> <u>http://www.youtube.com/watch?v=ca3e7UVmeUc</u>

Basics

http://www.youtube.com/watch?v=6Ol2JbwoJp0

Solving Big-O mathematically http://www.youtube.com/watch?v=ei-A_wy5Yxw

Online Graphing Calculator https://www.desmos.com/calculator

Highest term <u>http://www.cs.auckland.ac.nz/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf</u>

Big – Oh charts http://filipwolanski.com/2013/03/08/big-o/