CMSC 104 - Lecture g
JohnY. Park, adapted by C Grasso

VariablesinC &
Console I/O

Variables in C

Topics

Naming Variables
Declaring Variables

Using Variables

The Assignment Statement

What Are Variables ?

a+b

Variables are not the same thing as variables in
algebra.

A variable is the name the programmer assigns to a
location in memory to store (remember) a value

The value of the variable is the contents of that
memory location.

What Are Variables in C?

a+b

When used in a C statement, the values that
that exist in that location will be retrieved and
loaded into the CPU

Any operations that appear in that statement
will be done using those values

What Are Variables in C?

a+b

s

CPU

1-5

Legal Identifiers in C

We call the name for a variable in C an identifier
It identifies a location in memory
Naming rules

May only consist of letters, digits, and underscores

May not begin with a number
Do not begin identifiers with underscores either

May be as long as you like
But it only looks at the first 31 characters

May not be a C reserved word (keyword)

Reserved Words (Keywords) in C

auto
case
const
default
double
enum
float
goto

break
char
continue
do

else
extern

for
if

Int
register
short
sizeof
struct
typedef
unsigned
volatile

long
return
sighed
static
switch
union
void
while

Case Sensitivity

Cis case sensitive

The case of each letter matters !

Example:
area
Area
AREA

ArEa
are all seen as different identifiers by the compiler.

Legal Identifiers vs. Naming Conventions

Legal identifiers refer to the restrictions C
places on naming identifiers

Rules you have to follow

Naming conventions refer to the standards
you must follow for this course

Rules you should follow

CMSC 104 Naming Conventions

conventions for naming variables.
Begin variable names with lowercase letters
Use meaningful identifiers (names)
Should describe what that variable is used for

Separate “words” within identifiers with underscores
or mixed upper and lower case.

surfaceArea
surface_Area
surface_area

Be consistent!

10

Which Are Legal Identifiers?

AREA

lucky***
Last-Chance

X_yt3

nums
area_under_the_ curve

3D
NUM4E
#values

o]
%done

11

Which follow the CMSC Naming

Conventions for variables ?

Area

Last_Chance

X_yt3

finaltotal
area_under_the_ curve

personi
values

o]
numChildren

12

Declaring Variables

Before using a variable, you must declare it.

gives the compiler some information about the
variable and how much memory to set aside for it

The declaration statement includes the data
type of the variable.
Needs to know what kind of data it will hold.
Examples of variable declarations:
int meatballs;
float area;

13

Declaring Variables (con‘t)

When we declare a variable

Space is set aside in memory to hold a value of the
specified data type

That space is associated with the variable name

That space has a unique address

Visualization of the declaration
meatballs

int meatballs ;

type name FEQ7 <= address

14

More About Variables

nas three basic predefined data types:

ntegers (whole numbers)
Int, long int, shortint, unsigned int
Floating point (numbers with a decimal point)

float, double
Characters

char
At this point, you need only be concerned with

the data types that are bolded.

15

Variable Types

Int
Integer number that between -32767 and 32767
float, double

Real number with anintegral part and a fractional part

Can be written in C-style scientific notation
The letter ‘e’ or '‘E’ means “times 10 to the power”
11,000 <~ 1.1e4
0.00123 <»1.23e-3

char

A single character (letter, number, special character)
Value must be wrapped by single quotes (* ")

Using Variables: Initialization

Variables may be be given initial values, or
initialized, when declared. Examples:

length

diameter

float diameter=5.9; ‘

initial
charinitial ="A’;

17

Using Variables: Initialization (con't)

Do not “hide” the initialization

put initialized variables on a separate line

a comment is always a good idea

Example:
int height ;
int width=6;

Int area ;

[* rectang
[* rectang
[* rectang

NOT int height, width =6, area;

e height */
e width */

e area */

18

The Assignment Operator

X=a+b

The equal sign in Cis not the same thing as
equal signin algebra
= is the assignment operator

It computes the value of whatever is to the right of
the =

Stores that value in the location named on the left
hand side of the =

There may only be one variable on the left side of the =

19

The Assignment Operator

X=a+b

The Assignment Operator

a=a+b

1-21

Data Input and Data Output

Data Output

getting data from our application (in memory) out
to the user or another application

printf will be used to print to the command line

Data Input
getting data from outside our application into it
scanf will be used to read from the command line

Mad Libs

mad libs

Define some text with some blanks
Each blank specifies what kind of word to use

Come up with words to fill the blanks

Give me

2 nouns —1 syllable each
2 verbs that rhyme- 2 syllables each

Mad Limerick

There once was a from Id
Who stuck its inacrib

It started to

And then it

And that was the last thing it did

24

printf

Print text to the command line
Example:

int num_children = 2;
printf("l have %d children”, num_children);

The %d is called a placeholder

It indicates that it is expecting an integer

It will be replaced in the string with the integer
value that was passed to printf

printf, cont.

