
CMSC 104 - Lecture 11

John Y. Park, adapted by C Grasso

CMSC 104 - Lecture 11

John Y. Park, adapted by C Grasso

1

Topics

� Multiple Selection vs Binary Selection

switch Statement� switch Statement

� char data type and getchar () function

� Reading newline characters

2

� So far, we have only seen binary selection.

if (age >= 18) {

printf (“Vote! \ n”) ;

if (age >= 18) {

printf (“Vote! \ n”) ;

3

printf (“Vote! \ n”) ;

}

printf (“Vote! \ n”) ;

}

else {

printf(“Nope!\n”) ;

}

� Sometimes it is necessary to branch in more

than two directions.

� We do this using multiple selection.

4

if (day == 0) {
printf (“Sunday”) ;

}
if (day == 1) {

printf (“Monday”) ;
}

(continued)

if (day == 4) {
printf (“Thursday”) ;

}

5

}
if (day == 2) {

printf (“Tuesday”) ;
}
if (day == 3) {

printf (“Wednesday”);
}

if (day == 5) {
printf (“Friday”) ;

}
if (day == 6) {

printf (“Saturday”) ;
}
if ((day < 0) || (day > 6)) {

printf(“Invalid day.\n”);
}

if (day == 0) {
printf (“Sunday”) ;

} else if (day == 1) {
printf (“Monday”) ;

} else if (day == 2) {
printf (“Tuesday”) ;

Why is this if -else
structure is more
efficient than the
corresponding if } else if (day == 3) {

printf (“Wednesday”) ;
} else if (day == 4) {

printf (“Thursday”) ;
} else if (day == 5) {

printf (“Friday”) ;
} else if (day == 6) {

printf (“Saturday”) ;
} else {

printf (“Invalid day.\n”)
;

}
6

corresponding if
structure?

if (day == 0) {
printf (“Sunday”) ;
day = 3;

}
if (day == 1) {

printf (“Monday”) ;
} vs.

if (day == 0) {
printf (“Sunday”) ;
day = 3;

}
else if (day == 1) {

printf (“Monday”) ;
}}

if (day == 2) {
printf (“Tuesday”) ;

}
if (day == 3) {

printf (“Wednesday”) ;
}
if (day == 4) {

printf (“Thursday”) ;
}
…

7

vs. }
else if (day == 2) {

printf (“Tuesday”) ;
}
else if (day == 3) {

printf (“Wednesday”) ;
}
else if (day == 4) {

printf (“Thursday”) ;
}
…

� The multiple selection mechanism in C is the
switch statement.

� Test a single integer variable against multiple

different constant integer valuesdifferent constant integer values

� Execute statements based on the success of each

test.

� Will fall through and execute the statements in

the next value unless told otherwise

8

switch (integer expression)
{

case constant1 :
statement(s)

break ;
case constant2 :

break ;
case constant2 :

statement(s)

break ;

. . .
default:

statement(s)

break ;
}

9

� The last statement of each case in the switch should almost

always be a break .

� The break causes program control to jump to the closing

brace of the switch structure.brace of the switch structure.

� Without the break , the code flows into the next case . This is

almost never what you want.

� A switch statement will compile without a default case, but

always consider using one.

10

� Include a default case to catch invalid
data.

� Inform the user of the type of error that has � Inform the user of the type of error that has
occurred (e.g., “Error - invalid day.”).

� If appropriate, display the invalid value.

� If appropriate, terminate program execution

11

switch (day)
{

case 0: printf (“Sunday\n”) ;
break ;

case 1: printf (“Monday\n”) ;
break ;

case 2: printf (“Tuesday\n”) ;
break ;

Is this structure more
efficient than the
equivalent nested if-break ;

case 3: printf (“Wednesday\n”) ;
break ;

case 4: printf (“Thursday\n”) ;
break ;

case 5: printf (“Friday\n”) ;
break ;

case 6: printf (“Saturday\n”) ;
break ;

default: printf (“Invalid.\n”);
break ;

}

12

equivalent nested if-
else structure?

� A switch statement can be more efficient

than an if-else.

A switch statement may also be easier to � A switch statement may also be easier to

read.

� Also, it is easier to add new cases to a switch

statement than to a nested if-else structure.

13

� The char data type holds a single character.
char ch;

� Example assignments:� Example assignments:

char grade, symbol;
grade = ‘B’;
symbol = ‘$’;

� The char is held as a one-byte integer in memory. The

ASCII code is what is actually stored, so we can use them

as characters or integers, depending on our need.
14

� Use

scanf (“%c”, &ch) ;

to read a single character into the variable ch.

