
1

CMSC 104
Park , adapted by C Grasso

 Turning Strings to Numbers
 Turning Numbers To Strings
 Arrays Of Strings
 Command Line Arguments

 Once we've got a string that contains a
character representation of a number in it ,
we can use the C library to convert it to an
integer or a float.
 atoi()
 atof()

 The functions are part of stdlib.h

 Both of these functions return 0 if they have a
problem

char *numString = "3.14";

double pi;
pi = atof (numString);

int i;
i = atoi ("12");

 The easiest way to turn a numeric data type value
into it’s character representation, is to use
sprintf()

 int sprintf(char *buffer,
 char *format,
 variables...);

 The sprintf() function is just like printf(),

except that the output is sent to a character array.

 The return value is the number of characters
written.

char fileName[50];
int fileYear = 2012;
int fileMonth = 01;

for (i=0; i<12; i++) {

 sprintf(fileName, “Monthly%4d-%02d.dat”,

 fileYear, fileMonth);

 fopen(fileName, "w");
 fileMonth ++;

}

int main() {

 char *weekday = “Sunday”;

 printf(“Day of the week is %s”, weekday);

 return 0;
}

 How is this code different from before?

#define WEEKDAYS 7

int main() {

 char *weekdays[WEEKDAYS];

 return 0;
}

 What if we initialize all the strings in the
array?

#define WEEKDAYS 7

char *weekdays[WEEKDAYS] = {
 "Sunday" ,
 "Monday" ,
 "Tuesday" ,
 "Wednesday” ,
 "Thursday" ,
 "Friday" ,
 "Saturday"
};

What is the easiest way to print out
the days of the week?

for (i=0; i<WEEKDAYS; i++) {

 printf(“Day %d is %s \n”,
 i, weekdays[i]);

};

 You can give input to a C program from the
command line.

$> gcc -o prog prog.c

$> ./prog 10 name1 name2

 These are the official parameters that are
sent to main from the OS from the command
line.

 Can you guess how the parameters are used?

int main (int argc, char *argv[]) {

}

 main(int argc, char *argv[])

 int argc – gives a count of number of
arguments

 char *argv[] - defines an array of strings

 argv[0] – program name

 argv[1] to argv[argc -1] give the other
arguments as strings

#include <stdio.h>

main(int argc,char *argv[])

{

 int i;

 for(i=0; i < argc; i++) /*print out args*/

 printf("%s\n", argv[i]);

}

$> gcc -o args args.c
$> ./args these are my arguments

./args

these
are
my
arguments

