CHAPTER

Introduction

Chapter 1 provides a general overview of the nature and purpose of database systems. The most important concept in this chapter is that database systems allow data to be treated at a high level of abstraction. Thus, database systems differ significantly from the file systems and general purpose programming environments with which students are already familiar. Another important aspect of the chapter is to provide motivation for the use of database systems as opposed to application programs built on top of file systems. Thus, the chapter motivates what the student will be studying in the rest of the course.

The idea of abstraction in database systems deserves emphasis throughout, not just in discussion of Section 1.3. The overview of the structure of databases is, of necessity, rather brief, and is meant only to give the student a rough idea of some of the concepts. The student may not initially be able to fully appreciate the concepts described here, but should be able to do so by the end of the course.

The specifics of the E-R, relational, and object-oriented models are covered in later chapters. These models can be used in Chapter 1 to reinforce the concept of abstraction, with syntactic details deferred to later in the course.

If students have already had a course in operating systems, it is worthwhile to point out how the OS and DBMS are related. It is useful also to differentiate between concurrency as it is taught in operating systems courses (with an orientation towards files, processes, and physical resources) and database concurrency control (with an orientation towards granularity finer than the file level, recoverable transactions, and resources accessed associatively rather than physically). If students are familiar with a particular operating system, that OS's approach to concurrent file access may be used for illustration.

Exercises

- **1.7** List four applications you have used that most likely employed a database system to store persistent data. **Answer:**
 - Banking: For account information, transfer of funds, banking transactions.

2 Chapter 1 Introduction

- Universities: For student information, online assignment submissions, course registrations, and grades.
- Airlines: For reservation of tickets, and schedule information.
- Online news sites: For updating new, maintainence of archives.
- Online-trade: For product data, availability and pricing informations, order-tracking facilities, and generating recommendation lists.
- **1.8** List four significant differences between a file-processing system and a DBMS.

Answer: Some main differences between a database management system and a file-processing system are:

- Both systems contain a collection of data and a set of programs which access that data. A database management system coordinates both the physical and the logical access to the data, whereas a file-processing system coordinates only the physical access.
- A database management system reduces the amount of data duplication by ensuring that a physical piece of data is available to all programs authorized to have access to it, whereas data written by one program in a file-processing system may not be readable by another program.
- A database management system is designed to allow flexible access to data (i.e., queries), whereas a file-processing system is designed to allow pre-determined access to data (i.e., compiled programs).
- A database management system is designed to coordinate multiple users accessing the same data at the same time. A file-processing system is usually designed to allow one or more programs to access different data files at the same time. In a file-processing system, a file can be accessed by two programs concurrently only if both programs have read-only access to the file.
- **1.9** Explain the concept of physical data independence, and its importance in database systems.

Answer: Physical data independence is the ability to modify the physical scheme without making it necessary to rewrite application programs. Such modifications include changing from unblocked to blocked record storage, or from sequential to random access files. Such a modification might be adding a field to a record; an application program's view hides this change from the program.

1.10 List five responsibilities of a database-management system. For each responsibility, explain the problems that would arise if the responsibility were not discharged.

Answer:

A general purpose database-management system (DBMS) has five responsibilities:

Exercises 3

- a. interaction with the file manager.
- b. integrity enforcement.
- c. security enforcement.
- d. backup and recovery.
- e. concurrency control.

If these responsibilities were not met by a given DBMS (and the text points out that sometimes a responsibility is omitted by design, such as concurrency control on a single-user DBMS for a micro computer) the following problems can occur, respectively:

- a. No DBMS can do without this, if there is no file manager interaction then nothing stored in the files can be retrieved.
- b. Consistency constraints may not be satisfied, for example an instructor may belong to a non-existent department, two students may have the same ID, account balances could go below the minimum allowed, and so on.
- c. Unauthorized users may access the database, or users authorized to access part of the database may be able to access parts of the database for which they lack authority. For example, a low-level user could get access to national defense secret codes, or employees could find out what their supervisors earn (which is presumably a secret).
- d. Data could be lost permanently, rather than at least being available in a consistent state that existed prior to a failure.
- e. Consistency constraints may be violated despite proper integrity enforcement in each transaction. For example, incorrect bank balances might be reflected due to simultaneous withdrawals and deposits on the same account, and so on.
- **1.11** List at least two reasons why database systems support data manipulation using a declarative query language such as SQL, instead of just providing a a library of C or C++ functions to carry out data manipulation.
 - Answer:
 - a. Declarative languages are easier for programmers to learn and use (and even more so for non-programmers).
 - b. The programmer does not have to worry about how to write queries to ensure that they will execute efficiently; the choice of an efficient execution technique is left to the database system. The declarative specification makes it easier for the database system to make a proper choice of execution technique.
- **1.12** Explain what problems are caused by the design of the table in Figure 1.4.

4 Chapter 1 Introduction

Answer:

- If a department has more than one instructor, the building name and budget get repeated multiple times. Updates to the building name and budget may get performed on some of the copies but not others, resulting in an inconsistent state where it is not clear what is the actual building name and budget of a department.
- A department needs to have at least one instructor in order for building and budget information to be included in the table. Nulls can be used when there is no instructor, but null values are rather difficult to handle.
- If all instructors in a department are deleted, the building and budget information are also lost. Ideally, we would like to have the department information in the database irrespective of whether the department has an associated instructor or not, without resorting to null values.
- **1.13** What are five main functions of a database administrator? **Answer:**
 - To backup data
 - In some cases, to create the schema definition
 - To define the storage structure and access methods
 - To modify the schema and / or physical organization when necessary
 - To grant authorization for data access
 - To specify integrity constraints
- **1.14** Explain the difference between two-tier and three-tier architectures. Which is better suited for Web applications? Why? **Answer:**

In a two-tier application architecture, the application runs on the client machine, and directly communicates with the database system running on server. In contrast, in a three-tier architecture, application code running on the client's machine communicates with an application server at the server, and never directly communicates with the database. The three-tier architecture is better suited for Web applications.

1.15 Describe at least 3 tables that might be used to store information in a social-networking system such as Facebook. Answer:

Some possible tables are:

a. A *users* table containing users, with attributes such as account name, real name, age, gender, location, and other profile information.

Exercises 5

- b. A *content* table containing user provided content, such as text and images, associated with the user who uploaded the content.
- c. A *friends* table recording for each user which other users are connected to that user. The kind of connection may also be recorded in this table.
- d. A *permissions* table, recording which category of friends are allowed to view which content uploaded by a user. For example, a user may share some photos with family but not with all friends.