
PLEDS: A Personalized Entity Detection System
Based on Web Log Mining Techniques

Kathleen Tsoukalas #1, Bin Zhou #2, Jian Pei #3, Davor Cubranic ∗4

#School of Computing Science, Simon Fraser University
Burnaby, B.C., Canada
1kjtsouka@cs.sfu.ca

2bzhou@cs.sfu.ca
3jpei@cs.sfu.ca
∗Business Objects

Vancouver, B.C., Canada
4dcubranic@businessobjects.com

Abstract— With the expansion of the internet, many special-
ized, high-profile sites have become available that bring very
technical subject matter to readers with non-technical back-
grounds. While the theme of these sites may be of interest to these
readers, the posts themselves may contain terms that non-experts
may be unfamiliar with and may wish to know more about. We
developed PLEDS, a personalized entity detection system which
identifies interesting entities and provides related information
for individual users by mining web logs and query logs. The
experimental results of a systemic user study shows that with
PLEDS’s aid, users can experience the benefits of an enriched
internet surfing experience.

I. INTRODUCTION

With the rapid expansion of the internet, many specialized,
high-profile sites have become available that bring highly tech-
nical subject matter to readers with non-technical backgrounds.
For example, Gizmodo1, Engadget2, and Boing Boing3 are all
popular user-driven sites that present articles containing terms
a non-technical reader might not be familiar with. As such,
although readers are interested in the themes of such sites,
they may get lost in such overly technical terminology, which
may result in decreased readership for the site and a negative
experience for the reader. For example, one post on digital
cameras4 discusses white balance, but the style of the camera
is such that it is likely to be used by more amateur users who
may be unfamiliar with the term. They may spend more time
researching white balance on other sites, or may feel frustrated
by the article and be less likely to return in future. In either
case, the user is drawn away from the website and is left with
a negative experience overall.

It is important to provide services to readers so that they
can not only find additional information about more technical
terms, but find it quickly as well. In fact, usability studies
have shown that this is one of the chief concerns users express
when reading articles online [8]. A naı̈ve solution is to create
hyperlinks for terms that contain more detailed information on
a separate page, and thus allow users to navigate to those pages

1http://gizmodo.com
2http://www.engadget.com
3http://www.boingboing.net
4http://www.engadget.com/2008/02/06/fujifilms-

z10fd-and-z100fd-cameras-get-totally-rockin-firmware/

via the hyperlinks. This idea is exhibited by Wikipedia5 in par-
ticular, but is problematic for several reasons. Less experienced
users are often reluctant to navigate through hyperlinks as they
worry about “getting lost” [8] and overlooking the original
task. Also, this navigation away from the article presents an
interruption in the flow of reading [9], resulting in a negative
experience for the reader. Finally, using hyperlinks in this way
presents the same information to all users. Some users may
find that too many terms are tagged, while others find that not
enough are tagged. In the former case, the extra information
is not only unnecessary but, depending on the manner of
display, excessive tagging may be distracting. In the latter case,
frustration may arise from not being able to quickly find the
information required. As such, it is necessary to develop a
tool that is not only inline, but also personalized for each of
its users.

To address the above challenges, we developed PLEDS,
a personalized entity detection system which identifies inter-
esting entities and provides related information inline. Here,
an entity is a keyword or a meaningful short sequence of
keywords. PLEDS mines individual and global query logs
to find popular concepts, and tags entities related to those
concepts, thus finding different entities for each user that they
are likely to be interesting to the user. Information is presented
in a small pop-up window only when a user clicks on a tagged
entity, which solves the problem of numerous pop-up windows
appearing as the user unintentionally moves their mouse across
the screen.

The paper is organized as follows. We review the back-
ground research related to PLEDS (Section II) before provid-
ing an overview of the major technical strengths in PLEDS
(Section III). We then describe the experiments and user
studies we performed on PLEDS and the results of those
studies (Section IV), and conclude with a discussion of the
implications and future directions of this work (Section V).

II. RELATED WORK

Our work is related to entity detection systems and various
web log mining techniques. We briefly review some represen-

5http://www.wikipedia.com



tative work here.

A. Entity Detection Systems
Building on the approach provided by Wikipedia, several

entity detection systems have been developed to address the
challenges mentioned in Section I, with varying degrees of
success. These systems and techniques can be categorized
into three types. The first group of systems, which includes
Google’s Gmail6 and AdSense7, has some degree of person-
alization but does not present information for entities inline.
The second group, including Vibrant Media’s Intellitxt8 and
Kontera9, does not include personalization, but does have
inline entity tagging. Finally, a recently proposed system
Contextual Shortcuts in [10] attempts some limited form of
personalization as well as inline tagging capability.

An example of the first type of systems is Google’s Gmail.
Gmail tries to match a user’s interest with some predefined
topics by extracting some keywords from an email or a set of
emails being viewed. It then presents advertisements related
to those topic keywords, but does not present this information
inline. As such, it requires an interruption in the flow of a
user’s reading. That is, a user has to leave the main paragraph
of text to see the related information in a separate pane. This
may impact negatively on the reader’s experience, as indicated
in [9]. Also, it only presents information for a limited number
of terms and may not accurately reflect the complete interest
of the user. Google’s AdSense works in a similar manner.

