Asymptotic Analysis

The Theory

e the ability to reduce complicated algorithms to mathematical equations
o this gives us the ability to predict the speed and overall time an algorithm will
take with any given input

The Basics

= how does a function scale and react with limited data to lots of data

e O(n)
o ‘n’ is the size of the data input
= input could be number of bits, or commonly used number of items
= hastobe>0

e since you can’t have NEGATIVE or HALF pieces of data
o running time of the problem
= this is a mathematical model
= will not account for speed of computer, compiler, etc...
o f(n)

o isa ‘real world” function (G your coded application)

o describes a process, running cost of a program

€%

o we watch f(n) grow as the number of “n” increases
e g(n) or c g(n)
o another function (and graph line) that we are trying to mimic the same
graph line as f(n), but will be above or below the f(n) line to determine
worst/best case

Asymptotic Bounds

e bounds
o think as boundary

o given a graph line of f(n), we will find a line that tightly mimics that
graph line, but depending on the bound, will be above, below, etc...
o tightly also means that the graph line is close/parallels
o three types of bounds (covered later) always around f(n), but called ¢ * g(n)
o Big O (above f(n) graph line) upper bound of f(n)

= 5o f(n) <=c * g(n) for all n > n,

o Big Q (below f(n) graph line) lower bound of f(n)
o Big O (below AND above f(n) graph line)
e used to relate the growth in one function relative to another simpler function

Big-O

cg(n)

fin)

‘--""‘Hr

n

f(n) <=c * g(n) for all n > n,
notice where the n > nycomes in

determines the upper bounds on a
function
O (Omicron) (mathematical term)
we think of it as always
representing the worst time, but not
always
o since ABOVE or UPPER
bound of a given g(n)
f(n) € O(g(n)) therefore f(n) <=
c*g(n)
o €=1isin
o YOU get to pick the constant
to make the above equation
work!
o whenever n is big enough for
some large ¢
o So how Big is Big?
= “n” needs to be big
enough to have the first
fuglction (g(n)) fit the
21’1

e f(n) fits c*g(n)

Big-Q

fin)

e opposite/reverse of Big O

cg(n)
|
|
|
|
|
|
|
' n
.?’.!-0
f(n) >= ¢ * g(n) for all n > n,
Big O
Notice how g(n) is the same for both
{)J (1) upper and lower bound lines, but it’s
the constants c; and ¢, that are
> different each time.
f(n)
@g’(n)

1

:

: n

no

f(n) =0(g(n))

¢ * g(n) >= f(n) >=c, * g(n) for all n > n,

Equations for each type of line

e BigO

o 0<f(n)<=c*g)foralln>n, (Whatisc??)
e Big Q

o 0<c * g(n) <=f(n) for all n > n,
e Big0®

o ¢; * g(n)>=f(n) >= c;, * g(n) for all n>n,

Formal definition of Big-O

e O(f(n)) is a set of ALL functions g(n) that will satisfy that there exists a
positive constant ¢ and n respectfully such that for all n >= n,, f(n) <= c*g(n)
o very very big set of functions!!!
o “ng” 1s this vertical line on the X axis where
= f(n) and c*g(n) meet
= c*g(n) will be > f(n)
= is called a “threshold” in some texts

Is f(n) € O(n’) given that f(n) = n and O(n’). == TRUE
Is f(n) € O(n°) given that f(n) = n and O(n’). == TRUE
Is f(n) € O(n'"") given that f(n) =n and Om'"). == TRUE

Tightest Bound

An) =n
Q@ o) =7
@ T(n) = n
@ X(n) = 10

Which one of these is the tightest bound to a constant y??7?

Building tightly bound Big-? functions

e to get the bounds to work and be as close as possible, we have a few options
o we use both options below simultaneously
o multiply the bound (called f(n)) by a positive constant “c”
= this will move the graph line left/right
o threshold
= called n,
= where the exact bound BEGINS
= must be furthest left as graph lines increase in time and input

What a tightly Big-O answer looks like

upper bound! Cg(n)

From here and left,
c*g(n) bounds f(n)

f(n)

ne>

f(n) € O(g(n)) therefore f(n) <= c*g(n) again, for Big-O

Choosing the constant “c” manually and how to work it

e just messing with “c” can do some interesting things with a function/graph line g(n)
e we are ONLY allowed positive values for “c”
e notice how I can change the positioning of g(n)

o which is x* in this example

Variation of ¢ * g(n) where g(n) = x°
N <3
@ 2x7 3
_ . F2

3x-
. 1.
t-"'l 1x=<
_ 12
1x=
0.2 0.4 0.6 o.8 1 1.2 1.4 1.6

What did ¢ of 2 and 3 do? What did c of .1 do?

