
CMSC 104 - Lecture 8

John Y. Park, adapted by C GrassoJohn Y. Park, adapted by C Grasso

1

Topics

� Relational Operators and Expressions
� The if Statement� The if Statement

� The if -else Statement

� Nesting of if -else Statements

� Logical Operators and Expressions

� Truth Tables

2

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== is equal to== is equal to

!= is not equal to

Relational expressions evaluate to the integer
values 1 (true) or 0 (false).

All of these operators are called binary operators

because they take two expressions as operands.

3

int a = 1, b = 2, c = 3 ;

Expression - true or false ?
a < c
b <= cb <= c
c <=a
a > b
b >= c

a + b >= c
a + b == c
a != b
a + b != c

4

� Arithmetic expressions evaluate to numeric

values.

An arithmetic expression that has a value of � An arithmetic expression that has a value of

zero is false.

� An arithmetic expression that has a value

other than zero is true.

5

int a = 1, b = 2, c = 3 ;

float x = 3.33 y = 6.66 ;

Expression Numeric Value True/FalseExpression Numeric Value True/False
a + b
b - 2 * a
c - b - a
c - a
y - x
y - 2 * x

6

� All programs can be written in terms of

only three control structures

� The sequence structure

▪ Unless otherwise directed, the statements are ▪ Unless otherwise directed, the statements are

executed in the order in which they are written.

� The selection structure

▪ Used to choose among alternative courses of action.

� The repetition structure

▪ Allows an action to be repeated while some

condition remains true.

7

if (condition) {
statement(s) /* body of the if statement */

}

The braces are not required if the body contains only a

single statement. However, they are a good idea and

are required by the 104 C Coding Standards.

8

if (age >= 18) {

printf(“ Go Vote!\n”) ;

}

9

}

if (value == 0) {
printf (“The value you entered was zero.\n”) ;

}

� Always place braces around the body of an if
statement.

� Advantages:
� Easier to read� Easier to read

� Will not forget to add the braces if you go back and
add a second statement to the body

� Less likely to make a semantic error

� Indent the body of the if statement 3 to 4 spaces
-- be consistent!

10

if (condition) {

statement(s) /* the if clause */
} else {

statement(s) /* the else clause */statement(s) /* the else clause */

}

� Note that there is no condition for the else.

11

if (age >= 18) {

printf(“Go Vote! \n”) ;

} else {

12

} else {

printf(“Maybe next time! \n”) ;

}

if (value == 0) {

printf (“The value you entered was zero.”);

} else {

printf (“Value = %d. \n”, value) ;

}

13

if (condition
1

)
{

...
}
else if (condition) else if (condition

2
)

{
...

}
. . . /* more else-if clauses may be here */

}
else
{

. . . /* the default case */
}

14

if (x == 1)
{

...
}
else if (x == 2)
{

if (x == 1)
{

...
}
else /* x != 1 */{

...
}
else
{

...
}

else /* x != 1 */

{
if (y == ‘b’)

{
...

}
}

15

if (value == 0)
{

printf (“The value you entered was 0”) ;
}
else if (value < 0) else if (value < 0)
{

printf (“%d is negative.\n”, value) ;
}
else
{

printf (“%d is positive.\n”, value) ;
}

16

int a = 2 ;

if (a = 1) { // semantic (logic) error!
printf (“a is one \n”) ;

} }
else if (a == 2)
{

printf (“a is two\n”) ;
}
else
{

printf (“a is %d\n”, a) ;
}

17

� The statement if (a = 1) is syntactically

correct,

� No error message will be produced.

▪ Some compilers will produce a warning.▪ Some compilers will produce a warning.

� However, a semantic (logic) error mayoccur.

� An assignment expression has a value -- the value

being assigned.

� In this case the value being assigned is 1, which is true.

18

� If the value being assigned was 0, then the expression

would evaluate to 0, which is false.

� This is a VERY common error. So, if your if-else structure This is a VERY common error. So, if your if-else structure

always executes the same, look for this typographical

error.

19

� So far we have seen only simple conditions.

if (count > 10) . . .

� Sometimes we need to test multiple conditions in order

to make a decision.to make a decision.

� Logical operators are used for combining simple

conditions to make complex conditions.

&& is AND if (x > 5 && y < 6)

| | is OR if (z == 0 || x > 10)

! is NOT if (! (bob > 42))

20

if (age < 1 && gender == ‘f’)
{

printf (“You have a baby girl! \n”) ;
}}

21

Exp1 Exp2 Exp1 && Exp2

0 0 0

0 nonzero 0

22

Exp1 && Exp2 && … && Expn will evaluate to 1 (true) only if
ALL subconditions are true.

0 nonzero 0

nonzero 0 0

nonzero nonzero 1

if (grade == ‘D’ || grade == ‘F’)
{

printf (“See you next semester! \n”) ;
}}

23

Exp1 Exp2 Exp1 && Exp2

0 0 0

0 nonzero 1

24

Exp1 && Exp2 && … && Expn will evaluate to 1
(true) if only ONE subcondition is true.

0 nonzero 1

nonzero 0 1

nonzero nonzero 1

if (! (x == 2)) // same as (x != 2)
{

printf(“x is not equal to 2.\n”) ;
}

25

}
else
{

printf(“x is equal to 2.\n”);
}

Exp1 ! Exp1

0 1

nonzero 0

26

nonzero 0

Precedence Associativity

() left to right/inside-out

! (not) - (negation) right to left

* / % left to right* / % left to right

+ (addition) - (subtraction) left to right

< <= > >= left to right

== != left to right

&& left to right

|| left to right

= right to left

27

int a = 1, b = 0, c = 7;

Expression Numeric Value True/False
aa
b
c
a + b
a && b
a || b

28

int a = 1, b = 0, c = 7;

Expression Numeric Value True/False
!c
!! c!! c
a && !b
a < b && b < c
a > b && b < c
a >= b || b > c

29

Given
int a = 5, b = 7, c = 17 ;

evaluate each expression as True or False.

c / b == 2c / b == 2

c % b <= a % b

b + c / a != c – a

(b < c) && (c == 7)

(c + 1 - b == 0) || (b = 5)

30

