
2008/11/05: Lecture 15

CMSC 104, Section 0101

John Y. Park

1

Topics

� Review 0f C program

� Functions - Overview

� Using Predefined Functions� Using Predefined Functions

� Programmer-Defined Functions

� Using Input Parameters

� Function Header Comments

int main()
{

float radius; /* input - radius of a circle */
float area; /* output - area of a circle */
float circum; /* output - circumference of a circle */

/* Ask the user to input the radius */
printf("Enter radius > ");printf("Enter radius > ");
scanf("%f", &radius);

/* Calculate the circumference */
area = PI * radius * radius;

/* Calculate the circumference */
circum = 2 * PI * radius;

/* Display the area and circumference */
printf("The area is %.4f \n", area);
printf("The circumference is %.4f \n", circum);

return(0);
}

� Involves repeatedly decomposing a problem

into smaller problems

� Eventually leads to a collection of small

problems or tasks each of which can be easily problems or tasks each of which can be easily

coded

� The function construct in C is used to write

code for these small, simple problems.

� Each recipe has the same types of inputs and outputs as

a meal

� Raw food is the input data

� The steps to follow is the code

� The dish is the output

� Most meals have more than one part, so they have more

than one recipe

� 1 for main dish

� 1 for each side

� 1 for dessert

� A function has the same parts as a recipe

� The parameters are the input

� Executable steps implement the logic

� The return value is the output� The return value is the output

� An application is broken into many functions

� Each function implements a small, logical amount of work

� Functions are meant to be reused

� C programs are made up of one or more functions
� The main() function is required in all C programs

� Execution always begins with main()Execution always begins with main()
� By convention, main() is located before all other functions.

� When program control encounters a function name, the
function is called (invoked).

� Program control passes to the function.

� The function is executed.

� Control is passed back to the calling function to the next
statement after the call.

#include <stdio.h>

int main () printf is the name of a predefined

{ function in the stdio library

printf (“Hello World! \n”) ; this statement is

return 0 ; is known as a

} function call

this is a string we are passing

as an argument to

the printf () function

� We have used two predefined functions so far:

� printf

� scanf� scanf

� Programmers can write their own functions.

� Name

� Input - Parameters

� Output - Value

Statements� Statements

� Function Name

� Should describe what the function does

▪ Good: print_date, send_email

▪ Bad: dostuff, ▪ Bad: dostuff,

reallylongnamethatsaysnothingandishardtoremember

� Can contain only letters, numbers, and

underscores

▪ Start with a lowercase letter

▪ “words” in the name are separated by underscores

� Function Input (parameter list)

� The data that the function will need to do its job

� Parameters are listed inside the parentheses - to the right

of the function nameof the function name

� Each parameter is specified by its data type and a name

� Multiple parameters are separated by a comma

� If there are no parameters, you can either leave the list

blank or write void

� Examples:

print_newline(void);

print_newline();

go(double miles);go(double miles);

add_these(int num1, float num2);

Parameter
Type Name

� Function output (Return value)

� Each function can return one piece of data

� Specified by a data type to the left of the function

namename

� Typically, the return value is the result of the

operation or indicates success/failure

▪ If there is nothing to return, the return value is void

� The value is returned (and the function exited)

using the return keyword

� Examples:

int generate_int();

double guess_weight();

void print_hello();

#include <stdio.h>

void PrintMessage (int numdays) ; function prototype

int main ()
{

PrintMessage (5) ; function callPrintMessage (5) ; function call
return 0 ;

}

void PrintMessage (int numdays) function definition
{

printf (“A message for you:\n\n”) ;
printf (“Have a nice %d days! \n”, numdays) ;

return;
}

#include <stdio.h>

void PrintMessage (int numdays) ; function prototype definition

int main ()
{{

PrintMessage (5) ;
return 0 ;

}
function definition

void PrintMessage (int numdays) function header (same as proto)
{

printf (“A message for you: \n”) ; function
printf ((“Have a nice %d days! \n”, numdays) ; body

}

� Prototypes are placed at the beginning of the file

� Makes them easy to find (to see what can be called)

� Must be listed before the function is called
▪ The compiler needs to know how the function is defined before it is ▪ The compiler needs to know how the function is defined before it is

can be used.

