CMSC 104 - Lecture 26

Park, adapted by C Grasso

File I/O: Part 1 of 2

Overview

Files & Streams

Basic File I/O Algorithm

FILE modes

Three Special Streams
Input/Output Operations on Files
/O Errors

Command line arguments

The Concept of a Stream

Use of files
Store programs
Store pictures, music, videos

Can also use files to store program 1/O
A stream is a flow of input or output data

Characters
Numbers
Bytes

The Concept of a Stream

Input stream

Clutput stream

Kevboard

Monitor

Input stream
Output stream O

Compact disc

Hard disk
Program

Why Use Files for 1/O

Keyboard input, screen output deal with
temporary data

When program ends, data is gone

Data in a file remains after program ends
Can be used next time program runs

Can be used by another program

Text Files and Binary Files

All data infiles is stored in binary
Long series of zeros and ones

Files that are a sequence of characters are called
text files

Program source code
Can be viewed, edited with text editor

All other files are called binary files
Movie, music files
Executables
Access requires specialized program

Text Files and Binary Files

Figure 10.2 A text file and a binary file
containing the same values

A text file

112 (3 4]5 -4 |0 |27 8

A binary file

12345 | -4072 8

Algorithm for Using a File

Declare a file variable

Associate the variable with a file on the disk
Open the file
Use the file
Close the file

FILE structure

Everything that the C programming
environment needs to know about a file is
contained in a data structure called FILE.

It is the link between your program and the OS
FILE * represents a pointer to a file.

fopen() is used to open a file.
It returns a FILE * if the call was successful.

It returns NULL to indicate that it couldn't open the
file.

File handling in C

// Specify the name & path of the file
char filename[]= "file2.dat";

// Open the file for output
// Return the ptr to the file structure
FILE *fptr = fopen (filename,"w");

// If the file wasn’t opened, quit
iIf (fptr == NULL) {
fprintf (stderr, “ERROR?);
exit(-1);

Modes for opening files

The second argument of f open is the mode
in which we open the file.

1\

r - reading
"w" - writing
overwrites all previous contents

creates a new file if it does not already exist

nmn\

a - appending
adds on to the end of the file

The exit() function

Sometimes error checking means we want
an "emergency exit" from a program. We
want it to stop dead.

In main we can use return to stop.

In functions we can use exit() to do this.
Exitis partofthestdl i b. h library

Getting out Quickly

From main() routine
return -1;

From afunction
exit(-1);

They are exactly the same.

Closing a File

File must be closed as soon as all operations
on it completed

fclose (fptr);

Ensures

All outstanding information associated with file
flushed out from buffers

All links to file broken
Accidental misuse of file prevented

If want to change mode of file, then first close
and open again

Writing to a File using fprintf()

fprintf() works just like printf() and sprintf()
except that its first argument is a file pointer.
FILE *fptr,;
fotr = fopen (" file.dat","w ");

If (fptr 1= NULL)
fprintf (fptr,"Hello World\n");

We could also read numbers from a file using
fscanf() — but there is a better way.

Reading from a file using fgets

fgets() is a better way to read from a file
We can read into a string using fgets()

fgets() takes 3 arguments
astring
a maximum number of charactersto read
afile pointer

It returns NULL If thereisan error (such as
EOF)

Reading from a file using fgets

FILE *fptr = fopen (filename,"w");
#define SIZE 1000

char line [SIZE];

char *line = fgets(line,SIZE, fptr);

fclose(fptr);

Reading loops

It is quite common to want to read every
line in a file.

The best way to do this is a while loop
using fgets()

Reading loops

#define MAXLEN 1000
char tline[MAXLEN]; /* A line of text */

FILE *fptr = fopen ("SiInyiIe.txt","r");

[* check if it's open or at EOF */
while (fgets (tline, MAXLEN, fptr) '= NULL)

{
}

printf ("%s",tline); // Print it

fclose (fptr);

Three special streams

Three special file streams are defined in
the st di 0. h header

stdin reads input from the keyboard
stdout send output to the screen

staerr prints errors to an error device

What might this do ?:
fprintf (stdout,"Hello World\n");

Using fgets to read from the

keyboard

fgets() and stdin can be combined to get a
safe way to get a line of input from the
user

#include < stdio.h >
Int main()
{
const int MAXLEN=1000;
char readline[MAXLEN];
fgets (readline, MAXLEN, stdin);
printf ("You typed %s",readline);
return O;

Input/Output operations on files

C provides several different functions for
reading/writing

getc() —read acharacter

putc() —write a character

fprintf() — write set of data values

fscanf() — read set of data values

getw() —read integer

putw() —write integer

getc() and putc()

Handle one character at a time.
c = getc(fp2); putc(c,fpa);
C : a character variable

fp2 : pointer to open file
File pointer moves by one character position

after every getc() and putc()
getc() returns end-of-file marker EOF when

file end reached

Program to read on char at a time

#include <stdio.h>
main()

{

char c;
FILE *f1 =fopen(“INPUT.txt”, “r”);

while((c=getc(f1))!=EOF)
printf(“%c”, c);

fclose(f1);

} /*end main */

Getting numbers from strings

Once we've got a string with a number in it
(either from a file or from the user typing) we
can use the Clibrary to convert it to a number
at oi ()
at of ()

The functions are partof st dl I b. h

Both of these functions return O if they have a
problem

Getting numbers from strings

char *numberstring ="3.14";

double pi;

pi= atof (numberstring);
int I;

1= atol ("12");

Errors that occur during I/O

Typical errors that occur
trying to read beyond end-of-file
trying to use a file that has not been opened

perform operation on file not permitted by ‘fopen’
mode

open file with invalid filename

write to write-protected file

Error handling

int feof (FILE *fptr)
check if EOF reached
takes file pointer as input
returns zero if there is more data to read in the file

if (feof(fp) 1= 0)
printf(*End of data\n”);

Error handling

int ferror(FILE *fptr)

check if an error has occurred
takes file-pointer as input

returns nonzero integer if an error was detected
else returns zero

if(ferror(fp) =0)
printf(“An error has occurred\n™);

Error while opening file

If the file cannot be opened then fopen() returns
a NULL pointer

Good practice to check if pointer is NULL before
proceeding

fp = fopen (“input.dat”, “r");

if(fp ==NULL)
printf (“File could not be opened”);

Command line arguments

Can give input to C program from command line
$> */prog 10 namei name2....

main (int argc, char *argv[])
Int argc — gives a count of number of arguments
char *argv[] - defines an array of strings
argv[o] — program name

argv[1] to argv[argc -1] give the other arguments as
strings

Example args.c

#include <stdio.h>

main(int argc,char *argv[])

{
int 1 ;
for(i=0;1 < argc ; I++) /[*print out args*/

printf("%s\n", argv[i]),

Example args.c

~/C/ > gcc -0 args args.c
~/C/ > .[args these are my arguments

Jargs
these

are

my
arguments

