CMSC 104 - Lecture 11

JohnY. Park, adapted by C Grasso

The C“switch” Statement

The switch Statement

Topics

Multiple Selection vs Binary Selection
switch Statement

char datatypeand getchar ()function

Reading newline characters

Binary Selection

So far, we have only seen binary selection.

if (age >=18) { If (age >=18) {
printf (“Vote! \n"); printf (“Vote! \n");
} }
else {

printf(“Nope\n”) ;

Multiple Selection

Sometimes it is necessary to branch in more
than two directions.

We do this using multiple selection.

Multiple Selection

if(day==0){ (continued)
printf (“Sunday”) ;

} if (day == 4) {

if (day == 1) { printf (“Thursday”) ;
printf (“Monday”) ;]

} B if (day == 5) {

if (day == 2) { printf (“Friday”) ;
printf (“Tuesday”) ; }

} B if (day == 6) {

if (day == 3) { printf (“Saturday”) ;
printf (“Wednesday”);]

} if (day < 0) || (day > 6)) {

printf(“Invalid day.\n");
}

Multiple Selection with if-else

if (day ==0) {
printf (“Sunday”) ;
}else if (day == 1) {
printf (“Monday”) ;
} else if (day == 2) {
printf (“Tuesday”) ;
} else if (day == 3) {
printf (“Wednesday”) ;
} else if (day == 4) {
printf (“Thursday”) ;
} else if (day ==5) {
printf (“Friday”) ;
} else if (day == 6) {
printf (“Saturday”) ;
} else {
printf (“Invalid day.\n”)

Why is this If -else
structure IS more

efficient than the
corresponding If
structure?

Multiple Selection with if-else

if (day == 0) {
printf (“Sunday”) ;
day = 3;
}
if (day == 1) {
printf (“Monday”) ;
}
if (day == 2) {
printf (“Tuesday”) ;

}
if (day == 3) {

printf (“Wednesday”) ;

}
if (day == 4) {

printf (“Thursday”) ;
}

VS.

if (day == 0){
printf (“Sunday”) ;
day = 3;

}

else if (day == 1) {
printf (“Monday”) ;
}
else if (day == 2) {
printf (“Tuesday”) ;
}
else if (day == 3) {
printf (“Wednesday”) ;
}
else if (day == 4) {
printf (“Thursday”) ;
}

Multiple Selection with switch

The multiple selection mechanismin Cis the
switch statement.

Test a single integer variable against multiple
different constant integer values

Execute statements based on the success of each
test.

Will fall through and execute the statements in
the next value unless told otherwise

The switch Multiple-Selection Structure

switch (integer expression)
{
case constantz :
statement(s)
break ;
case constant2 :

statement(s)
break ;

default:

statement(s)
break ;

case : break;

The last statement of each case in the switch should almost
always be a break .

The break causes program control to jump to the closing
brace of the switch structure.

Without the break , the code flows into the next case . This is
almost never what you want.

A switch statement will compile without a default case, but
always consider using one.

10

default:

Include adefault case to catchinvalid
data.

Inform the user of the type of error that has
occurred (e.qg., “Error - invalid day.”).

If appropriate, display the invalid value.

If appropriate, terminate program execution

11

switch Example

switch (day)
{
case 0: printf (“Sunday\n”) ;
break ;
case 1: printf (“Monday\n”) ;
break ;
case 2: printf (“Tuesday\n”) ;
break ;

case 3: printf (“Wednesday\n”) ;

break ;

case 4. printf (“Thursday\n”) ;
break ;

case 5: printf (“Friday\n”) ;
break ;

case 6. printf (“Saturday\n”) ;
break ;

default: printf (“Invalid.\n");
break ;

|s this structure more
efficient than the
equivalent nested if-
else structure?

12

Why Use a switch Statement?

A switch statement can be more efficient
than an if-else.

A switch statement may also be easier to
read.

Also, it is easier to add new cases to a switch
statement than to a nested if-else structure.

13

The char Data Type

The char data type holds a single character.
char ch;

Example assignments:

char grade, symbol,
grade ='B’;
symbol = ‘$’;

The char is held as a one-byte integer in memory. The
ASCII code is what is actually stored, so we can use them
as characters or integers, depending on our need.