Supported placeholders for printf

%cC char
%d int
%of float

Variable types must be compatible with
placeholder types

Can pass multiple placeholders to printf
printf("Their ages are %d and %f \n“, 4, 1.5);

scanf

Reads user input from the command line
Parameters to scanf are:

A string containing placeholders

One or more pointers to variables
Example

char firstinit;

printf("Enter first initial>");
scanf("%c”, &firstInit);

printf(“You entered: %c \n”, firstInit);

scanf, cont.

You can prompt for more than one input at a
time
Example

char firstinit;

char middlelnit;

printf("Enter 2 initials>");

scanf(*%c %c”, &firstinit, &middlelnit);

When typed in, the values can be separated by
space, newline, or nothing

Effect of scanf("%f", &miles);

number entered 30.5

miles

30.5"

1-29

Scanning Data Line “"Bob”

char cl, c2, c3;
scanf(“%c %c %c”, &cl, &c2, &c3);

letters entered Bob

letter_l

B [«

letter 2

O |«

letter 3

b |«

Text values: char vs. string

chars
One and only one text character
Enclosed in single quotes

\ 47

d

strings
One or more characters
Enclosed in double quotes
“l'am a string”

31

Example: Declarations and Assignments

iInches

#include <stdio.h>
feet

Int main()
§ /\/ fathoms _
int inches, feet fatho{s;\—/’

fathoms

fathoms =7;
feet =6 * fathoms;
inches = 12 * feet;

feet

Inches

o
i

32

Example: Declarations and Assignments (cont’d)

printf (“Its depth at sea: \n");

printf (* %d fathoms\n”, fathoms) ;
printf (* %d feet\n”, feet);

printf (* %d inches\n”, inches) ;

return o;

33

Enhancing Our Example

What if the depth were really 5.75 fathoms?

Our program, as it is, couldn’t handle it.

Unlike integers, floating point numbers can
contain decimal portions.

So, let's use floating point, rather than integer.

Let’s also ask the user to enter the number of
fathoms, rather than “hard-coding” it in.

34

Enhanced Program

1. #include <stdio.n>
2. Intmain () {

3 float inches, feet, fathoms ;
4 printf (“Enter the depth in fathoms : ") ;
5. scanf (“%f”, &fathoms) ;

6. feet = 6 * fathoms ;

7 iInches = 12 * feet

8 printf (“Its depth at sea: \n”) ;

9. printf (“* %f fathoms \n”, fathoms) ;
10. printf (* %f feet \n”, feet) ;

11, printf (* %f inches \n”, inches) ;

12. return O ;

13.
NOTE: This program does not adhere to the CMSC104 coding standards 5

Final “Clean” Program

© 0 N O A~ bR

i
= O

#Finclude <stdio.h>

iInt main()

{
float inches; /* number of inches deep */
float feet ; [* number of feet deep */
float fathoms ; /* number of fathoms deep */

[* Get the depth in fathoms from the user */
printf (“Enter the depth in fathoms : ") ;
scanf (“%f”, &fathoms) ;

36

Final “Clean” Program (con’t)

12. [* Convert the depth to inches */
13. feet =6 * fathoms ;

14. Inches = 12 * feet ;

15.

16. [* Display the results */

17. printf (“Its depth at sea: \n”) ;

18. printf (* %f fathoms \n”, fathoms) ;
19. printf (* %f feet \n”, feet);

20. printf (* %f inches \n”, inches);
21.

22. return O ;

37

Good Programming Practices

Place a comment before each logical *chunk” of
code describing what it does.
Do not place a comment on the same line as
code

with the exception of variable declarations
Use spaces around all arithmetic and
assignment operators.
Use blank lines to enhance readability.

38

Good Programming Practices (con't)

Place a blank line between the last variable
declaration and the first executable
statement of the program.

Indent the body of the program 3 to 4 spaces
-- be consistent!

39