The second group includes systems such as IntelliTxt, which
mine the text in the web page currently being viewed by a
user. Such a system extracts some keywords based only on
the information found in the title of the page and the main
body of text, thus relying only on the text within the page
being read, and as such totally neglecting users’ interest. The
system is not personalized; this method results in the same
entities being tagged regardless of which user is currently
reading the page. In addition, related information for each
entity is presented in the form of popups that appear when
the links are hovered over. This information is thus presented
inline, but implementing the tags in the form of popups has
resulted in user dissatisfaction.

Most recently, a novel system called Contextual Shortcuts
is presented in [10] as the representative of the third group
in our categorization. The system uses global query logs to
find topics that are frequently queried by a population of
users, and uses that information to achieve more interesting
entity extraction. In other words, it attempts to utilize user
preferences. However, because it accesses information about
a population as a whole, it presents the same information to
all users, even though an individual’s interest, knowledge, and
background may lead them to find different entities in the text
interesting.

B. Our System versus Previous Work
PLEDS builds on the work of previous entity detection

systems by combining their strengths and solving some of the

6http://mail.google.com
7http://www.google.com/adsense
8http://www.vibrantmedia.com
9http://www.kontera.com/demo.aspx

Fashions: hot keywords

Web page
Candidate keywords

Well explained keywords

Keywords
(entities)

User’s background knowledge
interests, and preference

User’s PLEDS
User’s local web log

clickthrough log

query log
Global

Fig. 1. The architecture of PLEDS.

technical and interaction challenges they present. The largest
improvement is due to the ability of PLEDS to adapt to each
user and thus present information that will be of unique interest
to them. We propose several effective heuristics to mine var-
ious useful information for entities in the document. We also
incorporate natural language processing (NLP) techniques,
such as using a taxonomy to measure similarity between words
and phrases. Finally, we improve on the presentation method
of the information about each entity so as to reduce user
annoyance and frustration.

III. PLEDS: AN OVERVIEW

The personalized entity detection task in PLEDS involves
identifying a small number of keywords (i.e., entities) from the
page currently being read by a user so that the user may likely
want to know the meaning of those keywords. A user’s interest
in keywords depends on three factors: the topic trends (what
topics are currently trendy?), the user’s background knowledge
(what might the user already know?), and the content of the
web page being read (what keywords are explained well on
this page?). Correspondingly, PLEDS exploits four types of
data to derive the information.

To find currently trendy topics, PLEDS uses the mining
results from a global query log in a search engine to identify
the currently popular keywords. To understand the user’s
background knowledge, PLEDS mines the individual user’s
web log to find the user’s personal interest as well as what
the user may already read and thus know. Moreover, PLEDS
analyzes the individual user’s click history while they use
PLEDS to learn that user’s preference and what keywords they
have recently learned more about. To capture the keywords that
are likely well explained in the web page being read, PLEDS
scans the page. Integrating the above four different types of
data and enabled by mining those data, the keywords identified
by PLEDS are highly personalized.

Once the personalized entities are identified, PLEDS takes
into account the user’s interest and provides related informa-
tion inline. The information is a summary extracted from the
top results of a search query using the entity and user’s interest.

The conceptual system architecture of PLEDS is shown in
Figure 1. In the rest of this section, we will explain how
the four kinds of data are mined and used in PLEDS for
personalized entity detection.

A. Mining Trends in Global Query Logs
As suggested in [10], a keyword that has been searched for

by many people recently is also very likely to be interesting



to an individual user. PLEDS also uses this heuristic to model
currently popular topics. By mining a current window W (e.g.,
the queries in the last 30 days) in a global web query log
(e.g., one in a large search engine), PLEDS identifies candidate
personalized entities in the query log and computes the global
frequency of each entity as a measure of its popularity in the
current time window.

1) Pre-computing Frequencies: A large query log may con-
tain noisy information; there is some previous work focusing
on web log cleaning [11]. As a pre-processing step, we need
to conduct some procedures necessary for data cleaning. First,
we remove unusual symbols and characters from the log. We
then use a co-occurrence frequency calculation in the query
log to identify a set of candidate entities.

In order to compute this co-occurrence frequency, it is first
necessary to determine the frequencies of individual words
as well as the co-occurrence values of two-word phrases
in the query log. Since determining the frequency and co-
occurrence can be very expensive if the query logs are large,
we pre-compute those values. Those valid words and their
corresponding frequencies are maintained in a table on the
database server. We do the same thing for each pair of adjacent
words found in the global query log, as well each set of three
contiguous words.

