2008/11/05: Lecture 15
CMSC 104, Section 0101
JohnY. Park

Functions:
Part1 of 3

Functions, Part 1 of 3

Topics

Review of C program

Functions - Overview

Using Predefined Functions
Programmer-Defined Functions
Using Input Parameters
Function Header Comments

int main()

{

float radius; [* input - radius of a circle */
float area; /[* output - area of a circle */
float circum; [* output - circumference of a circle */

/* Ask the user to input the radius */
printf("Enter radius > ");
scanf("%f", &radius);

[* Calculate the circumference */
area = PI * radius * radius;

[* Calculate the circumference */
circum = 2 * Pl * radius;

/* Display the area and circumference */
printf("The area is %.4f \n", area);
printf("The circumference is %.4f \n", circum);

return(0);

Top-Down Design

Involves repeatedly decomposing a problem
into smaller problems

Eventually leads to a collection of small
problems or tasks each of which can be easily
coded

The function construct in Cis used to write
code for these small, simple problems.

Recipes

Each recipe has the same types of inputs and outputs as

a meal

Raw food is the input data

The steps to follow is the code

The dish is the output
Most meals have more than one part, so they have more
than one recipe

1 for main dish

1 for each side

1 for dessert

A Function is Like a Recipe

A function has the same parts as a recipe
The parameters are the input
Executable steps implement the logic
The return value is the output

An application is broken into many functions
Each function implements a small, logical amount of work
Functions are meant to be reused

Functions

C programs are made up of one or more functions
The main() function is required in all C programs

Execution always begins with main()
By convention, main() is located before all other functions.

When program control encounters a function name, the
function is called (invoked).

Program control passes to the function.
The function is executed.

Control is passed back to the calling function to the next
statement after the call.

Sample Function Call

#include <stdio.h>

intmain () printf isthe name of a predefined
{ function in the stdio library

printf (*Hello World! \n") ——/——==

returno;
}

this is a string we are passing
as an argument to
the printf () function

Functions (con’t)

We have used two predefined functions so far:

printf
scanf

Programmers can write their own functions.

What Makes up a Function?

Name

Input - Parameters
Output -Value
Statements

What Makes up a Function?

Function Name

Should describe what the function does

Good: print_date, send_email

Bad: dostuff,

reallylongnamethatsaysnothingandishardtoremember
Can contain only letters, numbers, and
underscores

Start with a lowercase letter

“words"” in the name are separated by underscores

Function Input

Function Input (parameter list)
The data that the function will need to do its job

Parameters are listed inside the parentheses - to the right
of the function name

Each parameter is specified by its data type and a name
Multiple parameters are separated by a comma

If there are no parameters, you can either leave the list
blank or write void

Function Input

Examples:

print_newline(void);
print_newline();

go(double miles);

add_these(int numa, float num2);

[\

Parameter
Type Name

Function Output

Function output (Return value)
Each function can return one piece of data
Specified by a data type to the left of the function
name

Typically, the return value is the result of the
operation or indicates success/failure
If there is nothing to return, the return value is void

The value is returned (and the function exited)
using the return keyword

Function Output

Examples:

Int generate_int();
double guess_weight();
void print_hello();

Anatomy of a Function

#include <stdio.h>

void PrintMessage (int numdays) ; -fmmm function prototype
int main ()
{
PrintMessage (5); - function call
return o;
}
void PrintMessage (int numdays) - function definition

{
printf ("A message for you:\n\n") ;
printf ("Have a nice %d days! \n”, numdays) ;

return;

5

A Function Is Implemented in Two

Parts

#include <stdio.h>
void PrintMessage (int numdays) ; <«@mmm function prototype definition

iInt main ()

{
PrintMessage (5) ;

return O ;

function definition
void PrintMessage (int numdays) function header (same as proto)

{
printf (“A message for you: \n”) ; function
printf ((“Have a nice %d days! \n”, numdays) ; body

Why Two Parts?

Prototypes are placed at the beginning of the file
Makes them easy to find (to see what can be called)

Must be listed before the function is called

The compiler needs to know how the function is defined before it is
can be used.

