CMSC 104 - Lecture 2 John Y. Park, adapted by C Grasso

Machine Architecture and Number Systems

Machine Architecture and Number Systems

<u>Topics</u>

- Major Computer Components
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal
- Converting from Decimal to Binary
- The Hexadecimal Number System

Machine Architecture and Number Systems

Textbook Reading

Sections 1.1 - 1.3

Some People Think A Computer is...

Some People Think A Computer is...

Major Computer Components

- Central Processing Unit (CPU)
- Bus
- Main Memory (RAM)
- Secondary Storage Media
- I/O Devices

Schematic Diagram of a Computer

Diagram taken from Java Concepts, Fourth Edition

The CPU

- Central Processing Unit
- The "brain" of the computer
- Controls all other computer functions
- In PCs (personal computers) also called the microprocessor or simply processor.

The Bus

- Computer components are connected by a bus.
- A bus is a group of parallel wires that carry control signals and data between components.

Main Memory

- Main memory holds information such as computer programs, numeric data, or documents created by a word processor.
- Main memory is made up of capacitors.
- If a capacitor is charged, then its state is said to be 1, or ON.
- We could also say the **bit is set**.
- If a capacitor does not have a charge, then its state is said to be o, or OFF.
- We could also say that **the bit is reset** or **cleared**.

Main Memory (con't)

- Memory is divided into cells, where each cell contains 8 bits (a 1 or a 0). Eight bits is called a byte.
- Each of these cells is uniquely numbered.
- The number associated with a cell is known as its address.
- Main memory is volatile storage. That is, if power is lost, the information in main memory is lost.

Main Memory (con't)

- Other computer components can
 - get the information held at a particular address in memory, known as a READ,
 - Reading from a memory location does not alter its contents.
 - or store information at a particular address in memory, known as a WRITE.
 - Writing to a memory location alters its contents.

Main Memory (con't)

RAM (Random Access Memory).

- All addresses in memory can be accessed in the same amount of time.
- We do not have to start at address 0 and read straight through until we get to the address we really want (sequential access).
- We can go directly to the address we want and access the data (direct or random access).
- RAM is volatile memory all the data goes away when power is removed.

Secondary Storage Media

- Disks -- floppy, hard, removable (random access)
- Tapes (sequential access)
- CDs & DVDs (random access)
- Secondary storage media store files that contain
 - computer programs
 - data
 - audio, video, etc.
- This type of storage is called persistent (permanent) storage because it retains the data when it is powered down.
- Generally much slower

I/O (Input/Output) Devices

- Information input and output is handled by I/O devices.
- More generally, these devices are known as peripheral devices.
- Examples:
 - monitor
 - keyboard
 - mouse
 - printer
 - scanner
- Technically, also includes "external" storage
 - disk drive (floppy, hard, removable)
 - CD or DVD drive

Bits, Bytes, and Words

- A bit is a single binary digit (a 1 or o).
- A byte is 8 bits (usually... but not always!)
- A word is 32 bits or 4 bytes
- Long word = 8 bytes = 64 bits
- Quad word = 16 bytes = 128 bits
- Programming languages use these standard number of bits when organizing data storage and access.
- What do you call 4 bits? (hint: portions of a byte ⁽ⁱ⁾)

Bits, Bytes

<u>Unit</u>	Symbol	Number of Bytes	
kilobyte	KB	$2^{10} = 1024$	
megabyte	MB	2 ²⁰ (over 1 million)	
gigabyte	GB	2 ³⁰ (over 1 billion)	
terabyte	ТВ	2 ⁴⁰ (over 1 trillion)	

If you have an 30 GB iPod, assuming an average song size of 3.5MB, how many songs can you have?

Number Systems

- The on and off states of the capacitors in RAM can be thought of as the values 1 and 0, respectively.
- Therefore, thinking about how information is stored in RAM requires knowledge of the binary (base 2) number system.
- Let's review the decimal (base 10) number system first.