Determining if f(n) is in Big-0 (??) - Visually
e hard way, but visual
e not to be used as an answer
e remember, we want f(n) <= c*g(n) SOMEWHERE if we were to graph it out
o there may be a point where they intersect while n > 0
= [eft of intersection f(n) >= c*g(n)
e ignore, as long as we get below
= right of intersection f(n) <= c*g(n)

g(n) wversus just £ (n)

+~ o 25000 { { - - F
Aln) = 10000 + 10n <
@ O(n) =n 20000
15000

10000

5000

? 0 1000 2000 3000 4000 5000

e remember we want g(n) or really c*g(n) < f(n)
o which is definitely not the case here
o so let’s adjust c!
e notice we are only interested in the positive “c” and “n” values

g(n) wversus new “c” f(n)

+- & F
f(n) = 10000 + 10n 4

—3086060

@ O(n) = 20n

Threshold!!!

N, is herelll

2000 3000 4000 5000

~10000
e ‘“c” we now made 20!!!
e ignore the graph BEFORE the intersection since our data “n” will only grow
larger!!
e notice ¢ =20 and n, (x axis) = 1000 (both are positive!!)

e n, (threshold) = 1000!!!

Finalizing the proof

¢ as long as a vertical line (n on the x axis, called a threshold) exists we have a
proof
® in our previous example
o for any n>= 1000, f(n) <= c*g(n)
o therefore
= f(n) €0(gn))

The Constant “c” - used, then ignored

e Big-O really does not care about “c”
o this why we see f(n) € O(g(n)) and not f(n) € O(c*g(n))
o cis considered a “lower order term”
= which comes up again later
e but we use it to prove that an equation is in Big-O (O(??))
e remember a few things
o C
= hastobe>0
= is constant “cost”
e it could be how long it takes to read EACH data piece
o 100 seconds now, could be 5 seconds in a few years!!
¢ it could be how much data it needs to be read in

The used and ignored “c”

Prove g(n) is in Big-O (n)

g(n) =1,000,000n
O(n)
Is f(n) € O(n)??

1. Graph as it stands now!!
o

+-
& T(n) = 1000000n

fln) =n

&

2. Pick a ““c” that should fit f(n) <= c*g(n). Try to keep it simple!! When
graphing, g(n) is the same, no changes, just try different “c”’s’ and see when it
could intersect

1,000,000n <=c n, try ¢ = 1,000,000!!!
1,000,000n <= 1,000,000 n == TRUE!!!
f(n) € 000,000 O(n) but we only want the algorithm (n portion), not the constant

3. Given “c”, solve for ny (n), which has to be > 0

therefore the given f(n) € O(n) 1s indeed true, where C = 1,000,000, and because of
c,ng =0

Determining if f(n) is in Big-O - Easy(ish) Way
e all math
e but the same steps apply
o place into formula based on type of bound
o reduce terms (n) to get “c” by itself
o determine value for “c”
o determine ny using found “c”

Solving if 2n®* € 0O (n°)

* remember, this means “Is n’ above the 2n” line on a graph?”
*1f you just look at the terms (eye ball test), you SHOULD know it does
* T will ask you to prove, that would look like what I have below

1. Place into formula based on type of bound

0 < f(n) £ O(n) This is the definition of O(g(n)) |REALLY IMPORTANT!
0< f(n)<c*gmn) This is the definition of O(g(n)) |REALLY IMPORTANT!

2 3 : :
0<2n"<cn Place in values from question

2. reduce terms to get “c” by itself
2 3
2 < 2 < ¢H=/ . Divide by n’ to get c by itself

n2

2
0<-=-<c
n

3. determine value for “c”.

Remember n is the number of inputs, it must be positive and a whole value. We
can start at 0, and go to infinity to determine where n is maximum! So I graphed.

where 2/n is max!!
) . «

son=1

now we can solve for ¢ using value n

o
IA
SRR
IA
o

4. determine n, using found “c”. Replace n with n, since we want to find the
threshold.

0< g <ny when we multiply everything by n, and divide by 2
0<1< Ny
so ny = 1 (again, since ny HAS to be > 0, can’t have 0 inputs!!)

