
CMSC 104 - Lecture 12

John Y. Park, adapted by C Grasso

1

Topics

� Increment and Decrement Operators

� Assignment Operators

� Debugging Tips� Debugging Tips

2

� The increment operator ++

� The decrement operator --

� Precedence:

� lower than () � lower than ()

� higher than * / and %

� Associativity: right to left

� Increment and decrement operators can only

be applied to variables

� Not to constants or expressions

3

Precedence Associativity

() left to right/inside-out

++ - - right to left

! (not) - (negation) right to left

4

* / % left to right

+ (addition) - (subtraction) left to right

< <= > >= left to right

== != left to right

&& left to right

|| left to right

= += -= *= /= %= right to left

#include <stdio.h>

int main () {

int i = 1 ; init of loop control variable

/* count from 1 to 100 *//* count from 1 to 100 */
while (i < 101) { test of loop termination

printf (“%d “, i) ;
i = i + 1 ; modify loop control

}
return 0 ;

}

5

� The for loop handles details of the counter-controlled loop
“automatically”.

� The initialization of the the loop control variable, the
termination condition test, and control variable modification termination condition test, and control variable modification
are handled in the for loop structure.

for (i = 1 ; i < 101 ; i = i + 1) {

init test modify

}

6

� Just as with a while loop, a for loop
� initializes the loop control variable before beginning

the first loop iteration

� performs the loop termination test before each � performs the loop termination test before each
iteration of the loop

� modifies the loop control variable at the very end of
each iteration of the loop

� The for loop is easier to write and read for
counter-controlled loops.

7

for (i = 0; i < 10; i = i + 1)
{

printf (“%d \ n”, i) ;
}

8

for (i = 9; i >= 0; i = i - 1)
{

printf (“%d \ n”, i) ;printf (“%d \ n”, i) ;
}

9

for (i = 0; i < 10; i = i + 2)
{

printf (“%d \ n”, i) ;
}

10

� If we want to add one to a variable, we can say:
count = count + 1 ;

� Programs often contain statements that � Programs often contain statements that
increment variables, so C provides these
shortcuts:

count ++ ; OR ++count ;

Both do the same thing. They change the value
of count by adding one to it.

11

� The position of the ++ determines when the value is

incremented. If the ++ is after the variable, then the

incrementing is done last (a post -increment).

int amount, count ;int amount, count ;

count = 3 ;
amount = 2 * count++ ;

� After executing the last line, what values do amount and

count contain?

12

� If the ++ is before the variable, then the

incrementing is done first (a pre-increment).

int amount, count ;

count = 3 ;
amount = 2 * ++count ;

� After executing the last line, what values do amount
and count contain?

13

#include <stdio.h>
int main ()
{

int i = 1 ;

while (i < 11)
{

printf (“%d ”, i) ;

i++ ;
}
return 0 ;

}

14

� If we want to subtract one from a variable, we can
say:

count = count - 1 ;

� Programs often contain statements that
decrement variables, so C provides these shortcuts:

count -- ; OR -- count ;

Both do the same thing. They change the value of
count by subtracting one from it.

15

� If the -- is after the variable, then the

decrementing is done last (a post-decrement).

int amount, count ;int amount, count ;

count = 3 ;
amount = 2 * count-- ;

� After executing the last line, what values do amount and

count contain?

16

� If the -- is before the variable, then the

decrementing is done first (a pre-decrement).

int amount, count ;int amount, count ;

count = 3 ;
amount = 2 * --count ;

� After executing the last line, what values do amount
and count contain?

17

int answer, value = 4 ;

Code answer value

garbage 4garbage 4
value = value + 1 ;
value++ ;
++value ;
answer = 2 * value++;

18

int answer, value = 4 ;

Code value answer
answer = ++value / 2 ;answer = ++value / 2 ;
value-- ;
--value ;
answer = --value * 2 ;
answer = value-- / 3 ;

19

Given
int a = 1, b = 2, c = 3 ;

What is the value of this expression?

++a * b - c--

What are the new values of a, b, and c?

20

Given
int a = 1, b = 2, c = 3, d = 4 ;

What is the value of this expression?

++b / c + a * d++

What are the new values of a, b, c, and d?

21

= += -= *= /= %=

Statement Equivalent Statement
a = a + 2 ; a += 2 ;
a = a - 3 ; a - = 3 ;a = a - 3 ; a - = 3 ;
a = a * 2 ; a *= 2 ;
a = a / 4 ; a /= 4 ;
a = a % 2 ; a %= 2 ;
b = b + (c + 2) ; b += c + 2 ;
d = d * (e - 5) ; d *= e - 5 ;

22

int i = 1, j = 2, k = 3, m = 4 ;

Expression ValueExpression Value

i += j + k

j *= k = m + 5

k -= m /= j * 2

23

#include <stdio.h>
int main ()
{

int num, temp, digits = 0 ;
temp = num = 4327 ;temp = num = 4327 ;

while (temp > 0)
{

printf (“%d\n”, temp) ;
temp /= 10 ;
digits++ ;

}
printf (“%d digits in %d.\n”, digits, num) ;
return 0 ;

}

24

� Trace your code by hand (a hand trace),

keeping track of the value of each variable.

� Insert temporary printf () statements so

you can see what your program is doing.

� Confirm that the correct value(s) has been read in.

� Check the results of arithmetic computations

immediately after they are performed.

25