The Decimal Number System

- The decimal number system is a positional number system.
- Example:

5	6	2	1	$1 \times 10^{0} =$	1

 10^3 10^2 10^1 10^0

1000 100 10 1

- $2 \times 10^1 = 20$
- $6 \times 10^2 = 600$
- $5 \times 10^3 = 5000$

The Decimal Number System

- The decimal number system is also known as base 10. The values of the positions are calculated by taking 10 to some power.
- Why is decimal base 10?
- Let's count to 20 in decimal on the board.

The Binary Number System

- The binary number system is also known as base 2. The values of the positions are calculated by taking 2 to some power.
- Why is binary base 2?
- Let's count to 20 in binary on the board.

Geek Joke #1

Seen on a random T-shirt:

There are 10 kinds of people in the world: Those who understand binary ...and those who don't

Converting from Binary to Decimal

- $\underline{1} \quad \underline{0} \quad \underline{0} \quad \underline{1} \quad \underline{1} \quad \underline{0} \quad \underline{1}$ 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 64 32 16 8 4 2 1 $1 \times 2^2 = 4$
- $1 \times 2^{0} = 1$
 - $0 X 2^{1} = 0$
 - - $1 \times 2^3 = 8$
 - $0 X 2^4 = 0$
 - $0 \times 2^5 = 0$
 - $1 \times 2^6 = 64$ **77**₁₀

Converting from Binary to Decimal

Practice conversions:

<u>Binary</u>	<u>Decimal</u>
11101	
1010101	
100111	

$$2^{\circ} = 1$$

 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$

Converting from Decimal to Binary

- Make a list of the binary place values up to the number being converted.
- Perform successive divisions by 2, placing the remainder of 0 or 1 in each of the positions from right to left.
- Continue until the quotient is zero.
- Example: $42_{10} = 32 + 0 + 8 + 0 + 2 + 0$ = $1^{*}2^{5} + 0^{*}2^{4} + 1^{*}2^{3} + 0^{*}2^{2} + 1^{*}2^{1} + 0^{*}2^{0}$
 - 2^5 2^4 2^3 2^2 2^1 2^0
 - 32 16 8 4 2 1
 - <u>1</u> <u>0</u> <u>1</u> <u>0</u> <u>1</u> <u>0</u>

Converting from Binary to Decimal

Practice conversions:

<u>Decimal</u>	<u>Binary</u>	
59		2 ⁰ = 1
82		$2^1 = 2$
175		$2^2 = 4$
		2 ³ = 8
		24 = 16
		2 ⁵ = 32
		2 ⁶ = 64

Working with Large Numbers

010100010100111 = ?

- Humans can't work well with binary numbers; there are too many digits to deal with.
- Memory addresses and other data can be quite large. Therefore, we sometimes use the hexadecimal and octal number systems.

The Hexadecimal Number System

- The hexadecimal number system is also known as base 16. The values of the positions are calculated by taking 16 to some power.
- Why is hexadecimal base 16?
- Let's count to 20 in hex on the board.

The Hexadecimal Number System

Example of a hexadecimal number and the values of the positions:

- $= B * 16^{3} + 0 * 16^{2} + 5 * 16^{1} + 1 * 16^{0}$
- = B * 4096 + 0 * 256 + 5 * 16 + 1 * 1
- = 45056 + 0 + 80 + 1= 45137

The Octal Number System

- The octal number system is also known as base
 8. The values of the positions are calculated by taking 8 to some power.
- Why is octal base 8?
- Let's count to 20 in octal on the board.

The Octal Number System

Example of an octal number and the values of the positions:

<u>1</u>	3	<u>0</u>	<u>0</u>	<u>2</u>	4
8 5	84	8 3	8²	81	8°

Binary equivalent:

 011 000 000 010 100 =
 101100000010100

Example of Equivalent Numbers

Binary: 10100010110111₂

Decimal: 20663₁₀

Hexadecimal: 50B7₁₆

 Notice how the number of digits gets smaller as the base increases.

UNIX chmod Command

- chmod lets you tell the system
 - who can access the file
 - user (owner)
 - group
 - others (public)
 - how they can access the file
 - read
 - write
 - execute

UNIX chmod Command

chmod	permiss	sions	filename
user	group	oth	ners
r-w-x	r-w-x	r-w	/-X

chmod	766	program.sh
user	group	others
1-1-1	1-0-1	0-0-1