Obviously, a pair of two adjacent words in a query log is
not necessarily a meaningful entity. A simple yet effective way
to detect meaningful entities from a query log is based on co-
occurrence frequencies. If the co-occurrence frequency of two
adjacent words is approximately comparable to the frequency
of each single word within the pair, it is likely that the two
words can be combined together so as to form a more specific
entity. As a result, in the third step of pre-computation, for
each two-word phrase 〈w1, w2〉 in the list, we calculate the
co-occurrence frequency

CoFreq(〈w1, w2〉) =
f(〈w1, w2〉)
f(w1)f(w2)

,

where f(〈w1, w2〉) is the frequency of the two-word phrase
〈w1, w2〉 and f(w1) and f(w2) are the frequencies of one-
word phrase w1 and w2, respectively, in the current window
W of the global query log. The more frequently two words
occur together, the higher the co-occurrence frequency will
be. Phrases with a co-occurrence frequency higher than a
given threshold will be favored over their individual word
components.

The use of a co-occurrence frequency measure may result
in some non-traditional entities that would be better termed as
phrases or concepts. It should be noted, though, that PLEDS’
aim is to detect popular entities, and favors popularity over
the traditional definition of “entity”. For example, the phrase
“good morning” may have a high co-occurrence frequency,
and thus be labeled. However, it may not be selected by the
user, and in subsequent encounters may not be labeled. In
addition, when the co-occurrence frequency is combined with
the factors discussed in the following sections, the entity may
not be labeled at all. On the other hand, “good morning” may
be interesting to a user who is researching greetings. In this
case, PLEDS recognizes the user’s interest in the topic and

Algorithm 1 The entity extraction algorithm
Input: A document D, a stop-word list Lstop, the frequency list

f , the co-occurrence list CoFreq, a co-occurrence percentage
threshold δ;

Output: A candidate entity list E(D);
1: for each sentence S ∈ D do
2: remove punctuation in S and any words in S that are in Lstop;
3: for each word wi ∈ S do
4: if wi is the first or last word in S then
5: create a window for wi containing its one surrounding

word;
6: else
7: create a window for wi containing its two surrounding

words W = {wi−1, wi, wi+1};
8: end if
9: if CoFreq(〈wi−1, wi〉) ' CoFreq(〈wi, wi+1〉) then

10: form entity 〈wi−1, wi, wi+1〉 and add it to E(D);
11: else if entity 〈wi − 1, wi〉 /∈ E(D) then
12: if CoFreq(〈wi, wi+1〉) ≥ δ

f(wi)
AND

CoFreq(〈wi, wi+1〉) ≥ CoFreq(〈wi−1, wi〉) then
13: form entity 〈wi+1, wi〉 and add it to E(D);
14: else if CoFreq(〈wi−1, wi〉) ≥ δ

f(wi)
AND

CoFreq(〈wi−1, wi〉) ≥ CoFreq(〈wi, wi+1〉) then
15: form entity 〈wi−1, wi〉 and add it to E(D);
16: else
17: form entity 〈wi〉 and add it to E(D);
18: end if
19: end if
20: end for
21: end for

promotes entities related to it, so “good morning” may have
a higher likelihood of being labeled.

2) Extracting Entities from the Current Web Page: Entity
extraction from a web page currently being read by a user
relies on mining sentences in the text of the document as
well as the frequencies and co-occurrence frequencies of those
phrases extracted from the global query logs. To determine
whether keyword segment 〈w1, w2〉 in the current page is part
of an candidate entity, PLEDS analyzes words found in each
sentence of the document D being viewed by a user.

In our current PLEDS implementation, we determine enti-
ties of a maximum of three words in length, where the three-
word entity has a frequency comparable to that of its indi-
vidual words or two-word phrases. Basically, this idea can be
referred to “concept extension”, which has been used in some
previous studies [10]. For example, the phrase “Simon Fraser
University”, has a total frequency similar to those of length-
2 subsequence, “Simon Fraser” and “Fraser University”. As
such, we extend the entity to contain all three words.

Algorithm 1 shows the entity extraction algorithm. We
determine whether a single word entity should be extended to a
two- or even three-word entity by checking the frequencies as
shown in Line 9 to 17. Since longer and more specific entities
are preferred, we first determine if the three-word phrase is a
meaningful entity. The idea is to check if the co-occurrence
frequencies of both two-word phrases in the window around wi

are approximately equal; if it is true, it is very likely that these
three words appear together. We combine them together to
form a three-word entity. If the three-word phrase is not likely
to be an entity, we also need to determine whether the two
two-word phrases in the current window W are meaningful



entities. Intuitively, we compare the co-occurrence of the two-
word phrase and the frequency of one single word. If it is
comparable (e.g., θ percent of the frequency of the single
word), we assume that the two-word phrase is likely to be
an entity. If the co-occurrence is too small, we just treat the
single word as a candidate entity.

Since the likelihood of adding a fourth word on either side
of a three word phrase entity is quite low (that is, the likelihood
of a four-word entity having a comparable high frequency to
the three-word entity is low), we stop at adding the third word.
This increases the efficiency of our entity extraction algorithm.

Once the initial candidate entities have been found, PLEDS
fetches the pre-computed frequency f(e) of each entity e in
the current window W in the global query log. The global
frequencies of entities reflect how popular and interesting
the entities are for the general population within this current
window. If an entity was popular over a long time ago but
not recently, we can thus capture this with a lower global
frequency for that entity.

