
CMSC 104 - Lecture 6

John Y. Park, adapted by C Grasso

1

Topics

� #define
� Arithmetic Operators
� Assignment Operators� Assignment Operators
� Operator Precedence
� Evaluating Arithmetic Expressions
� Incremental Programming

2

� Preprocessor directive

� #define IDENTIFIER value

� MUST start in column 1

� Used to define data and values that cannot

change

� They are not variables

� They don’t use an assignment operator (=)

� Example
#define MY_CONSTANT 4

� The preprocessor will go through the source code � The preprocessor will go through the source code
and replace all instances of MY_CONSTANT with 4

▪ Will only match the entire identifier

▪ Eg, Will not replace “MY_CONSTANT1”

▪ Will not replace anything inside of a string (ie, “ “)

Source code:

#define MY_CONSTANT 4
main () {

int constant = MY_CONSTANT;int constant = MY_CONSTANT;
printf(“MY_CONSTANT is %d”, MY_CONSTANT);

}

Precompiler changes the program in memory to:

main () {
int constant = 4;
printf(“MY_CONSTANT is %d”, 4);

}

� = is the assignment operator

It computes the value of whatever is to the right of

x = a + b

� It computes the value of whatever is to the right of

the =

� Stores that value in the location named on the left

hand side of the =

▪ There may only be one variable on the left side of the =

6

x = a + b

a + b

x =

� Unary Operators
� Operates on one input value � one result

-old_value
! true_value! true_value

� Binary Operators
▪ Operates on two input values � one result

height + margin

length * width

8

Name Operator Example

Addition + num1 + num2

Subtraction - initial - spentSubtraction - initial - spent

Multiplication * fathoms * 6

Division / sum / count

Modulus % m % n

9

� Division by zero is mathematically undefined.

� If you allow division by zero in a program, it

will cause a fatal error. will cause a fatal error.

� Your program will terminate execution and give

an error message.

� Non-fatal errors do not cause program

termination, just produce incorrect results.

10

� The expression m % n yields the integer
remainder after m is divided by n.

� Modulus is an integer operation –� Modulus is an integer operation –
� both operands MUST be integers.

� Examples : 17 % 5 = 2
6 % 3 = 0
9 % 2 = 1
5 % 8 = 5

11

� Used to determine if an integer value is even or

odd

5 % 2 = 1 odd 4 % 2 = 0 even5 % 2 = 1 odd 4 % 2 = 0 even

If you take the modulus by 2 of an integer, a result of 1

means the number is odd and a result of 0 means the

number is even.

12

Operator(s) Precedence & Associativity

() Evaluated first.

If nested (embedded), innermost first.

* / % Evaluated second. * / % Evaluated second.

If on same level, left to right.

If there are several, left to right.

+ - Evaluated third.

If there are several, left to right.

= Evaluated last, right to left.

13

1-14

� Use parentheses to change the order in which
an expression is evaluated.
a + b * c Would multiply b * c first,

then add a to the result.then add a to the result.

If you really want the sum of a and b to be multiplied
by c, use parentheses to force the evaluation to be
done in the order you want.

(a + b) * c
� Also use parentheses to clarify a complex

expression.
15

� There are no implied operations in C

� ALL of them must be specified explicitly

Algebraic Formula C Expression

2a

1 – b

2 * a / (1 – b)

3a(b-2x) 3 * a * (b – 2 * x)

Evaluate the following expressions:
a = 1 c = 3
b = 2 d = 4

a + b - c + d
a * b / c
1 + a * b % c
a + d % b – c

e = b = d + c / b - a

17

Data Type Length in bytes

char 1

int 4

float 4

double 8

18

� Can mix data types in numerical expressions

� Hierarchy of types
� By precision: int � float

� By size: float � double� By size: float � double

� Lower size/precision is promoted to greater
size/precision before operation is applied

� Final result is of the highest type

19

� E.g.:

int num_sticks = 5;

double avg_stick_length = 4.5;

double total_length;double total_length;

total_length = num_sticks * avg_stick_length;

num_sticks promoted to double-precision,

then multiplied by avg_stick_length

20

� If both operands of a division expression are

integers, you will get an integer answer.

� The fractional portion is thrown away.

� Examples : 17 / 5 � 3

4 / 3 � 1

35 / 9 � 3

21

� Division where at least one operand is a floating
point number will produce a floating point
answer.
� Fractional portion is kept.

� Examples : 17.0 / 5 � 3.4
4 / 3.2 � 1.25

35.2 / 9.1 � 3.86813

� What happens?
� The integer operand is temporarily converted to a

floating point, then the division is performed.

22

� Example1 :
int my_integer = 5;

int my_product;

/* What will following print out? *//* What will following print out? */

my_product = (my_integer / 2) * 2.0;
printf(“my_product is %d \n”, my_product);

/* What about this? */

my_product = (my_integer / 2.0) * 2;
printf(“my_product is %d \n”, my_product);

23

� What happens when you put a numerical

expression in a printf() argument ?

printf(“Result of (127 * 5) / 3 is %5d \n”, (127 * 5) / 3);

� printf shows 6 decimal places by default
� You can override this by using the format “%X.Yf”

� X is the total number of digits to display (including the
period)

� Y is the number of digits after the decimal point to � Y is the number of digits after the decimal point to
display

� Examples:

� In these examples, an underscore (_) is used to show where a blank would be
displayed

Value Format Displayed

12.789 %5.2f 12.79

12.789 %7.2f __12.79

12.789 %8.5% 12.78900

� There are three kinds of programming errors

1. Syntax error

� Caught by the pre-processor, compiler, or linker

� Basically, you typed something wrong

2. Run-time error2. Run-time error

� Something bad happened while the program was running

� You should implement logic and checks to handle unexpected situations

� Can cause the application to crash (bad) or give incorrect results (really

bad)

3. Logic error

� The wrong algorithm was implemented

� Errors in a piece of software are called bugs

� It is best not to take the “big bang” approach to coding.

� Use an incremental approach by writing your code in

incomplete, yet working, pieces.

� For example, for your projects,

� Don’t write the whole program at once.

� Just write enough to display the user prompt on the

screen.

� Get that part working first (compile and run).

� Next, write the part that gets the value from the

user, and then just print it out.

27

� Get that working (compile and run).

� Next, change the code so that you use the value
in a calculation and print out the answer.

� Get that working (compile and run). � Get that working (compile and run).

� Continue this process until you have the final
version.

� Get the final version working.

� Bottom line: Always have a working version
of your program!

28

