
CMSC 104 - Lecture 5

John Y. Park, adapted by C Grasso

1

Topics

� Naming Variables

� Declaring Variables

Using Variables� Using Variables

� The Assignment Statement

2

� Variables are not the same thing as variables in

algebra.

a + b

algebra.

� A variable is the name the programmer assigns to a

location in memory to store (remember) a value

� The value of the variable is the contents of that

memory location.

3

� When used in a C statement, the values that

that exist in that location will be retrieved and

a + b

that exist in that location will be retrieved and

loaded into the CPU

� Any operations that appear in that statement

will be done using those values

4

RAM

a + b

1-5

RAM

CPU

� We call the name for a variable in C an identifier
▪ It identifies a location in memory

� Naming rules

� May only consist of letters, digits, and underscores� May only consist of letters, digits, and underscores

� May not begin with a number

▪ Do not begin identifiers with underscores either

� May be as long as you like

▪ But it only looks at the first 31 characters

� May not be a C reserved word (keyword)

6

auto break

case char

const continue

int long
register return
short signedconst continue

default do

double else

enum extern

float for

goto if

7

short signed
sizeof static
struct switch
typedef union
unsigned void
volatile while

� C is case sensitive

� The case of each letter matters !

� Example:� Example:

area

Area

AREA

ArEa

are all seen as different identifiers by the compiler.

8

� Legal identifiers refer to the restrictions C

places on naming identifiers

� Rules you have to follow� Rules you have to follow

� Naming conventions refer to the standards

you must follow for this course

� Rules you should follow

9

� conventions for naming variables.
� Begin variable names with lowercase letters

� Use meaningful identifiers (names)
▪ Should describe what that variable is used for▪ Should describe what that variable is used for

� Separate “words” within identifiers with underscores
or mixed upper and lower case.
▪ surfaceArea

▪ surface_Area

▪ surface_area

� Be consistent!

10

AREA 3D

lucky*** num45

Last-Chance #valuesLast-Chance #values

x_yt3 pi

num$ %done

area_under_the_curve

11

Area person1

Last_Chance values

x_yt3 pix_yt3 pi

finaltotal numChildren

area_under_the_curve

12

� Before using a variable, you must declare it.

� gives the compiler some information about the

variable and how much memory to set aside for it

� The declaration statement includes the data � The declaration statement includes the data

type of the variable.

� Needs to know what kind of data it will hold.

� Examples of variable declarations:

int meatballs ;

float area ;

13

� When we declare a variable

� Space is set aside in memory to hold a value of the

specified data type

� That space is associated with the variable name� That space is associated with the variable name

� That space has a unique address

� Visualization of the declaration

int meatballs ;

type name

14

meatballs

FE07

garbage

address

C has three basic predefined data types:

� Integers (whole numbers)

� int, long int, short int, unsigned intint, long int, short int, unsigned int

� Floating point (numbers with a decimal point)

� float, double

� Characters

� char

� At this point, you need only be concerned with

the data types that are bolded.
15

� int
� Integer number that between -32767 and 32767

� float , double
� Real number with an integral part and a fractional part� Real number with an integral part and a fractional part

� Can be written in C-style scientific notation
▪ The letter ‘e’ or ‘E’ means “times 10 to the power”

▪ 11,000 � 1.1e4

▪ 0.00123 �1.23e-3

� char
� A single character (letter, number, special character)

� Value must be wrapped by single quotes (‘ ‘)

� Variables may be be given initial values, or

initialized, when declared. Examples:

int length = 7 ; 7
length

int length = 7 ;

float diameter = 5.9 ;

char initial = ‘A’ ;

17

7

5.9

‘A’

diameter

initial

� Do not “hide” the initialization

� put initialized variables on a separate line

� a comment is always a good idea

� Example:

int height ; /* rectangle height */

int width = 6 ; /* rectangle width */

int area ; /* rectangle area */

NOT int height, width = 6, area ;

18

� The equal sign in C is not the same thing as

equal sign in algebra

x = a + b

equal sign in algebra

� = is the assignment operator

� It computes the value of whatever is to the right of

the =

� Stores that value in the location named on the left

hand side of the =

▪ There may only be one variable on the left side of the =

19

x = a + b

a + b

x =

a = a + b

1-21

a + b

a =

� Data Output

� getting data from our application (in memory) out

to the user or another application

� printf will be used to print to the command line� printf will be used to print to the command line

