CMSC 104 - Lecture 6
JohnY. Park, adapted by C Grasso

Arithmetic Operatorsin C




Arithmetic Operators

Topics

#define

Arithmetic Operators
Assignment Operators

Operator Precedence

Evaluating Arithmetic Expressions
Incremental Programming




Define Constant Macros

Preprocessor directive
#define IDENTIFIER value
MUST start in column 1

Used to define data and values that cannot
change

They are not variables

They don't use an assignment operator (=)



Constant Macros

Example
#def i ne MY CONSTANT 4

The preprocessor will go through the source code
and replace all instances of My CONSTANT with 4

Will only match the entire identifier
Eg, Will not replace "MY_CONSTANT2"

Will not replace anything inside of a string (ie, " ™)



Constant Macros

Source code:

#def i ne My CONSTANT 4

main () {
Int constant = MY CONSTANT;
printf(*MY_CONSTANT is %d”, MY _CONSTANT);
}
Precompiler changes the program in memory to:
main () {
Int constant = 4;
printf(*MY_CONSTANT is %d”, 4);

}



The Assignment Operator

X=a+b

is the assignment operator

It computes the value of whatever is to the right of
the =

Stores that value in the location named on the left
hand side of the =

There may only be one variable on the left side of the =



The Assignment Operator

X=a+b




Arithmetic Operators in C

Unary Operators

Operates on one input value =» one result

-old_value
| true_value

Binary Operators

= Operates on two input values =» one result

height + margin
length * width



Arithmetic Operators in C

Name Operator Example
Addition + numi + numM2
Subtraction - initial - spent
Multiplication * fathoms * 6
Division / sum [ count

Modulus % m % n



Division By Zero

Division by zero is mathematically undefined.

If you allow division by zero in a program, it
will cause a fatal error.

Your program will terminate execution and give
an error message.

Non-fatal errors do not cause program
termination, just produce incorrect results.

10



The expression m % n yields the integer
remainder after mis divided by n.

Modulus is an integer operation —
both operands MUST be integers.

Examples:

17% 5 =
6%3 =
9% 2 =
5%8 = 5

R ONMN

11



Uses for Modulus

Used to determine if an integer value is even or
odd

5%2=10dd 4%2=0 even

If you take the modulus by 2 of an integer, a result of 2
means the numberis odd and a result of o means the

number is even.

12



Rules of Operator Precedence

Operator(s)
()

7

Precedence & Associativity

Evaluated first.

If nested (embedded), innermost first.
Evaluated second.

If on same level, left to right.

If there are several, left to right.
Evaluated third.

If there are several, left to right.

Evaluated last, right to left.

13



Evaluation Tree

area = PI * radius * radius

area

1-14



Using Parentheses

Use parentheses to change the order in which
an expression is evaluated.
a+b*c Would multiply b * c first,
then add a to the result.

If you really want the sum of a and b to be multiplied
by ¢, use parentheses to force the evaluation to be
done in the order you want.

(a+b)*c
Also use parentheses to clarify a complex
expression.

15



Writing Formulas in C

There are no implied operations in C
ALL of them must be specified explicitly

23 2*a/(1-b)

3a(b-2x) 3*a*(b-2%*x)



Practice With Evaluating
Expressions

Evaluate the following expressions:
a=1 c=3
b=2 d=¢4

a+b-c+d
a*b/c
1+a*b%c
a+d%b-c

e=b=d+c/b-a

17



Data Type Lengths

char
Int
float
double

o~ &~ B

18



Types and Promotion

Can mix data types in numerical expressions

Hierarchy of types
By precision: int => float
By size: float =» double

Lower size/precision is promoted to greater
size/precision before operation is applied

Final result is of the highest type

19



Types and Promotion

E.g.:
int num_sticks =5;

double avg_stick_length = 4.5;
double total_length;

total_length = num_sticks * avg_stick_length;

num_sticks promoted to double-precision,
then multiplied by avg_stick_length

20



Division & Data Types

If both operands of a division expression are
integers, you will get an integer answer.

The fractional portion is thrown away.

Examples: 17 | 5= 3
43P 1

35/ 9> 3

21



Division & Data Types

Division where at least one operand is a floating
point number will produce a floating point
answer.

Fractional portion is kept.

What happens?

The integer operand is temporarily converted to a
floating point, then the division is performed.

22



Division & Data Types

Examplex:
Int my_integer = 5;
int my_product;

/* What will following print out? */

my_product = (my_integer/2) * 2.0;
printf("my_productis %d \n”, my_product);

[* What about this? */

my_product = (my_integer/2.0) * 2;
printf("my_product is %d \n”, my_product);

23



Formatting Numerical Output

What happens when you put a numerical
expression in a printf() argument ?

printf("Result of (127 * 5)/3is %5d \n”, (127 *5)/3);



Formatting Numerical Output -

decimal

printf shows 6 decimal places by default
You can override this by using the format "%X.Y{"

X is the total number of digits to display (including the

period)
Y is the number of digits after the decimal point to
display
Examples:
12.789 %p5.2f 12.79
12.789 %7.2f __12.79
12.789 %8.5% 12.78900

In these examples, an underscore (_) is used to show where a blank would be
displayed



Common Programming Errors

There are three kinds of programming errors
Syntax error
Caught by the pre-processor, compiler, or linker
Basically, you typed something wrong
Run-time error
Something bad happened while the program was running
You should implement logic and checks to handle unexpected situations

Can cause the application to crash (bad) or give incorrect results (really
bad)

Logic error

The wrong algorithm was implemented
Errors in a piece of software are called bugs



Good Programming Practice

It is best not to take the “big bang” approach to coding.
Use an incremental approach by writing your code in
incomplete, yet working, pieces.

For example, for your projects,

Don’t write the whole program at once.

Just write enough to display the user prompt on the
screen.

Get that part working first (compile and run).

Next, write the part that gets the value from the
user, and then just print it out.

27



Good Programming Practice (con't)

Get that working (compile and run).

Next, change the code so that you use the value
in a calculation and print out the answer.

Get that working (compile and run).

Continue this process until you have the final
version.

Get the final version working.

Bottom line: Always have a working version
of your program!

28



