
CMSC 104 - Lecture 4

John Y. Park, adapted by C Grasso

1



Topics

� Brief History of Programming Languages & C

� The Anatomy of a C Program

� CompilationCompilation

� Using the gcc Compiler

� 104 C Programming Standards and Indentation Styles

2



� Machine code (aka “binary”)

� Raw sequence of binary patterns

1011010111001011

10110101101010101011010110101010

� Assembly “language”

� Gave human-friendly syntax to machine code:

MOV 1200, R0

SUB 1202, R0

MOV R0, 1200

3



� Early high-level languages

� COBOL

▪ SUBTRACT B FROM A GIVING C

▪ MULTIPLY C BY 2 GIVING D▪ MULTIPLY C BY 2 GIVING D

� FORTRAN

C  = A - B

D = C * 2
H = SQRT((S1 * S1) + (S2 * S2))

4



� Another early high-level language

� LISP

▪ (lambda (a)

(mapcar (func ‘+)(mapcar (func ‘+)

(cons (car (car a)) (car (cadr a)))))

5



� Derived from… “B”!

� Design goals were for C to be:
� Efficient� Efficient
▪ Fast

� Close to the machine
▪ I.e., it could directly manipulate the CPU’s memory to control 

hardware-level functions

� Structured
▪ A true high-level language with sophisticated control flow, 

data structures

6



� UNIX was recoded from Assembler to C

▪ Most operating systems were written in Assembler

� C is written in C!� C is written in C!

▪ Of course, first versions were written in Assembler

▪ Ritchie had great inspiration for a Trojan horse

7



� Short answer: “Yes, but…”
� C:

� main( ) {
printf("hello, world");

}

� COBOL:

� English:
� Hello, world.

� Spanish:
� MAIN SECTION

DISPLAY “hello, world“
STOP RUN. 

� Fortran77:
� PROGRAM HELLO

PRINT*, ‘hello, world‘
END

� Lisp:
� (defun helloworld ()

(print “hello, world") ) 

� Spanish:
� Hola mundo

� French:
� Salut le Monde

� Greek:

� Γεια σου κόσμε

8



� A programmer uses a text editor (not the same as a 

word processor!) to create or modify files containing C 

code.

� Program code is also known as source code.� Program code is also known as source code.

� A file containing source code is called a source file.

9



#include <stdio.h>

int main ( ) 

{

� Create a file in CMSC104 / hw3 called 
hello.c and type this program into it.

10

{
printf (“Hello, World”) ;

}



� Computers can only “see” numbers
� It doesn’t know what a letter is

� Each letter is represented as an 8-bit number� Each letter is represented as an 8-bit number
� Several different codes are in use

� Most well-known is ASCII code
▪ http://www.asciitable.com/

� To display character codes in vi editor
� :%!xxd

11



m a i n ( ) { \n \t p r i n f ( “

h e l l o , w o r l d “ ) ; \n

} - - - - - - - - - - - - - - -

12

• Just a stream of characters that is meaningless to the 
computer. 

•So, after a C source file has been created, the programmer 
must invoke the C compiler and linker before the program 
can be executed (run ).



Stage 1: Preprocessing

� Performed by a program called the preprocessor

� Main purposes:

▪ Performs extra processing before compiling▪ Performs extra processing before compiling

▪ Creates a new version of the source code in memory 

containing the modified version of the code

▪ Your source code as stored on disk is not modified.

13



Stage 2: Compilation

� Performed by a program called the compiler

� Translates the preprocessor-modified source code � Translates the preprocessor-modified source code 

into object code (machine code)

▪ Each .c file will be compiled & saved into a .o file

▪ For example, hello.c will be compiled into hello.o

14



Stage 2: Compilation

� Checks for syntax errors and warnings

▪ If any compiler errors are received, no object code file will ▪ If any compiler errors are received, no object code file will 

be generated.

▪ The compiler may issue warnings, but will still generate 

the object code if there are no errors

15

gcc -Wall  –c  hello.c



Stage 3: Linking

� Combines the program object code with other object 
code to produce the executable file.

