
CMSC 104 - Lecture 26

1

CMSC 104 - Lecture 26

Park , adapted by C Grasso

� Files & Streams

� Basic File I/O Algorithm

� FILE modes

Three Special Streams � Three Special Streams

� Input/Output Operations on Files

� I/O Errors

� Command line arguments

� Use of files

� Store programs

� Store pictures, music, videos

� Can also use files to store program I/O

� A stream is a flow of input or output data

� Characters

� Numbers

� Bytes

� Keyboard input, screen output deal with

temporary data

� When program ends, data is gone

� Data in a file remains after program ends

� Can be used next time program runs

� Can be used by another program

� All data in files is stored in binary
� Long series of zeros and ones

� Files that are a sequence of characters are called
text filestext files
� Program source code

� Can be viewed, edited with text editor

� All other files are called binary files
� Movie, music files

� Executables

� Access requires specialized program

� Figure 10.2 A text file and a binary file

containing the same values

� Declare a file variable

� Associate the variable with a file on the disk

� Open the file

Use the file� Use the file

� Close the file

� Everything that the C programming
environment needs to know about a file is
contained in a data structure called FILE.
� It is the link between your program and the OS

� FILE * represents a pointer to a file.

� fopen() is used to open a file.
� It returns a FILE * if the call was successful.

� It returns NULL to indicate that it couldn't open the
file.

// Specify the name & path of the file
char filename[]= "file2.dat";

// Open the file for output
// Return the ptr to the file structure// Return the ptr to the file structure
FILE *fptr = fopen (filename,"w");

// If the file wasn’t opened, quit
if (fptr == NULL) {

fprintf (stderr, “ERROR”);
exit(-1);

}

� The second argument of fopen is the mode

in which we open the file.

� "r“ - reading

� "w“ - writing

▪ overwrites all previous contents

▪ creates a new file if it does not already exist

� "a“ - appending

▪ adds on to the end of the file

� Sometimes error checking means we want

an "emergency exit" from a program. We

want it to stop dead.

� In main we can use return to stop.

� In functions we can use exit() to do this.

▪ Exit is part of the stdlib.h library

From main() routine
return -1;

From a function
exit(-1);

They are exactly the same.

� File must be closed as soon as all operations
on it completed

fclose (fptr);

� Ensures
� All outstanding information associated with file

flushed out from buffers

� All links to file broken

� Accidental misuse of file prevented

� If want to change mode of file, then first close
and open again

� fprintf() works just like printf() and sprintf()

except that its first argument is a file pointer.

FILE *fptr;
fptr = fopen (" file.dat","w ");

� We could also read numbers from a file using

fscanf() – but there is a better way.

fptr = fopen (" file.dat","w ");
if (fptr != NULL)

fprintf (fptr,"Hello World!\n");

� fgets() is a better way to read from a file
� We can read into a string using fgets()

� fgets() takes 3 arguments� fgets() takes 3 arguments
� a string
� a maximum number of characters to read
� a file pointer

� It returns NULL if there is an error (such as
EOF)

FILE *fptr = fopen (filename,"w");

#define SIZE 1000

char line [SIZE];char line [SIZE];

char *line = fgets(line,SIZE,fptr);

fclose(fptr);

� It is quite common to want to read every

line in a file.

The best way to do this is a while loop � The best way to do this is a while loop

using fgets()

#define MAXLEN 1000
char tline[MAXLEN]; /* A line of text */

FILE *fptr = fopen ("sillyfile.txt","r");

/* check if it's open or at EOF */
while (fgets (tline, MAXLEN, fptr) != NULL)
{

printf ("%s",tline); // Print it
}

fclose (fptr);

� Three special file streams are defined in
the stdio.h header

� stdin reads input from the keyboard

� stdout send output to the screen

� stderr prints errors to an error device

� What might this do ?:

fprintf (stdout,"Hello World!\n");

� fgets() and stdin can be combined to get a

safe way to get a line of input from the

user

#include < stdio.h >#include < stdio.h >
int main()
{

const int MAXLEN=1000;
char readline[MAXLEN];
fgets (readline,MAXLEN, stdin);
printf ("You typed %s",readline);
return 0;

}

� C provides several different functions for
reading/writing
� getc() – read a character

� putc() – write a character� putc() – write a character

� fprintf() – write set of data values

� fscanf() – read set of data values

� getw() – read integer

� putw() – write integer

� Handle one character at a time.

� c = getc(fp2); putc(c,fp1);

� c : a character variable

fp2 : pointer to open file� fp2 : pointer to open file

� File pointer moves by one character position

after every getc() and putc()

� getc() returns end-of-file marker EOF when

file end reached

#include <stdio.h>

main()

{

char c;

FILE *f1 =fopen(“INPUT.txt”, “r”); /* open file */FILE *f1 =fopen(“INPUT.txt”, “r”); /* open file */

while((c=getc(f1))!=EOF) /*read char from file INPUT*/

printf(“%c”, c); /* print character to screen */

fclose(f1);

} /*end main */

� Once we've got a string with a number in it
(either from a file or from the user typing) we
can use the C library to convert it to a number
� atoi()

� atof()

� The functions are part of stdlib.h

� Both of these functions return 0 if they have a
problem

char *numberstring = "3.14";

double pi;
pi= atof (numberstring);

int i;
i= atoi ("12");

� Typical errors that occur

� trying to read beyond end-of-file

� trying to use a file that has not been opened

� perform operation on file not permitted by ‘fopen’

mode

� open file with invalid filename

� write to write-protected file

� int feof (FILE *fptr)

� check if EOF reached

� takes file pointer as input

� returns zero if there is more data to read in the file� returns zero if there is more data to read in the file

if (feof(fp) != 0)
printf(“End of data\n”);

� int ferror(FILE *fptr)

� check if an error has occurred

� takes file-pointer as input

� returns nonzero integer if an error was detected � returns nonzero integer if an error was detected

else returns zero

if(ferror(fp) !=0)
printf(“An error has occurred\n”);

� If the file cannot be opened then fopen() returns

a NULL pointer

� Good practice to check if pointer is NULL before

proceedingproceeding

fp = fopen (“input.dat”, “r”);

if (fp == NULL)

printf (“File could not be opened”);

� Can give input to C program from command line

$> */prog 10 name1 name2 ….

� main (int argc, char *argv[])
� int argc – gives a count of number of arguments

� char *argv[] - defines an array of strings

� argv[0] – program name

� argv[1] to argv[argc -1] give the other arguments as
strings

#include <stdio.h>

main(int argc,char *argv[])
{

int i ;int i ;
for(i=0; i < argc ; i++) /*print out args*/

printf("%s\n", argv[i]);
}

~/C/ > gcc -o args args.c

~/C/ > ./args these are my arguments

./args

these

are

my

arguments