� Definitions are listed at the end of the file

� Makes them easy to find if you need read/modify them

� Makes them easy to ignore if you don’t want to read them

� Informs the compiler that there will be a function

defined later that:

returns this type

has this name

takes these argumentstakes these arguments

void printMessage (int numdays) ;

� Needed because the function call is generally made

before the definition

� the compiler uses it to see if the call is made properly

� Steps:

1. Copy the function prototype below the main() function

2. Remove the semicolon

3. Add an open brace ‘{’ on the next line3. Add an open brace ‘{’ on the next line

4. Add a close brace ‘}’ below the open brace

5. Implement the function between the two braces (in the

body)

▪ Don’t forget to indent the body of the function

� Function definition must match the prototype in

void PrintMessage (int numdays) ; function prototype

...

void PrintMessage (int numdays) function definitionvoid PrintMessage (int numdays) function definition

{

printf (“A message for you: \n”) ;

printf ((“Have a nice %d days! \n”, numdays) ;

}

� Function call must match the prototype in

� name

� number and data types of arguments

void PrintMessage (int numdays) ; function prototype

int main ()

{

PrintMessage (5) ; function call

return 0 ;

}

� Control is passed to the function by a function
call.
� The value of the arguments are passed from the caller

to the function.to the function.

▪ Values are assigned to the variables in the argument list

� The statements within the function body will then be
executed.

� After the statements in the function have completed,
control is passed back to the calling function
▪ The value in the function’s return statement is sent back to the

caller.

#include <stdio.h>

void PrintMessage (int numdays) ; function prototype definition

int main ()

{{

PrintMessage (5) ; function call

return 0 ;

}

void PrintMessage (int numdays) function definition

{

printf (“A message for you:\n\n”) ;

printf (“Have a nice %d days! \n”, numdays) ;

return;

}

int add_these(int num1, int num2)

{

int return
value

Two int parameters
named num1 and
num2

{

int sum = num1 + num2;

return sum;

}

The value of
the variable
‘sum’ is
returned

The variables ‘num1’ and
‘num2’ only exist within this
function

/* ***

File: kpm.c

Name: A. Student

Username: astudent1

Date: 10/24/07

Description: Gets miles from the user and displays that distance in Description: Gets miles from the user and displays that distance in

kilometers

*** */

#include <stdio.h>

/* Conversion factor for miles to kilometers */

#define KM_PER_MILE 1.609344

float convertToKm(int miles) ;

int main ()

{

int miles = 0; /* miles entered by the user */

float km = 0; /* distance in kilometers */

/* Get distance in miles from the user */

printf ("Enter the number of miles: ") ;

scanf ("%d", &miles) ;

printf("You said %d miles \n" , miles) ;

/* Convert miles to kilometers and print it out */

km = convertToKm(miles);

printf("%d miles is %f kilometers \n" , miles, km) ;

return 0 ;

}

/***
** convertToKm - converts distance from miles to km
** Inputs: miles – distance in miles
** Outputs: float – distance in kilometers
/***//***/

float convertToKm(int miles)
{

/* Do the conversion */
float k = miles * KM_PER_MILE;

return k;
}

� Notice the function header comment before the definition of

function PrintMessage.

� This is a good practice and is required by the 104 C Coding

Standards.

� Your header comments should be neatly formatted and contain � Your header comments should be neatly formatted and contain

the following information:

� function name

� function description (what it does)

� a list of any input parameters and their meanings

� a list of any output parameters and their meanings

� a description of any special conditions

� Create a cw1 subdirectory in your CMSC104 directory

� Use the code from the kilometers.c program to write
a new program called celsius.c
� Ask the user to input a temperature value in fahrenheit� Ask the user to input a temperature value in fahrenheit

� Write a function that will convert that value to celcius
▪ Deduct 32, then multiply by 5, then divide by 9

� Call the function from main, return the converted value
from the function, and print out the conversion

� Use the gcc command the compile and run the code

� Submit your source code and the executable to
� cw01 project for our class

30