Several previous studies [10], [4] concluded that entity
detection based on word co-occurrence may not be very accu-
rate. However, our method combines the word co-occurrence
in the document with the word co-occurrence in the query
log to identify meaningful entities. Only the terms (a set of
continuous words) in the document that frequently appear in
the query log are considered to be candidate entities.

B. Mining Users’ Background Knowledge from Local Logs
If a user has already read something about an entity, or

clicked the entity using PLEDS before, then it is less likely
that the user will click the entity again. In other words, a user’s
background knowledge is important in determining her/his
interest in entities.

1) Mining Local Web Log Data: By mining the local web
log data, PLEDS can identify whether an entity or some highly
related entities were queried recently. This information can be
used in the following two ways.

First, if an entity was queried recently by a user, then the
user may not be interested in the entity in the near future.
We capture this by finding the query freshness of entities. If
an entity e was queried at time instants t1, . . . , tm, the query
freshness of e is defined as

QueryFresh(e) = 1−
m∑

i=1

αt−ti ,

where t is the current time instant and α is a decaying factor
between 0 and 1. The larger the query freshness, the more
interesting an entity is.

Second, if an entity e has a high freshness score and many
entities in the same category of e were queried before, the
user may have a special interest in the category of e, and
thus e may have a good chance of being clicked by that user.
To model the entity ontology, we use the concept of sense.
The term sense arises from WordNet [3], and refers to the
meaning of the word it belongs to. Each word may have several
senses. For example, the word “merit” has two senses: the first
being “any admirable quality or attribute”, as in the example
“work of great merit”; and the second being “the quality of

Algorithm 2 Calculating a user’s interest vector
Input: User’s local web log L, a stop word list Lstop, a user

parameter k;
Output: User’s interest vector V;

1: for each query q ∈ L do
2: remove punctuation in q and any words in q that are in Lstop;
3: disambiguate all words wi ∈ q //get wi’s part of speech and

most likely sense sen(wi);
4: for each word wi ∈ q do
5: if sen(wi) ∈ V then
6: increment the frequency of sen(wi) in V by 1;
7: else
8: insert a new tuple (sen(wi), 1) to V;
9: end if

10: end for
11: end for
12: find the top k senses in V and remove all others from V;
13: normalize the sense frequency by dividing the total number of

senses in V;

being deserving (e.g., deserving assistance)”, as in the example
“there were many children whose merit he recognized and
rewarded”. Each sense belongs to a different synset, which in
turn is a group of synonyms. The senses in WordNet have
a taxonomy structure. For simplicity, we only consider those
most specific senses.

We find and maintain an interest vector for each user,
which contains the most popular senses found in the user’s
local log, as well as the frequencies of the senses. For
example, a possible interest vector for a user ui may look
like V (ui) = 〈(sen1, freq1), . . . , (senj , freqj), . . .〉, where
senj represents a sense and freqj represent the frequency of
sense senj . We can then compare the most likely senses for a
given entity to those of the user’s interest vector, and use the
overlap to calculate an interest score for each entity.

Algorithm 2 calculates a user’s interest vector. The disam-
biguation in Line 3 of Algorithm 2 refers to that provided
by the Adapted Lesk Algorithm [1], which compares words
surrounding our target word wi using a measure of semantic
similarity, thus finding the most appropriate sense and part of
speech for wi. We use the WordNet [3] semantic lexicon for
the English language and its .NET library, WordNet.NET10,
as well as some useful code developed in The Code Project11

for the implementation.
The user’s interest models the likelihood of the user being

interested in a specific topic (sense in our model). The user’s
interest vector can be used to measure the likelihood that an
entity will be interesting to a user. The measurement is based
on an interest score for each entity.

Given a user ui and the corresponding interest vector V (ui).
For entity ej , suppose its total number of senses is n and
senses seni1 , . . . , senit are appeared in V (ui). The interest
score of ej for user ui can be calculated as

ISui(ej) =
t∑

k=1

1
n× frequi(sen(ik))

.

If an entity ej has n different senses, we can assume that

10http://opensource.ebswift.com/
11http://www.codeproject.com/KB/string/

semanticsimilaritywordnet.aspx



each sense has the probability 1
n . As a result, by multiplying

the frequency for each common sense between ej and the
user’s interest vector, we can obtain the interest score to
estimate the likelihood the user will be interested in the entity.

2) Mining PLEDS Clickthrough History: Search engine
clickthrough data has been widely accepted as a useful source
of implicit user feedback [6], [7]. In PLEDS, entity click-
through data also can be used as an implicit user feedback.
If a user has clicked an entity highlighted by PLEDS before,
then she/he is unlikely to click the entity again in the near
future. Moreover, if PLEDS presents an entity to a user a few
times but the user never clicks it, then the chance of the user
clicking this entity in the near future is also slim.