5. Now test the given equation with our found “c” and see if n still stands.

can reduce 1f we want!! 218 “c”
whennyg>1 and C=2
which means:
1. 2n° € O(n’)
2.1’ is larger than 2n* ON AND AFTER n, of | when ¢ =2
+-
@ filn) = 2 é IIII

@ gln)=12 - o

Complete Example - Prove f(n) € O(n)

given that f(n) = 500 + 10n and O(n). Make sure to find “c” and n

// thanks Benjamin “Spiderman” Yankowski ‘F14

f(n) =500 + 10n g(n)=n
Solve for c
500 + 10n =<cn
== 500/n + (10n)/n =< (cn)/n
==500/n + 10 =<c (Chosen =1)
==500/(1)+10=<c
==510 c
c =510
Solve for n,
500 + 10n, =<cn (wherec=510and n=1)
== (-500) + 500 + 10n,=< (510)(1) + (-500)

== 10n, =< 10
==n, =< 1
n =1
Proof: (explanation) €< video here!!
Base Case:
500 + 10(1) =< 510(1)
== 510 =< 510
Induction:

Assume: 500 F10(K) =< 510(k) to be true.
To show: 500 + 10(k + 1) =< 510(k+1)

500 + 10(k + 1)
== +10

=<510k +10
=<510k + 510
== 510(k + 1)

http://www.youtube.com/watch?v=nL24Cqj7dC8&list=UUZJcTYOTPIwo5UfFpsdd-Sg

But why are we doing Proof by Induction?

e remember, we want to prove our Big-O will work for n, n+1, n+2,n+..
¢ In proof by induction

o i1s the only proof that works with n, n+1, n+2, etc...

o nis changed to k while doing the proof

Why induction?

O(n) = ne —a

filn) =n

S

w

%]

Each of these lines
.) are sampling that
our O(?) is correct

Determining if f(n) is in Big-O - Hunt &Peck Way
o last ditch effort
e we could try some positive values of ¢ and n and try to find the threshold that
way
o chart it out
e still need the equation and what Big-? we are trying to prove

Is 4n* + 16n +2 =>O(n"

When ¢ =1
n | equation Big ?

0 [4(0)°+16(0) +2 =2 0

1 [4(1)*+16(1) +2=22 1

2 142 +16(2) +2=50 16

3 |4(3)°+16(3) +2=286 81

4

5

Solve for when n =4 and 5. Was a threshold reached?

Answersy,:

Just remember “c” may NOT be 1!!!! But the easiest to try!!

Solutions to Big-? problems
1. Place into formula based on type of bound
2. reduce terms to get “c” by itself
3. determine value for “c”.

Remember n is the number of inputs, it must be positive and a whole value. We
can start at 0, and go to infinity to determine where n 1s maximum!

29

4. determine n, using found “c”. Replace n with n, since we want to find the
threshold.

5. Now test the given equation with our found “c” and see if n still stands.

Try:
1. Prove f(n) € O(n’) given that f(n) = n and O(n’). Make sure to find “c” and n,
a. Answery:
2. Prove f(n) € O(n’) given that f(n) = n’ + n* + n and O(n®). Make sure to find
“c” and n,

a. Answery:

Why ignore the lower terms?

e let’s start with an exercise to find out why

Assume that each of the expressions below gives the processing time g(n) spent by
an algorithm for solving a problem of size n. Select the dominant term(s) having the
steepest increase in n and specify the lowest Big-O complexity of each algorithm.
Expression Dominant term(s) O(. . .)

Highest Term Exercise

Expression Dominant term(s) | O(...)
5+ 0.001n3 + 0.025n 0.001n3 O(n?)
500n + 100n'° + 50n log,q n

0.3n + 5n!d +2.5.nt7
2

n?log, n + n(log, n)

nlogsn + nlogyn

3logg n + log, log, log, n

100n + 0.01n?

0.01n + 100n2

o2n + nO.E) + 0.5??/1.25

0.01nlog, n + n(logy n)?

100n logg n + n® + 100n

0.003 log, n + log, log, n

Answery:

e inthe example g(n)=n’+n’+n
o the other terms (n” + n) will add less and less to the overall equation as
n’ (or highest term) gets bigger and n gets bigger
¢ here 1s where you identities help!!

Why ignore the lower terms?

\
@ 186

182

Notice +n’+ n is negligible
Notice the graph is NOT at the origin

How about Logs??

10

How functions are a sef of g(n)

e remember, we are looking for f(n) € O(?77?)
e several “pre-set” functions already contain this info just in their track on a
graph

How functions stack up in O (??)