Definitions are listed at the end of the file
Makes them easy to find if you need read/modify them
Makes them easy to ignore if you don’t want to read them

The Function Prototype

Informs the compiler that there will be a function
defined later that:

has this name
takes these arguments

printMessage (int numdays) ;

Needed because the function call is generally made
before the definition

the compiler uses it to see if the call is made properly

Creating a Function Definition

Steps:
Copy the function prototype below the main() function
Remove the semicolon
Add an open brace '{’ on the next line
Add a close brace '}’ below the open brace

Implement the function between the two braces (in the
body)

Don’t forget to indent the body of the function

The Function Definition

Function definition must match the prototype in

void PrintMessage (int numdays); -egmmm function prototype

void PrintMessage (int numdays) --@mm function definition
{

printf (“A message for you: \n”) ;
printf ((“Have a nice %d days! \n”, numdays) ;

The Function Call

Function call must match the prototype in
Name

number and data types of arguments

void PrintMessage (int numdays); --@mm function prototype

Int main ()

{

PrintMessage (5) ; - fynction call
returno;

5

The Function Call

Control is passed to the function by a function
call.
The value of the arguments are passed from the caller
to the function.
Values are assigned to the variables in the argument list

The statements within the function body will then be
executed.

After the statements in the function have completed,
control is passed back to the calling function

The value in the function’s return statement is sent back to the
caller.

The Function Call

#include <stdio.h>

void PrintMessage (int numdays); agmmm function prototype definition

int main ()

{
PrintMessage (5); -fmmm function call
returno;

}

void PrintMessage (int numdays) < — function definition
{

printf ("A message for you:\n\n") ;
printf ("Have a nice %d days! \n”, numdays) ;

return;

Function With Parameters and

Return Value

Nt return Two int parameters
named numl and
value

/ "

int add_these(int numa, int num2)

]

Int sum =numi + numz;

return sum; \
} / The variables ‘numl’ and

The value of ‘num?2’ only exist within this
the variable function

‘'sum’ is

returned

Final “Clean” C Code

/* E i b i b b b A i b b b b b i o b b b A A b i b b b L S o o b A b A i b o b b A S i o
File: kpm.c
Name: A. Student
Username: astudenta
Date: 10/24/07
Description: Gets miles from the user and displays that distance in
kilometers
EaR At b b b A b i o b b A b b b b A b b i b i A A e i b e A A A i b b A b i i o o b b b o */

#include <stdio.h>

[* Conversion factor for miles to kilometers */
#define KM_PER_MILE 1.609344

float convertToKm(int miles);

Final “Clean” C Code

int main ()

{
int miles = o; [* miles entered by the user */
float km = o; [* distance in kilometers */

/[* Get distance in miles from the user */
printf ("Enter the number of miles: ") ;
scanf ("%d", &miles) ;

printf("You said %d miles\n", miles) ;

[* Convert miles to kilometers and print it out */
km = convertToKm(miles);

printf("%d milesis %f kilometers \n", miles, km);
return o;

Final “"Clean” C Code (con't)

/***

** convertToKm - converts distance from miles to km
** Inputs: miles — distance in miles
** Qutputs: float — distance in kilometers

/***/

float convertToKm(int miles)

{

/* Do the conversion */
float kK = miles * KM_PER_MILE;

return k;

Good Programming Practice

Notice the function header comment before the definition of
function PrintMessage.

This is a good practice and is required by the 104 C Coding
Standards.

Your header comments should be neatly formatted and contain
the following information:

function name

function description (what it does)

a list of any input parameters and their meanings
a list of any output parameters and their meanings
a description of any special conditions

Classwork 1

Create a cwa subdirectory in your CMSCa04 directory

Use the code from the kilometers.c program to write
a new program called celsius.c

Ask the user to input a temperature value in fahrenheit

Write a function that will convert that value to celcius
Deduct 32, then multiply by 5, then divide by g

Call the function from main, return the converted value
from the function, and print out the conversion

Use the gcc command the compile and run the code

Submit your source code and the executable to

cwo1 project for our class
30

