
1

CMSC 104
Park , adapted by C Grasso

 Turning Strings to Numbers
 Turning Numbers To Strings
 Arrays Of Strings
 Command Line Arguments

 Once we've got a string that contains a
character representation of a number in it ,
we can use the C library to convert it to an
integer or a float.
 atoi()
 atof()

 The functions are part of stdlib.h

 Both of these functions return 0 if they have a
problem

char *numString = "3.14";

double pi;
pi = atof (numString);

int i;
i = atoi ("12");

 The easiest way to turn a numeric data type value
into it’s character representation, is to use
sprintf()

 int sprintf(char *buffer,
 char *format,
 variables...);

 The sprintf() function is just like printf(),

except that the output is sent to a character array.

 The return value is the number of characters
written.

char fileName[50];
int fileYear = 2012;
int fileMonth = 01;

for (i=0; i<12; i++) {

 sprintf(fileName, “Monthly%4d-%02d.dat”,

 fileYear, fileMonth);

 fopen(fileName, "w");
 fileMonth ++;

}

int main() {

 char *weekday = “Sunday”;

 printf(“Day of the week is %s”, weekday);

 return 0;
}

 How is this code different from before?

#define WEEKDAYS 7

int main() {

 char *weekdays[WEEKDAYS];

 return 0;
}

 What if we initialize all the strings in the
array?

#define WEEKDAYS 7

char *weekdays[WEEKDAYS] = {
 "Sunday" ,
 "Monday" ,
 "Tuesday" ,
 "Wednesday” ,
 "Thursday" ,
 "Friday" ,
 "Saturday"
};

What is the easiest way to print out
the days of the week?

for (i=0; i<WEEKDAYS; i++) {

 printf(“Day %d is %s \n”,
 i, weekdays[i]);

};

 You can give input to a C program from the
command line.

$> gcc -o prog prog.c

$> ./prog 10 name1 name2

 These are the official parameters that are
sent to main from the OS from the command
line.

 Can you guess how the parameters are used?

int main (int argc, char *argv[]) {

}

 main(int argc, char *argv[])

 int argc – gives a count of number of
arguments

 char *argv[] - defines an array of strings

 argv[0] – program name

 argv[1] to argv[argc -1] give the other
arguments as strings

#include <stdio.h>

main(int argc,char *argv[])

{

 int i;

 for(i=0; i < argc; i++) /*print out args*/

 printf("%s\n", argv[i]);

}

$> gcc -o args args.c
$> ./args these are my arguments

./args

these
are
my
arguments