14

The char Data Type (con’t)

Use
scanf ("%c"”, &ch) ;

to read a single character into the variable ch.

Use
printf("%c”, ch) ;

to display the value of a character variable.

15

char Example

#include <stdio.h>
int main ()

{

char ch

printf (“Enter a character: “) ;
scanf (“%c”, &ch);

printf (“The value of %c is %0d\n”, ch, ch);
return O ;
}

If the user entered an A, the output would be:
The value of A is 65.

16

The getchar () Function

The getchar () functionis found in the stdio
library.

The getchar () function reads one character
from stdin (the keyboard) and returns that
character’s ASClI value.

The value can be stored in either a character
variable or an integer variable.

17

getchar () Example

#include <stdio.h>
int main ()

{

charch : /[*int ch would also work! */

printf (“Enter a character:) ;

ch = getchar() ; [*same as scanf(“%c”, &ch); */
printf (“The value of %c is %d\n”, ch, ch);
return O ;

}

If the user entered an A, the output would be:
The value of A is 65.

18

Problems with Reading Characters

When getting characters, whether using scanf () or getchar (),
realize that you are reading only one character.

What will the user actually type?
The character - followed by pressing ENTER.

So, the user is actually entering two characters, the response and
the newline character.

Unless you handle this, the newline character will remain in the
stdin stream causing problems the next time you want to read a
character. Another call to scanf () orgetchar () will remove it.

19

Additional Concerns with Garbage in stdin

When we were reading integers using scanf (), we didn’t seem
to have problems with the newline character, even though the
user was typing ENTER after the integer.

That is because scanf () was looking for the next integer and
ignored the newline (whitespace).

If we use scanf (“"%d"”, &num); to get an integer, the newline is
still stuck in the input stream.

If the next item we want to get is a character, whether we use
scanf ()orgetchar (), we will getthe newline.

We have to take this into account and remove it.

20

Improved Character Example

#include <stdio.h>
int main ()

{

char ch, newline

printf (“Enter a character:) ;

ch = getchar() ;

newline = getchar() ;

printf (“The value of %c is %d.\n", ch, ch) ;

printf (“Enter another character: “) ;

ch = getchar() ;

newline = getchar() ;

printf (“The value of %c is %d.\n", ch, ch) ;

return O ;

Choose one option:
1 - Convert Fahrenheit to Celsius
2 - Convert kilometers to miles
3 - Convert knots to miles per hour
@ - Exit program

Display this menu to the user’s console
Get the user’s choice as a character

Call an appropriate method to perform that
conversion

22

Menu.cC

int main()
{
int num = O;
do {
} while (num < @) ;

return 0;

¥

23

do-while - Get User Input

int main()

{

int num = O;

do { e i =

} while (num < @) ;

return 0;

¥

24

do-while -- Menu

int main()

{

char option ;

do {
printf ("Choose one option: \n");

option = getchar();

if (option
if (option

0){ ...}
1){ ...}

} while (option < © || option > 3) ;
}

25

Multiple Selection with if-else

if (option ==1") {
convertFahrenhetToCelsius();

}

else if (option == ‘2’) {
convertKilosToMiles();

}

else if (option == ‘3") {
convertKnotsToMph();

}

else if (option ==‘0") {
return O ;

}

26

Multiple Selection with switch

switch (option)

{
case ‘L' . convertFahrenhetToCelsius();
break;
case ‘Z . convertKilosToMiles 0;
break;
case “ convertkKnotsToMph() ;
break;
case ‘0 . returnO;
break;
default: printf(“%c is invalid\n”,option);
break;
}

27

Ignoring Whitespace in Input

switch (option)

case ‘1’ : ...
break:

default:
break;

28

class IfElseDemo §

public static void main(String[] args) {
int testscore = 76;
char grade;
if (testscore >= 60) { grade ='D’; }
else if (testscore >=70) {grade ='C'; }
else if (testscore >= 80) { grade ='B'; }
else if (testscore >=9o) { grade ="'A’; }
else { grade ='F'; }
System.out.printin("Grade =" + grade); }

29

