
CMSC 104 - Lecture 20

1

CMSC 104 - Lecture 20

Park , adapted by C Grasso

Topics

� Definition of a Data Structure

� Definition of an Array

� Array Declaration, Initialization, and Access� Array Declaration, Initialization, and Access

� Program Example Using Arrays

� So far, we have seen only simple data types,

such as int, float, and char.

� Simple variables can hold only one value at any

time during program execution, although that

value may change.

� A data structure is a data type that can hold

multiple values, in a structured form, at the

same time.

� Synonyms: complex data type, � Synonyms: complex data type,

composite data type

� The array is one kind of data structure.

� We want to write a program that will accept a

collection of numerical grades, and then print

out the mean grade

� How do you calculate the mean ?

5

#include <stdio.h>

int main() {
int counter = 0;
float total = 0.0;

do {do {
scanf(“%d”, &grade);
if (grade >= 0) {

total += grade;
counter++;

}
} while (grade >= 0);

printf(“Mean for %d grades is %f”, counter, total / counter);

return(0);
}

6

� Now, the user wants us to print out the

median grade:

What is the median?� What is the median?

� How do you calculate it from a set of grades?

� What is needed in order to calculate it?

7

� We don’t know in advance exactly how many grades we

will be getting

▪ (We can, however, enforce an upper limit on how many

we can handle)

� Can we do it “in place”, as with calculating the mean?

▪ Unfortunately, NO.

� Can we do it with a collection of simple variables?

▪ Again, NO.

� So, we need a special place to save all the input values

8

� An array is a group of

� related data items with the

� same data type, and share a same data type, and share a

� common name

� Arrays can be of any data type we choose.

� An array’s data items are stored contiguously in

memory.

� Each of the data items is known as an element of

the array.

Each element can be accessed individually.� Each element can be accessed individually.

� The maximum number of elements in the array

remains the same throughout program execution.

� We say that the size of the array is static.

int numbers[5] ;

� The name of this example array is “numbers”.

� This declaration sets aside a chunk of memory that is

big enough to hold 5 integers.

� It does not initialize those memory locations to 0 or

any other value.

� They contain garbage.

int numbers[5] ;

� Initializing an array may be done with an array

initializer, as in :initializer, as in :

int numbers[5] = { 5, 2, 6, 9, 3 } ;

5 2 6 9 3numbers

� Each element in an array has a subscript (index)

associated with it.

� Subscripts are integers and always begin at zero.

5 2 6 9 3numbers

0 1 2 3 4

� Values of individual elements can be accessed by

indexing into the array.

5 2 6 9 3numbers

0 1 2 3 4
� For example,

printf(“The third element = %d. \n”, numbers[2]) ;

would give the output
The third element = 6.

0 1 2 3 4

� A subscript can also be any expression that evaluates

to an integer.

numbers[(a + b) * 2] ;

� Caution! It is a logical error when a subscript

evaluates to a value that greater than the number of

elements declared in the array.

� Some systems will handle an out-of-range error gracefully

and some will not (including ours).

� Individual elements of an array can also be modified

using subscripts.

numbers[4] = 20 ; // 5th element of the array contains 20

� Initial values may be stored in an array using indexing,

rather than using an array initializer.
numbers[0] = 5 ;

numbers[1] = 2 ;

numbers[2] = 6 ;

numbers[3] = 9 ;

numbers[4] = 3 ;

� Since many arrays are quite large, using an

array initializer can be impractical.

� Large arrays are often filled using a for loop.� Large arrays are often filled using a for loop.
for (i = 0; i < 100; i++)
{

values [i] = 0 ;
}

would set every element of the 100 element
array “values” to 0.

int score [39] ;

int gradeCount [5];

� Declares two arrays of type int.� Declares two arrays of type int.

� Neither array has been initialized.

� “score” contains 39 elements

� one for each student in a class

� “gradeCount” contains 5 elements

� one for each possible grade, A - F

#define SIZE 39

#define GRADES 5

int main ()
{
int main ()
{

int score [SIZE] ;
int gradeCount [GRADES] ;

▪

▪

▪

}

Problem: Find the average test score and the
number of A’s, B’s, C’s, D’s, and F’s for a particular
class.

Design:Design:

Main

Print User
Instructions

Calculate
Average Score

#include <stdio.h>

#define SIZE 39 /* number of tests */
#define GRADES 5 /* number of different grades: A, B, C, D, F */

void PrintInstructions () ;
double FindAverage (double sum, int quantity) ;

int main ()
{

int i ; /* loop counter */

int total ; /* total of all scores */

int score [SIZE] ; /* student scores */int score [SIZE] ; /* student scores */

int gradeCount [GRADES] ; /* count of A’s, B’s, C’s, D’s, F’s */

double average ; /* average score */

/* Print the instructions for the user */

PrintInstructions () ;