Carrying this idea forward, PLEDS mines historical click-
through data. We keep a record of each time a user clicks
on an entity, and compute the click freshness by incorporating
a decaying factor. In this way, the longer ago an entity has
been clicked, the lower the click freshness is. We assume that
entities with a higher click freshness score are less likely to be
clicked again than entities with a lower score. Click freshness
is calculated as follows: if an entity e was clicked at time
instants t1, . . . , tm, the click freshness of e is defined as

ClickFresh(e) = 1−
m∑

i=1

αt−ti ,

where t is the current time instant and α is a decaying factor
between 0 and 1. The lower the click freshness, the more
interesting an entity is assumed to be.

C. Mining the Current Web Page
On the web page currently being read by a user, if an entity

is well explained, then it is likely that the user will not click
on that entity. Therefore, it is necessary to mine the current
web page to understand whether an entity is well explained or
not.

We propose an explanative score to address this issue. Given
an entity e, the explanative score of e is computed by checking
all entities surrounding e (i.e., in a small window centered at
e) for their semantic relatedness to e. To measure semantic
relatedness, again we base our algorithm on the Adapted Lesk
Algorithm [2]. Let e1, . . . , en be the set of entities surrounding
e in a window. The explanative score of e is calculated as

ES(e) =

∑n
i=1

1
dist(e,ei)

n
,

where dist(e, ei) is the semantic distance between e and ei, as
that used in [12]. The larger the explanative score, the better
explained the entity.

The semantic similarity calculation is provided by [12],
although other methods could be substituted. To use this mea-
surement, we treat the WordNet taxonomy as an undirected
graph, using the distance between two nodes as a measure of
their semantic relatedness. A larger distance results in a score
closer to 0, meaning the words are not highly semantically
related. A smaller distance results in a score closer to 1,
meaning the words are highly semantically related. Identical
words (taking into consideration the part of speech; this must
also be identical) will have a distance of 0, resulting in a score

Algorithm 3 Explanative score calculation.
Input: A document D, a stop word list Lstop;
Output: The explanative score for each entity;

1: for each sentence S ∈ D do
2: extract the initial entities ei from S using the method from

Section III-A.2;
3: remove punctuation in S and any words in S that are in Lstop;
4: for each word wi ∈ S do
5: disambiguate wi //this gets the part of speech of the word;
6: end for
7: end for
8: for each entity ei ∈ D do
9: Create a window which holds a maximum of 5 entities:

ei−2, ei−1, ei, ei+1, ei+2;
10: for each pair of entities (ej , ei) do
11: if (ej , ei) is in the word-pairs list and its corresponding

similarity score is not 0 then
12: use that score as the similarity score;
13: else if (ej , ei) is in the word-pairs list and its corresponding

similarity score is 0 then
14: calculate the new score, store it in the table, and use it

as the similarity score;
15: else
16: assign a score of 0 and store in the word-pairs list;
17: end if
18: end for
19: calculate the average of similarity scores for all pairs, and let

it be the explanative score forei;
20: end for

of 1. We also consider the depth of each node’s least common
ancestor.

Calculating explanative score presents an efficiency chal-
lenge, as each entity determined via the co-occurrence method
must be compared to each of its surrounding entities. Limiting
the window size helps reduce computational time, but also
reduces the accuracy of the part-of-speech tagging. As such,
some pre-computation techniques have also been introduced
to mitigate this problem. A list of pairs of entities that have
been compared previously is maintained, along with their
corresponding similarity scores. Then, for each pair of entities
encountered in the text, if the pair is in the list, we use its pre-
computed score. If not, we assign the pair a score of 0. Here
we are assuming that if an entity pair has never before been
encountered, it is not very common and thus the entities it
consists of are not highly related to each other. If the entity
pair is encountered a second time, the semantic similarity is
calculated and the previous score of 0 is replaced with this new
score. Here we assume that since the pair has been encountered
previously, it is now common enough to warrant performing
the calculation. In subsequent encounters this pre-computed
score is used, thus saving the cost of computing the semantic
similarity every time. This is illustrated in Algorithm 3 to
calculate explanative score ES(ei) for an entity ei.

It is worth noting that an entity may appear more than
once in a web page. For such an entity, we use the largest
explanative score among the multiple occurrences. Here we
assume that if an entity is well-explained at least once on the
page, there is a decreased need of tagging and explaining this
entity elsewhere on the same page. This is also illustrated in
the last step of the algorithm above.

An interesting issue here is that the user may not consider



a given web page as trustworthy. For example, if the current
document is not well-written, even though an entity is well
explained in the document, the user may still try to search the
web for an explanation from a reputable source. A possible
solution is to combine the trust score of each web page, such
as HITS and PageRank, into our explanative score calculation.
Another idea is to trace the user’s browsing history. If a user
immediately queries a currently well-explained entity, we may
assume that the user does not trust the document’s authority.
Later on, its authority needs to be penalized. We leave this as
a future improvement of PLEDS.

D. Fusing the Mining Results
By mining the global web query log, the local web log and

PLEDS clickthrough data, as well as the current web page, we
obtain information about currently trendy keywords, the user’s
background knowledge about the entities on the current web
page, as well as how well-explained these entities are in the
page. Based on these factors, PLEDS uses logistic regression
to recommend a list of entities to be tagged for the user.

