
CMSC 104 - Lecture 23

1

CMSC 104 - Lecture 23

Park , adapted by C Grasso

Topics

� Static Strings

� Character Arrays

� The Null Terminator

� Reading in Strings� Reading in Strings

� string.h

� ctype.h

� String literals are characters surrounded by double quotes.

"This is a static string""This is a static string"

� Strings are arrays of chars.

char s[] = "This is a static string";char s[] = "This is a static string";

char *s = "This is a static string";

char string[5] ;

� This declaration sets aside a chunk of memory that is big

enough to hold 5 characters.enough to hold 5 characters.

� Besides the space needed for the array, there is also a

variable allocated that has the name of the array. This

variable holds the address of the beginning (address of the

first element) of the array.

-- -- -- -- --

string

0 1 2 3 4

FE00

FE00

char string[6] = { ‘C’, ‘l’, ‘a’, ‘r’, ‘e’, ‘\0’ } ;

string[0] = ‘C’;

string[1] = ‘l’;

string[2] = ‘a’;string[2] = ‘a’;

string[3] = ‘r’;

string[4] = ‘e’;
string[5] = ‘\0’;

C l a r e

string

0 1 2 3 4

FE00

FE00 \0

char string[5+1] = “Clare” ;

char *string = “Clare”;

C l a r e

string

0 1 2 3 4 5

FE00

FE00 \0

#include <stdio.h>

int main()
{

char string[5+1] = “Clare” ;
printf (“string[0] = %c \n”, string[0]) ;
printf (“string[0] = %d \n”, string[0]) ;printf (“string[0] = %d \n”, string[0]) ;
printf (“string = %x \n”, string) ;
printf (“&string[0] = %x \n”, &string[0]) ;
return 0 ;

}

output
string[0] = C
string[0] = 67
string = FE00
&string[0] = FE00

string[2] = ‘a’ ;

� The element assigned the value ‘a’ is stored in a memory

location that is calculated using the following formula:

Location = (beginning address) + (index * sizeof(array data type))

numbers

0 1 2 3 4 5

FE00 FE01 FE02 FE03 FE04 FE05

FE00

Location = (beginning address) + (index * sizeof(array data type))

Assuming a 1-byte char,

Location = FE00 + (2 * 1)

43 6C 61 72 65 00

� As long as we know

– the beginning location of an array,

– the data type being held in the array, and

– the size of the array (so that we don’t go out of – the size of the array (so that we don’t go out of

range),

then we can access or modify any of its elements

using indexing.

� The array name alone (without []) is just a variable

that contains the starting address of the block of

memory where the array is held.

� The array size

#define SIZE 20

� The array definition

int ages[SIZE] ;int ages[SIZE] ;

� The function call:

FillArray (ages, SIZE);

� The function definition :

void FillArray (int ages[], int numElements) {... }

� #define the string size

#define SIZE 5

� The string definition

char string[SIZE +1] ;char string[SIZE +1] ;

� The function call:

FillString (string);

� The function definition :

void FillString (char *string) { ... }

� As demonstrated with arrays, we can pass addresses

to functions. This is known as calling (passing) by

reference.

� When the function is passed an address, it can make

changes to the original (the corresponding actual

parameter). There is no copy made.

� NEVER, NEVER, NEVER use scanf() with

strings.

char ca[2];char ca[2];
int x = 0, y = 0;

scanf(“%s",ca); // input “abcdefg”

14

#define SIZE 100

...

char str1 [SIZE+1];char str1 [SIZE+1];
...

fgets (str1, SIZE, stdin);

15

#define SIZE 100+1

char str1 [SIZE]; // what’s the difference?char str1 [SIZE]; // what’s the difference?

char *str2;

fgets (str1, SIZE, stdin);

fgets (str2, SIZE, stdin); // will this work?

16

� String handling functions

� The strings.h header file has some useful

functions for working with strings. Here are

some of the functions you will use most some of the functions you will use most

often:

17

� int strlen(char *str)

Returns the amount of characters in a string
that appear before the first ‘\0’.

char *s = "abcde";

int i = strlen(s); // i = 5

18

� int strcmp(char *str1, char *str2)

Compares the first and second strings.

� If the str1 > str2, return int > 0

If the str2 < str2, return int < � If the str2 < str2, return int < 0

� If the str1 == str2, return 0

s1 = "abc";

s2 = "abc";
i = strcmp(s1,s2); // i = 0

19

� char *strcpy(char *dest, char *src)

� You can't just assign string1 = string2 ;

� Use the strcpy() to copy the source string to the � Use the strcpy() to copy the source string to the
destination string.
� Overwrites whatever was there before.

char *s1 = "abc";
char *s2 = "xyz";
strcpy(s1,s2); // s1 = "xyz“

20

� char *strcat(char *dest, char *src)

Joins the destination and source strings and

puts the joined string into the destination

string.string.

char s1[3+3+1] = "abc";

char s2[3+1] = "xyz";

strcat(s1,s2); // s1 = "abcxyz"

21

� char *strchr(char *str, int ch)

Returns a pointer to the first occurrence of ch

in string, or NULL if ch is not found.

char s1[3+3+1] = "abc";

char *s2 = strchr(s1,’b’);

printf(“%s”,s2); // what will print?

22

� char *strstr(char *str1, char *str2)

Returns a pointer to the first occurrence of

str2 in str1, or NULL if str2 is not found.

char *s1 = “I am here";

char *s2 = strstr(s1,”am”);

printf(“%s”,s2); // what will print?

23

char *s1 = "a";

char *s2 = "xyz";

strcpy(s1,s2); strcpy(s1,s2);

What will happen?

24

� char *strncpy(char *str1, char * str2, int n)

� char *strncat(char *str1, char * str2, int n)

� int strncmp(char *str1, char * str2, int n)

#define SIZE 20

char s1[SIZE+1] = "abc";

strncat(s1, “defghijk”, SIZE);

25

� isalnum() Check if character is alphanumeric
� isalpha() - Check if character is alphabetic
� iscntrl() - Check if character is a control character
� isdigit() - Check if character is decimal digit
� isgraph() - Check if character has graphical representation� isgraph() - Check if character has graphical representation
� islower() - Check if character is lowercase letter
� isprint() - Check if character is printable
� ispunct() - Check if character is a punctuation character
� isspace() - Check if character is a white-space
� isupper() - Check if character is uppercase letter
� isxdigit() - Check if character is hexadecimal digit
� toupper() – Convert a character to uppercase
� tolower() – Convert a character to lowercase

26

� Create an interactive program that gets a

person’s firstname and displays it, gets the

last name and displays it. Next, put the two

names together to make the whole name and names together to make the whole name and

display it.

27