10

e o

@ O(n) =1 constant

@ o(n) =log *(n) |log-squiared
Q om=vn root-n
O o =n linear

'@ T(n)=ulgn |p log n
QO

o(n) = quadratic
Y ol = cubic 5
;@ oln) =n* quartig
0(n)=2" exponeJLtial

5. <

0

Green function are considered efficient
Yellow functions depend on “n” (ex: rubik’s cube solver)
Red functions are useless

O(1) € O(log n) € O(log” n) € O(sqrtVn) ...

since @ is WITHIN the upper bound of b

Comparing Big-Os

1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

3. If 1(n) = O(g1(n)) and fr(n) = O(g(n)), then fi(n) + f(n) = O(max (g,(n), g2(n)))
4. If f;(n) = O(g(n)) and f5(n) = O(g>(n)), then fi(n) * fr(n) = O(g,(n) * g2(n))

Draw what each of these scenarios above would look like on a graph

Worst case vs best case vs average case.

e What particular input (of given size) gives worst/best/average complexity?
e Best Case
o If there 1s a permutation of the input data that minimizes the “run time
efficiency”, then that minimum is the best case run time efficiency
e Worst Case
o If there 1s a permutation of the input data that maximizes the “run time
efficiency”, then that maximum is the best case run time efficiency
e Average case
o 1s the “run time efficiency” over all possible inputs.

Mileage example: how much gas does it take to go 20 miles?
Worst case: all uphill

Best case: all downbhill, just coast

Average case: “‘average” terrain

Case Example

Consider sequential search on an unsorted array of length n, what is time
complexity?

Best case:
Worst case:
Average case:

Draw this out!!

Answer Section
Is 4n* + 16n +2 =>O(n"

Yes, whenc =1 and ny = 4

f(n) € O(n’) given that g(n) = n and O(n’)

1. Graph as it stands now

o

‘R,
SRS

2. Pick a “c” that should fit f(n) <= c*g(n). Try to keep it simple!!

Since they already intersect, let’s just make ¢ = 1!!!

fn) €l O(n’)
3. Given “c”, solve for N (n), which has to be > 0

therefore the given f(n) € O(n’) is indeed true, where C = 1 and because of ¢, N = 1

f(n) € O(n’) given that g(n) =n’ + n* + n and O(n’)

c=3
N=1

btw, when N(n) = 1, 1° + 1* + 1 = 3, which is our constant

Highest Term Exercise

Expression Dominant term(s) O(...)
5+ 0.001n° + 0.025n 0.001n3 O(n3)
500n 4+ 100n!® + 50n log,, n 100n'° O(n'?)
0.3n + 5015 4+ 2.5 - pl7 2.5n1-7 O(n!™)
n?logs n + n(logy n)? n?log, n O(n?logn)
nlogsn + nlogyn nlogs n, nlog,n O(nlogn)
3 logg n + log, log, log, n 3logg n O(logn)
100n + 0.01n? 0.01n2 O(n?)
0.01n + 100n* 100n? O(n?)
2n + n%5 4+ 0.5n "% 0.5n"2° O(n'*)
0.01nlog, n + n(log, n)? n(logy n)? O(n(logn)?)
100n logs n + n3 + 100n n’ O(n?)
0.003 log, n + log, logs n 0.003 log, n O(logn)

Sources

Asymptotic Lectures
http://www.youtube.com/watch?v=VIS4YDpuP98
http://www.youtube.com/watch?v=ca3e7UVmeUc

Basics
http://www.youtube.com/watch?v=6012JbwoJp0

Solving Big-O mathematically
http://www.youtube.com/watch?v=ei-A_wy5SYxw

Online Graphing Calculator
https://www.desmos.com/calculator

Highest term
http://www.cs.auckland.ac.nz/compsci220s1t/lectures/lecturenotes/GG-
lectures/220exercises1.pdf

Big — Oh charts
http://filipwolanski.com/2013/03/08/big-o/

http://www.youtube.com/watch?v=VIS4YDpuP98
http://www.youtube.com/watch?v=ca3e7UVmeUc
http://www.youtube.com/watch?v=6Ol2JbwoJp0
http://www.youtube.com/watch?v=ei-A_wy5Yxw
https://www.desmos.com/calculator
http://www.cs.auckland.ac.nz/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf
http://www.cs.auckland.ac.nz/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf
http://filipwolanski.com/2013/03/08/big-o/