/* Initialize grade counts array to zero */

for (i = 0; i < GRADES; i++)
{

gradeCount [i] = 0 ;gradeCount [i] = 0 ;
}

/* Fill score array with scores */

for (i = 0; i < SIZE; i++)
{

printf (“Enter next score: ”) ;

scanf (“%d “, &score [i]) ;
}

/* Calculate score total and count number of each grade */

for (i = 0; i < SIZE; i++)
{

total += score [i] ;
switch (score [i] / 10)switch (score [i] / 10)
{

case 10 :
case 9 : gradeCount [4]++ ; break ;
case 8 : gradeCount [3]++ ; break ;
case 7 : gradeCount [2]++ ; break ;
case 6 : gradeCount [1]++ ; break ;
default : gradeCount [0]++ ;

}
}

/* Calculate the average score */

average = FindAverage (total, SIZE) ;

/* Print the results */

printf (“The class average is %.2f\n”, average) ;
printf (“There were %2d As\n”, gradeCount [4]) ;
printf (“ %2d Bs\n”, gradeCount [3]) ;
printf (“ %2d Cs\n”, gradeCount [2]) ;
printf (“ %2d Ds\n”, gradeCount [1]) ;
printf (“ %2d Fs\n”, gradeCount [0]) ;

return 0 ;

} /* end main */

/***
** PrintInstructions - prints the user instructions
** Inputs: None
** Outputs: None** Outputs: None
/***
void PrintInstructions ()
{

printf (“This program calculates the average score\n”) ;
printf (“for a class of 39 students. It also reports the\n”) ;
printf (“number of A’s, B’s, C’s, D’s, and F’s. You will\n”) ;
printf (“be asked to enter the individual scores.\n”) ;

}

/**
** FindAverage - calculates an average
** Inputs: sum - the sum of all values, num - the number of values
** Outputs: the computed average
**/
double FindAverage (double sum, int num) double FindAverage (double sum, int num)
{

double average = 0 ; /* computed average */

if (num != 0) {
average = sum / num ;

}

return average ;
}

� We’re trusting the user to enter valid grades. Let’s add input

error checking.

� If we aren’t handling our array correctly, it’s possible that we

may be evaluating garbage rather than valid scores. We’ll may be evaluating garbage rather than valid scores. We’ll

handle this by adding all the cases for F’s (0 - 59) to our switch

structure and using the default case for reporting errors.

� We still have the “magic numbers” 4, 3, 2, 1, and 0 that are the

quality points associated with grades. Let’s use symbolic

constants for these values.

#include <stdio.h>

#define SIZE 39 /* number of scores */
#define GRADES 5 /* number of different grades: A, B, C, D, F */

#define A 4 /* A’s position in grade count array */#define A 4 /* A’s position in grade count array */
#define B 3 /* B’s position in grade count array */
#define C 2 /* C’s position in grade count array */
#define D 1 /* D’s position in grade count array */
#define F 0 /* F’s position in grade count array */

#define MAX 100 /* maximum valid score */
#define MIN 0 /* minimum valid score */

void PrintInstructions () ;
double FindAverage (double sum, int quantity) ;

int main ()
{

int i ; /* loop counter */

int total ; /* total of all scores */

int score [SIZE] ; /* student scores */int score [SIZE] ; /* student scores */

int gradeCount [GRADES] ; /* count of A’s, B’s, C’s, D’s, F’s */

double average ; /* average score */

/* Print the instructions for the user */

PrintInstructions () ;

/* Initialize grade counts to zero */

for (i = 0; i < GRADES; i++)
{

gradeCount [i] = 0 ;
}}

/* Fill array with valid scores */

for (i = 0; i < SIZE; i++)
{

printf (“Enter next score : ”) ;
scanf (“%d “, &score [i]) ;

while ((score [i] < MIN) || (score [i] > MAX))
{

printf (“Scores must be between”) ;
printf (“ %d and %d\n”, MIN, MAX) ;

printf (“Enter next score : ”) ;
scanf (“%d “, &score [i]) ;

}
}

/* Calculate score total and count number of each grade */
for (i = 0 ; i < SIZE ; i++)
{

total += score [i] ;
switch (score [i] / 10)
{

case 10 :case 10 :
case 9 : gradeCount [A]++ ; break ;
case 8 : gradeCount [B]++ ; break ;
case 7 : gradeCount [C]++ ; break ;
case 6 : gradeCount [D]++ ; break ;
case 5 :
case 4 :
case 3 :
case 2 :
case 1 :
case 0 : gradeCount [F]++ ; break;;

default : printf(“Error in score.\n”) ;
}

}

/* Calculate the average score */

average = FindAverage (total, SIZE) ;

/* Print the results */

printf (“The class average is %.2f\n”, average) ;printf (“The class average is %.2f\n”, average) ;
printf (“There were %2d As\n”, gradeCount [4]) ;
printf (“ %2d Bs\n”, gradeCount [3]) ;
printf (“ %2d Cs\n”, gradeCount [2]) ;
printf (“ %2d Ds\n”, gradeCount [1]) ;
printf (“ %2d Fs\n”, gradeCount [0]) ;

return 0 ;

} /* end main */

� Why is main so large?

� Couldn’t we write functions to:

� Initialize an array to hold all 0s?

� Fill an array with values entered by the user?� Fill an array with values entered by the user?

� Count the grades and find the class average?

� Print the results?

� Yes, we can as soon as we learn about passing

arrays as parameters to functions in the next

lecture.