� Data Input

� getting data from outside our application into it

� scanf will be used to read from the command line

� mad libs

1. Define some text with some blanks

▪ Each blank specifies what kind of word to use

2. Come up with words to fill the blanks2. Come up with words to fill the blanks

� Give me
� 2 nouns – 1 syllable each

� 2 verbs that rhyme- 2 syllables each

There once was a ______ from Id

Who stuck its ______ in a crib

It started to ________It started to ________

And then it ________

And that was the last thing it did

24

� Print text to the command line

� Example:

� int num_children = 2;

� printf(“I have %d children”, num_children);

� The %d is called a placeholder

� It indicates that it is expecting an integer

� It will be replaced in the string with the integer

value that was passed to printf

� Supported placeholders for printf
� %c char

� %d int

� %f float� %f float

� Variable types must be compatible with
placeholder types

� Can pass multiple placeholders to printf
� printf(“Their ages are %d and %f \n”, 4, 1.5);

� Reads user input from the command line
� Parameters to scanf are:

� A string containing placeholders

� One or more pointers to variables� One or more pointers to variables

� Example
� char firstInit;

� printf(“Enter first initial> “);

� scanf(“%c”, &firstInit);

� printf(“You entered: %c \n”, firstInit);

� You can prompt for more than one input at a
time

� Example
char firstInit;char firstInit;

char middleInit;

printf(“Enter 2 initials> “);

scanf(“%c %c”, &firstInit, &middleInit);

� When typed in, the values can be separated by
space, newline, or nothing

1-29

char c1, c2, c3;
scanf(“%c %c %c”, &c1, &c2, &c3);

� chars
� One and only one text character
� Enclosed in single quotes

� ‘a’

31

� ‘a’

� strings
� One or more characters
� Enclosed in double quotes

� “I am a string”

1. #include <stdio.h>

2. int main()
3. {

int inches, feet, fathoms ;

garbage

fathoms

garbage
feet

garbage

inches

4. int inches, feet, fathoms ;

5. fathoms = 7 ;

6. feet = 6 * fathoms ;

7. inches = 12 * feet ;

32

garbage

inches

feet

fathoms
7

42

504

8. printf (“Its depth at sea: \n”) ;
9. printf (“ %d fathoms \n”, fathoms) ;
10. printf (“ %d feet \n”, feet) ;
11. printf (“ %d inches \n”, inches) ;

12. return 0 ;

13. }

33

� What if the depth were really 5.75 fathoms?
� Our program, as it is, couldn’t handle it.

� Unlike integers, floating point numbers can � Unlike integers, floating point numbers can
contain decimal portions.
� So, let’s use floating point, rather than integer.

� Let’s also ask the user to enter the number of
fathoms, rather than “hard-coding” it in.

34

1. #include <stdio.h>
2. int main () {

3. float inches, feet, fathoms ;
4. printf (“Enter the depth in fathoms : ”) ;
5. scanf (“%f”, &fathoms) ;

35

5. scanf (“%f”, &fathoms) ;
6. feet = 6 * fathoms ;
7. inches = 12 * feet ;
8. printf (“Its depth at sea: \n”) ;
9. printf (“ %f fathoms \n”, fathoms) ;
10. printf (“ %f feet \n”, feet) ;
11. printf (“ %f inches \n”, inches) ;
12. return 0 ;
13. }

NOTE: This program does not adhere to the CMSC104 coding standards

1. #include <stdio.h>
2.

3. int main()
4. {
5. float inches ; /* number of inches deep */

36

5. float inches ; /* number of inches deep */
6. float feet ; /* number of feet deep */
7. float fathoms ; /* number of fathoms deep */
8.

9. /* Get the depth in fathoms from the user */
10. printf (“Enter the depth in fathoms : ”) ;
11. scanf (“%f”, &fathoms) ;

12. /* Convert the depth to inches */
13. feet = 6 * fathoms ;
14. inches = 12 * feet ;
15.

16. /* Display the results */

37

16. /* Display the results */
17. printf (“Its depth at sea: \n”) ;
18. printf (“ %f fathoms \n”, fathoms) ;
19. printf (“ %f feet \n”, feet);
20. printf (“ %f inches \n”, inches);
21.

22. return 0 ;
23. }

� Place a comment before each logical “chunk” of

code describing what it does.

� Do not place a comment on the same line as

code code

� with the exception of variable declarations

� Use spaces around all arithmetic and

assignment operators.

� Use blank lines to enhance readability.

38

� Place a blank line between the last variable

declaration and the first executable

statement of the program.

Indent the body of the program 3 to 4 spaces � Indent the body of the program 3 to 4 spaces

-- be consistent!

39