Technically, PLEDS estimates the probability p that an
entity e will be clicked on by the user given five factors
x1, x2, x3, x4 and x5, where x1 is the explanative score
(Section III-C), x2 is the global frequency (Section III-A.2),
x3 is the query freshness (Section III-B.1), x4 is the click
freshness (Section III-B.2), and x5 is an interestingness score
(Section III-B.1), which is computed using the interest vector.

PLEDS takes a training data set to learn the logistic regres-
sion model. The formula of the logistic regression is ln p

1−p =
β0 +

∑5
i=1 βi · xi, where β0, . . . , β5 are the coefficients. In

other words, the probability p that an entity will be clicked on
can be measured as

p =
1

1 + e−(β0+
∑5

i=1 βi·xi)
.

We adopted the “Newton-Raphson” method [5] to learn
the regression coefficients. The Newton-Raphson method is a
common iterative approach to estimating a logistic-regression
model. In the training data set, if a labeled entity is clicked, a
training example is obtained with the response value y set to
1. If an entity is labeled by PLEDS but is not clicked by the
user, a training example is also obtained with response value
y set to 0.

We use B = [β0, β1, β2, β3, β4, β5]T to represent the
coefficient vector. Bt represents the coefficient vector in t-
th step of iteration. The Newton-Raphson method accepts the
response vector and iteratively updates the coefficient vector
until it converges. The algorithm is shown in Algorithm 4.

Once the model is trained, for each new web page PLEDS
will use the model to retrieve entities which have probabilities
above a certain threshold value. This threshold value can be
tuned by the user to adjust how aggressive PLEDS should be
in detecting and displaying entities. Those entities above the
threshold will be labeled by PLEDS. Depending on PLEDS’
recommendation confidence (the score calculated using regres-
sion), the entities are labeled using different colors, which
display the confidence of the labeling results.

Once the entities within a web page have been identified, it
is necessary to provide the appropriate information regarding

Algorithm 4 The Newton-Raphson method to learn the re-
gression coefficients.
Input: the model matrix X in which each row, denoted as xi, is a

vector containing the values for i-th training data, the response
vector y (containing 0’s and 1’s);

Output: The coefficient vector B;
1: choose initial estimates of the regression coefficients, such as

B0 = 0;
2: let t = 0;
3: repeat
4: let t = t + 1;
5: let pt−1 be the probability vector of fitted probabilities from

the previous iteration which can be calculated using pi,t−1 =
1

1+e
−xT

i
Bt−1

;

6: let Vt−1 be the diagonal matrix with diagonal entries
pi,t−1(1− pi,t−1);

7: let Bt = Bt−1 + (XTVt−1X)−1XT(y − pt−1);
8: until (Bt is close enough to Bt−1)
9: return Bt;

those entities, depending on the user’s interest. PLEDS submits
a web search for the entity in association with the user’s
interest and extracts a summary of those top ranked search
results. We also provide a short definition of the entity as found
in WordNet, if that definition exists, displaying the top three
ranked search results below it. To display this information,
the user clicks on the entity they are interested in, and the
information is displayed as a pop-up. Because the user is
required to click on an entity rather than simply hover with
the mouse, we avoid the problems of distraction exhibited by
other systems, and ensure that the user is actually motivated
to see this information.

IV. EXPERIMENTAL RESULTS

In the following section, we first describe the methodology
used to evaluate the utility of our PLEDS platform, and then
present the results of a systematic user study.

The PLEDS prototype system was implemented in Mi-
crosoft .NET using C]. Microsoft SQL Server 2000 was
used as the background database management system. All the
experiments were conducted on a PC computer running the
Microsoft Windows XP SP2 Professional Edition operating
system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory,
and a 160 GB hard disk.

In our user studies, a large, real web search query log
from AOL (http://www.aol.com/) was used, although
reduced in size through data cleaning and to increase per-
formance. Data cleaning consisted of removing tuples that
consisted solely of punctuation symbols or single letters. At
the start of user testing, the size of the global query log used
by PLEDS contained 97, 471 tuples (the size increases as
the system is used). On average, each user had 140 tuples
in their local web query log, with 696 users initially in the
system. This initial global query log results in 43, 014 distinct
co-occurrence phrases and this is reduced to 4, 287 distinct
co-occurrence phrases once they are normalized and passed
through a threshold filter as described above.

A. Evaluation Methodology
Our evaluation methodology consisted of usability testing,

which was conducted once optimized settings for certain



parameters in PLEDS had been set. The goal of the evalu-
ation was to measure the quality of entity recommendations
provided by the system for a specific navigational session. We
present the results of our study in the following section.

Usability testing was conducted on PLEDS using a set of
volunteers with varying backgrounds, from non-technical users
to those who are highly skilled in browsing and navigating
the internet. In total we have 6 participants. Participants had
a range of educational backgrounds, with 16.7% participants
with a highschool diploma, 33.3% participants with a Bach-
elor’s degree, and 50% participants with a Master’s degree.
Participants’ use of computers also ranged from 6− 10 hours
per week to 50+ hours per week, indicating that some have
more opportunities to become familiar with the internet and
other technical computer skills than others.