� Use

printf(“%c”, ch) ;

to display the value of a character variable.

15

#include <stdio.h>
int main ()
{

char ch ;

printf (“Enter a character: “) ;
scanf (“%c”, &ch) ;
printf (“The value of %c is %d.\n”, ch , ch) ;

return 0 ;
}

If the user entered an A, the output would be:

The value of A is 65.

16

� The getchar () function is found in the stdio

library.

� The getchar () function reads one character � The getchar () function reads one character

from stdin (the keyboard) and returns that

character’s ASCII value.

� The value can be stored in either a character

variable or an integer variable.

17

#include <stdio.h>
int main ()
{

char ch ; /* int ch would also work! */

printf (“Enter a character: “) ;

18

printf (“Enter a character: “) ;
ch = getchar() ; /*same as scanf(“%c”, &ch); */

printf (“The value of %c is %d.\n”, ch , ch) ;
return 0 ;

}

If the user entered an A, the output would be:

The value of A is 65.

� When getting characters, whether using scanf () or getchar (),

realize that you are reading only one character.

� What will the user actually type? � What will the user actually type?

� The character - followed by pressing ENTER.

� So, the user is actually entering two characters, the response and

the newline character.

� Unless you handle this, the newline character will remain in the

stdin stream causing problems the next time you want to read a
character. Another call to scanf () or getchar () will remove it.

19

� When we were reading integers using scanf (), we didn’t seem
to have problems with the newline character, even though the
user was typing ENTER after the integer.

� That is because scanf () was looking for the next integer and � That is because scanf () was looking for the next integer and
ignored the newline (whitespace).

� If we use scanf (“%d”, &num); to get an integer, the newline is
still stuck in the input stream.

� If the next item we want to get is a character, whether we use
scanf () or getchar (), we will get the newline.

� We have to take this into account and remove it.
20

#include <stdio.h>
int main ()
{

char ch, newline ;

printf (“Enter a character: “) ;

21

printf (“Enter a character: “) ;
ch = getchar() ;
newline = getchar() ;
printf (“The value of %c is %d.\n”, ch, ch) ;

printf (“Enter another character: “) ;
ch = getchar() ;
newline = getchar() ;
printf (“The value of %c is %d.\n”, ch, ch) ;

return 0 ;
}

Choose one option:
1 – Convert Fahrenheit to Celsius
2 – Convert kilometers to miles
3 – Convert knots to miles per hour3 – Convert knots to miles per hour
0 – Exit program

1. Display this menu to the user’s console
2. Get the user’s choice as a character
3. Call an appropriate method to perform that

conversion

22

int main()
{

int num = 0;

do {

} while (num < 0) ;

return 0;
}

23

int main()
{

int num = 0;

do {
printf ("Enter a positive number: ");printf ("Enter a positive number: ");
scanf ("%d", &num) ;

if (num < 0) {
printf ("\nTry again\n");

}

} while (num < 0) ;

return 0;
}

24

int main()
{

char option ;

do {
printf ("Choose one option: \n");printf ("Choose one option: \n");
...
option = getchar();

if (option == 0) { ... }
if (option == 1) { ... }
...

} while (option < 0 || option > 3) ;
}

25

if (option == ‘1’) {
convertFahrenhetToCelsius();

}
else if (option == ‘2’) {

convertKilosToMiles();
}}
else if (option == ‘3’) {

convertKnotsToMph();
}
else if (option == ‘0’) {

return 0 ;
}

26

switch (option)
{

case ‘1’ : convertFahrenhetToCelsius();
break;

case ‘2’ : convertKilosToMiles () ;case ‘2’ : convertKilosToMiles () ;
break;

case ‘3’ : convertKnotsToMph() ;
break;

case ‘0’ : return 0 ;
break;

default: printf(“%c is invalid\n”,option);
break;

}

27

switch (option)
{

case ‘1’ : ...
break;

case ‘ ‘ : // blank
case ‘\n‘ : // newline
case ‘\t‘ : // tab

break;

default: ...
break;

}

28

class IfElseDemo {

public static void main(String[] args) {

int testscore = 76;

char grade;

if (testscore >= 60) { grade = 'D'; } if (testscore >= 60) { grade = 'D'; }

else if (testscore >= 70) { grade = 'C'; }

else if (testscore >= 80) { grade = 'B'; }

else if (testscore >= 90) { grade = 'A'; }

else { grade = 'F'; }

System.out.println("Grade = " + grade); }

}

29

