
CMSC 104 - Lecture 10

John Y. Park, adapted by C Grasso

CMSC 104 - Lecture 10

John Y. Park, adapted by C Grasso

1

Topics

� Counter-Controlled (Definite) Repetition

� Event-Controlled (Indefinite) Repetition

� for Loopsfor Loops

� do-while Loops

� Choosing an Appropriate Loop

� Break and Continue Statements

2

� If it is known in advance exactly how many

times a loop will execute, it is known as a

counter-controlled loop.

int i = 1 ;
while (i <= 10) {

printf(“i = %d \n”, i) ;
i = i + 1 ;

}

3

� If it is NOT known in advance exactly how many

times a loop will execute, it is known as an event-

controlled loop.

sum = 0 ;sum = 0 ;
printf(“Enter an integer value: “) ;
scanf(“%d”, &value) ;

while (value != -1) {
sum = sum + value ;
printf(“Enter another value: “) ;
scanf(“%d”, &value) ;

}
4

� An event-controlled loop will terminate when

some event occurs.

� The event may be the occurrence of a

sentinel value, as in the previous example.

� There are other types of events that may

occur, such as reaching the end of a data file.

5

#include <stdio.h>

int main () {

int i = 1 ; init of loop control variable

/* count from 1 to 100 *//* count from 1 to 100 */
while (i < 101) { test of loop termination

printf (“%d “, i) ;
i = i + 1 ; modify loop control

}
return 0 ;

}

6

� The for loop handles details of the counter-controlled loop
“automatically”.

� The initialization of the the loop control variable, the
termination condition test, and control variable modification termination condition test, and control variable modification
are handled in the for loop structure.

for (i = 1 ; i < 101 ; i = i + 1) {

init test modify

}

7

� Just as with a while loop, a for loop
� initializes the loop control variable before

beginning the first loop iteration

� performs the loop termination test before each � performs the loop termination test before each
iteration of the loop

� modifies the loop control variable at the very end
of each iteration of the loop

� The for loop is easier to write and read for
counter-controlled loops.

8

for (i = 0; i < 10; i = i + 1)
{

printf (“%d \ n”, i) ;
}

9

for (i = 9; i >= 0; i = i - 1)
{

printf (“%d \ n”, i) ;printf (“%d \ n”, i) ;
}

10

for (i = 0; i < 10; i = i + 2)
{

printf (“%d \ n”, i) ;
}

11

do {
statement(s)

} while (condition) ;} while (condition) ;

� The body of a do-while is ALWAYS executed

at least once.

� Is this true of a while loop?

� What about a for loop?

12

do {
printf (“Enter a positive number: “);
scanf (“%d”, &num) ;

if (num <= 0) {
printf (“\n Not positive. Try again\n”);

}

} while (num <= 0) ;

13

printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

while (num <= 0) {
printf (“ \ nNot positive. Try again \ n”) ;printf (“ \ nNot positive. Try again \ n”) ;
printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

}

� Notice that using a while loop in this case requires a
priming read.

14

printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

for (; num <= 0;) {
printf (“ \ nNot positive. Try again \ n”) ;

15

printf (“ \ nNot positive. Try again \ n”) ;
printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

}

• A for loop is a very awkward choice here because
the loop is event-controlled.

� for loop

� for counter-controlled repetition.

while or do-while loop � while or do-while loop

� for event-controlled repetition.

▪ Use a do-while loop when the loop must execute at least

once.

▪ Use a while loop when it is possible that body of the loop

may never execute.

16

� Loops may be nested (embedded) inside of

each other.

� Actually, any control structure (sequence,

selection, or repetition) may be nested inside

of any other control structure.

� It is common to see nested for loops.

17

� How many times is the “if” statement executed?
� What is the output ?

for (i = 1; i < 5; i = i + 1)
{{

for (j = 1; j < 3; j = j + 1)
{

if (j % 2 == 0)
{

printf (“O”);
} else {

printf (“X”) ;
}

}
printf (“\n”) ;

}

18

� The break statement can be used in while,

do-while, and for loops to cause

premature exit of the loop. premature exit of the loop.

� THIS IS NOTA RECOMMENDED CODING

TECHNIQUE.

19

� What is the output ?

#include <stdio.h>

int main ()
{{

int i ;
for (i = 1; i < 10; i = i + 1)
{

if (i == 5) {
break ;

}
printf (“%d “, i) ;

}
printf (“\nBroke out of loop at i = %d.\n”, i) ;
return 0 ;

}
20

� The continue statement can be used in
while, do-while, and for loops.

� It causes the remaining statements in the � It causes the remaining statements in the
body of the loop to be skipped for the
current iteration of the loop.

� THIS IS NOTA RECOMMENDED CODING
TECHNIQUE.

21

� What is the output ?

#include <stdio.h>

int main ()
{{

int i ;
for (i = 1; i < 10; i = i + 1) {

if (i == 5) {
continue ;

}
printf (“%d ”, i) ;

}
printf (“\nDone.\n”) ;
return 0 ;

}

22