Testing was conducted to determine the ability of PLEDS
to adapt to a user’s interest and its performance in comparison
with Wikipedia.

Each user session consisted of two stages. In the first,
participants used PLEDS to browse various Wikipedia pages
for 15 minutes. During this time they were permitted to click
on entities they were interested in, thus training the system. At
the end of this period, users were asked to look at one article of
interest to them. The tagging of entities was disabled, so users
only saw plain text. They were then asked to identify entities
they were interested in. When the session was over, these
entities were compared with those identified by the system
in its initial and final states. They were also compared with
entities as tagged by Wikipedia, and the precision and recall
of all three stages were measured.

B. User Satisfaction

Users involved in our user study were asked to complete a
questionnaire following the completion of the session. The
questionnaire covered a range of topics from general user
background, to their experience with PLEDS in comparison
to Wikipedia, and finally users were asked to rate their level
of satisfaction with PLEDS alone. Table I shows the results.

With regard to satisfaction with PLEDS, we asked par-
ticipants to rate their experience with PLEDS according to
several factors, including if the entities were recently clicked
or queried by the user and whether the entities were well-
explained in the document. On average, participants reported
that the entities that PLEDS recommended to them were nei-
ther recently clicked nor queried by them, which is highly de-
sirable. However, it should be noted that although the entities
were still recommended, it may be that their recommendation
level had changed; for example, entities, once clicked on, are
sometimes downgraded from strongly recommended to weakly
recommended as their scores change and are updated. The
color of tag used for these entities does change, but the entity
may still be recommended due to other factors.

Participants also reported that the entities recommended to
them by PLEDS were somewhat explained in the document.
This may have been affected by the short length of text.

Finally, participants reported that they were likely to use
PLEDS frequently for surfing the internet, with one participant
reporting that “to use this method would result in getting

System Precision Recall
Wikipedia 0.16337014 0.33

PLEDS - Initial 0.072222222 0.194444444
PLEDS - After Adaptation 0.34023569 0.841666667

TABLE III
THE PRECISION AND THE RECALL FOR THE SYSTEM COMPARISON.

specific information more quickly than using broader search
methods. This is a good method for scanning rather than
having to read everything.”

C. System Comparison

As mentioned in Section I and Section II, our PLEDS
system is highly related to several existing systems proposed
in the literature such as IntelliTXT, Kontera and Contextual
Shortcuts. With no access to those systems, alternatively, we
conducted a user study to compare the results for PLEDS
and Wikipedia. The source for the text used in these studies
originated in Wikipedia (English version), but for the PLEDS
trials the text was extracted from Wikipedia articles, and all
formatting, links, and tags are removed. The entities were then
“labeled”, and these labels are compared with the link entities
in the original Wikipedia articles.

We examined the entities labeled by PLEDS and Wikipedia,
as well as the entities participants identified as interesting.
The results of the comparison between PLEDS in its initial
state, PLEDS in its final state, and Wikipedia test are shown
in Table III.

1) Comparison: PLEDS adapted vrs. PLEDS initial: The
entity recommendation performed by PLEDS after the period
of adaptation results in a low precision score (0.34), although
the recall score (0.84) is high. However, these results show a
marked improvement over PLEDS’ in its intial state, where
both precision and recall scores are lower by a factor of four
(approximately). Recall that during usability testing, PLEDS
only had 15 minutes to adapt to a participant’s preference.
With longer length of use, the results should improve further.
In addition, this short length of time may also be to blame for
low precision scores; users’ local query logs were quite small
because of this, having on average only 10 tuples. Historically,
however, the global logs from the dataset show previous users
with between 30 and 120 tuples each. As the local query log
becomes larger, PLEDS becomes more accurate. Thus, giving
users more time with the system may lead to better results.

2) Comparison: PLEDS vrs. Wikipedia: In its initial state,
PLEDS does not perform as well as Wikipedia with respect to
precision and recall. However, as PLEDS adapts to the user’s
preference, the results show that it outperforms Wikipedia.
One reason for the disparity is that PLEDS results could be
adjusted to only show the top k results, which is what we used
to score the system. On the other hand, Wikipedia provides
a set number of results, which means that for some pages,
20% of entities may be returned, while for others the number
may be as high as 40%. During the study, participants often
switched from higher entity percentage settings to lower ones,
indicating that too many entities is not desirable on a page.

In comparing PLEDS and Wikipedia via the results of the
questionnaire users filled out after their usability sessions.



ID Question Description SD D NO A SA
Q1 The entities recommended by PLEDS were NOT recently clicked by me. 0 16.7% 0 50% 33.3%
Q2 The entities recommended by PLEDS were NOT recently queried by me. 0 16.7% 0 83.3% 0
Q3 The entities recommended by PLEDS were NOT well-explained in the document. 0 16.7% 33.3% 33.3% 16.7%
Q4 I think that I would like to use PLEDs frequently for surfing the internet. 0 0 33.3% 50% 16.7%

TABLE I
THE SURVEY RESULTS (SD=STRONG DISAGREE, D=DISAGREE, NO=NO OPINION, A=AGREE, SA=STRONG AGREE).