� The other object code can come from the Run-Time 
Library, other libraries, or object files that you have Library, other libraries, or object files that you have 
created.

� Saves the machine executable code to another file
▪ If any linker errors are received, no executable file will be 

generated.

16

gcc -Wall  -o hello  –c  hello.c



Source File  program.c

Preprocessor

Modified Source Code in RAM

Editor

gcc –o program -c program.c

17

Program Object Code File  program.o

Executable File  program

Modified Source Code in RAM

Compiler

Linker

Other Object Code Files (if any)



/* Filename: hello.c

* Author: Brian Kernighan & Dennis Ritchie

* Date written:1978

* Description: This program prints the greeting      

“Hello, World!”“Hello, World!”

*/

#include  <stdio.h>

int main ( )

{

printf (“Hello, World!\n”) ;

return 0 ;

}
18



program header comment

preprocessor directives (if any)

int main ( )

{

statement(s)

return 0 ;
}

19



� A comment is descriptive text used to help a 

reader of the program understand its content.

� All comments must begin with the characters  

/* and end with the characters  *//* and end with the characters  */

� These are called comment delimiters

� The program header comment always comes 

first.

20



� Lines that begin with a # in column 1 are called 

preprocessor directives (commands).

� #include <stdio.h>� #include <stdio.h>

� Copies the contents of the file stdio.h at this point in 

the code.

� This header file was included because it contains 

information about the printf ( ) function that is used in 

this program.

21



� Every program must have a function called 
main.  This is where program execution begins.

� main() is placed as the first function in the 
source code file for readability.source code file for readability.

� The reserved word “int” indicates that main() 
returns an integer value.

� The parentheses following “main” indicate that 
it is a function.

22



� Every function takes the form:

type name(arguments) 

{{

statements

}

� A minimal function is:

dummy()  {  }

23



int main ( )

{{

printf (“Hello, World! \n”) ;

return 0 ;

}

24



� This line is a C statement.

� Notice that this line ends with a semicolon.  

� All statements in C end with a semicolon.

� It is a call to the function printf ( ) with a single 

argument - namely the string “Hello, World! ”.

� Even though a string may contain many characters, 

the string itself should be thought of as a single 

quantity.  It is everything between the double quotes

25



� int main ( ) ...

� indicates that the function main() returns an integer value 

back to whoever called itback to whoever called it

� return 0 ;

� tells it to return a value of 0
� in main(), a value of 0 indicates that the program ran 

successfully.

26



1. /*********************************************************** 

2. ** File: message.c

3. ** Author: Joe Student

4. ** Date: 9/15/06

27

4. ** Date: 9/15/06

5. ** Section: 0105

6. ** E-mail: jstudent22@umbc.edu

7. **

8. ** This program prints a cool message to the user.

9. ************************************************************/ 



#include <stdio.h>

int main()

{

printf (“Programming in CMSC104 is fun . \n”) ;

28

printf (“Programming in CMSC104 is fun . \n”) ;

printf(“C is a really cool language! \n”) ;

return 0 ;

} What will the output be?
What does the \n do ?



� Invoking the compiler is system dependent.

� At UMBC, we have two C compilers available, cc

and gcc.  

� For this class, we will use the gcc compiler as it is 

the compiler available on the Linux system.

29



At the Linux prompt, type

gcc –Wall -c program.c

� program.c is the source file to compile

� -Wall is an option to turn on all compiler 

warnings (best for new programmers).

� output will be program.o
30



gcc -Wall –o program -c program.c

� If there are no programming errors in 
program.c, this command produces an program.c, this command produces an 
executable file name program
� If you do not specify –o hello, t he compiler 

will produce an executable file name a.out

� To execute the program, at the prompt, type

./program

31



� C programming CMSC104 Coding Standards and 

CMSC104 Indentation Styles are available on the 104 

course Web page on the Homework tab.

� You are expected to conform to these standards for all� You are expected to conform to these standards for all

programming projects in this class and in CMSC 201.

� This will be part of your grade for each project!

� The program just shown conforms to these standards, 

but is uncommented.

� Subsequent lectures will include more “Good 

Programming Practices” slides.

32