ID Question Description SD D NO A SA
Q5 The words/phrases recommended by PLEDS matched my interests well. 0 0 0 83.3% 16.7%
Q6 The words/phrases recommended by Wikipedia matched my interests well. 16.7% 16.7% 16.7% 33.3% 16.7%
Q7 The words/phrases recommended by PLEDS were meaningful in the context. 0 0 16.7% 83.3% 0
Q8 The words/phrases recommended by Wikipedia were meaningful in the context. 0 16.7% 0 50% 33.3%

TABLE II
THE SYSTEM COMPARISON RESULTS (SD=STRONG DISAGREE, D=DISAGREE, NO=NO OPINION, A=AGREE, SA=STRONG AGREE).

The results are shown in Table II. 100% users reported that
the entities recommended by PLEDS matched their interests
well, while users were more mixed in their reaction to those
entities recommended by Wikipedia; 33.3% did not feel the
entities matched their interests well, 50% felt the entities did
match their interests well, while 16.7% had no opinion either
way. On the other hand, in terms of meaningfulness, 83.3%
users felt that Wikipedia’s recommendations were meaningful
in the context of the text, while 83.3% users felt that the
recommendations made by PLEDS were meaningful. 16.7%
users had no opinion on the meaningfulness of the entities
recommended by PLEDS.

D. Discussion

Our experimental results were affected by the length of time
of each user session and the limitation of only having one
session per participant. As discussed previously, allowing users
to have longer and more varied access to PLEDS may provide
more accurate precision and recall scores.

Our results also showed that Wikipedia’s fixed number of
tagged entities is a disadvantage in terms of precision and
recall; with its precision being roughly half of PLEDS’ and
its recall only roughly 40% that of PLEDS’. The problem
is that Wikipedia often shows too many results, may show
results that are already well-explained in the text, and may
show results that have recently been clicked or queried by
the users. This resulted in general in less overlap between the
entities the users desired to click on and the entities labeled
in the text. On the other hand, Wikipedia tends to do a better
job of displaying multi-word entities and phrase entities than
PLEDS; one contributor to this may be the reduced size of
the PLEDS global query log used in this test for performance
reasons. If the global query log were to be expanded, it is
expected that more multi-word and phrase entities may be
discovered in the text. Wikipedia also outperforms PLEDS if
PLEDS has not had any opportunity to learn a user’s interest.

V. CONCLUSIONS

PLEDS builds on previous systems, such as IntelliTXT,
Kontera and Contextual Shortcuts, to provide personalized,
meaningful entity recommendations in text. We have shown

how we can improve on these systems by introducing the
new measures of Interest Score, Explanative Score, Query
Freshness, and Click Freshness, as well as more traditional
Frequency measures. Our results show that as it learns a user’s
interest, PLEDS recommends and retrieves more relevant en-
tities for specific users than static systems such as Wikipedia.

There are several areas to explore with regard to the
improvement of PLEDS. We would like to expand our initial
entity detection particularly with respect to concept extension.

REFERENCES

[1] Satanjeev Banerjee and Ted Pedersen. An adapted lesk algorithm for
word sense disambiguation using wordnet. 2002.

[2] Satanjeev Banerjee and Ted Pedersen. Extended gloss overlaps as a mea-
sure of semantic relatedness. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), pages 805–810,
Acapulco, Mexico, 2003. Morgan Kaufmann.

[3] Christiane Fellbaum, editor. WordNet: an electronic lexical database.
MIT Press, 1998.

[4] R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo,
N. Nicolov, and S. Roukos. A statistical model for multilingual entity
detection and tracking. NAACL/HLT, 2004.

[5] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer,
2001.

[6] Thorsten Joachims. Optimizing search engines using clickthrough data.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD’02), pages 133–142, New
York, NY, USA, 2002. ACM.

[7] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and
Geri Gay. Accurately interpreting clickthrough data as implicit feedback.
In Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval (SIGIR’05), pages
154–161, New York, NY, USA, 2005. ACM.

[8] J. Morkes and J. Nielsen. Concise, scannable, and objective: How to
write for the web, 1997.

[9] Hartmut Obendorf and Harald Weinreich. Comparing link marker
visualization techniques: changes in reading behavior. In Proceedings
of the 12th international conference on World Wide Web (WWW’03),
pages 736–745, Budapest, Hungary, 2003. ACM.

[10] Vadim von Brzeski, Utku Irmak, and Reiner Kraft. Leveraging context
in user-centric entity detection systems. In Proceedings of the 2007 ACM
International Conference on Information and Knowledge Management
(CIKM’07), Lisbon, Portugal, 2007. ACM.

[11] Harald Weinreich, Hartmut Obendorf, and Eelco Herder. Data cleaning
methods for client and proxy logs. In Proceedings of WWW’06 Workshop
on Logging Traces of Web Activity: The Mechanics of Data Collection,
2006.

[12] Z. Wu and M. Palmer. Verb semantics and lexical selection. In Proceed-
ings of the 32nd Annual Meeting of the Association for Computational
Linguistics (ACL’94), pages 133–138, Las Cruces, NM, 1994. ACL.


