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Abstract
Co-authorship networks, an important type of social net-
works, have been studied extensively from various angles
such as degree distribution analysis, social community ex-
traction and social entity ranking. Most of the previous
studies consider the co-authorship relation between two au-
thors as a collaboration. In this paper, we introduce a novel
and interesting “supportiveness” measure on co-authorship
relation. The fact that two authors co-author one paper
can be regarded as one author supports the other’s scientific
work. We propose several supportiveness measures, and ex-
ploit a supportiveness-based author ranking scheme. Several
efficient algorithms are developed to compute the top-n most
supportive authors. Moreover, we extend the supportiveness
analysis to community extraction, and develop feasible so-
lutions to identify the most supportive groups of authors.
The empirical study conducted on a large real data set indi-
cates that the supportiveness measures are interesting and
meaningful, and our methods are effective and efficient in
practice.

1 Introduction

Co-authorship networks have been studied extensively
from various angles such as degree distribution anal-
ysis [15, 10, 2, 1], social community extraction [18, 29,
26, 7], social entity ranking [16, 6, 36, 14, 24], and social
link prediction [27, 5]. For example, the co-authorship
relation has been analyzed in the context of mathemat-
ical sciences (e.g., the Erdös Number Project, http://
www.oakland.edu/enp) and information retrieval [23].
Co-authorship analysis has also been extended to ana-
lyzing co-starring in movies, also known as the Oracle
Of Bacon (http://oracleofbacon.org/index.html).

In a co-authorship network, each author is repre-
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Figure 1: The ranked co-author list of “Philip S. Yu”
on DBLP.

sented as one vertex, and an edge represents the papers
co-authored by two authors. Patterns mined from a co-
authorship network have a few important applications,
such as academic author ranking [17, 36, 16] and expert
recommendation [34, 28].

Many existing studies on co-authorship networks
model the co-authorship relation between two authors
by an unweighted edge. However, such a method does
not take into account the closeness of the relation.

To fully understand the co-authorship relation, an
essential but remaining open question is how important
the collaboration between two authors is to each author
and to the community. Answering this question is criti-
cal for co-authorship network analysis. For example, it
is interesting to rank the co-authors of a specific author
based on the importance of the collaborations.

As a concrete example, recently, DBLP (http:
//www.informatik.uni-trier.de/~ley/db/) has pro-
vided an author a refined ranking function. For exam-
ple, by searching “Philip S. Yu” on DBLP, the com-
plete publication records are shown on the main col-
umn. Moreover, on the right upper corner, a ranked
list of Philip’s co-authors in the number of co-authored
papers is shown as well. Figure 1 shows a screen shot.

Kun-Lung Wu is ranked in the first place, who
co-authored 37 papers with Philip. What does the



Paper-id Authors
p1, p2 Ada, Bob, Deborah

p3 Ada, Cathy
p4, p5 Ada, Deborah
p6, p7 Cathy, Deborah
p8, p9 Ada

p10, p11, p12, p13, p14, p15 Cathy

Table 1: A set of papers and the authors.

weight 37 tell us about the collaboration between Philip
and Kun-Lung? How important is the collaboration to
Philip, to Kun-Lung, and also to the communities that
Philip and Kun-Lung belong to?

To answer the above questions, it is essential to
understand the importance of collaborations. For a
specific author, the collaborations between different
co-authors may have different importance. Moreover,
a collaboration may have different importance with
respect to different participating authors.

To the best of our knowledge, there are no previ-
ous studies on importance of collaborations taking into
account the weights of collaborations for co-authorship
relation analysis. To tackle the problem, in this paper,
we introduce a novel and interesting “supportiveness”
measure on co-authorship relation. The fact that two
authors co-author one paper can be regarded as one
author supports the other’s scientific work. The sup-
portiveness can be measured by analyzing the tightness
of the collaboration. We make following contributions.

First, we propose the supportiveness measure in co-
authorship networks. For an author a, the supportive-
ness from author b to a is used to measure how close the
collaborations from b to a. We model supportiveness in
a novel way, and show that supportiveness analysis is
meaningful in some applications.

Second, we develop efficient methods to extract top-
n most supportive authors in co-authorship networks.
We model the supportiveness ranking problem as a re-
verse k nearest neighbor (k-RNN for short) searching
problem on graphs. In this paper, we consider the num-
ber of k-RNNs of an entity as a measure of importance,
and we propose several efficient methods to generate
the competitive candidates and extract the top-n most
supportive authors from them. Our methods utilize the
graph structure and exploit some interesting patterns of
the co-authorship graph. Some powerful pruning strate-
gies are proposed to speed up the search process.

Third, we extend the supportiveness analysis from
two authors to a group of authors. Specifically, we call
two authors a mutual pair if the two authors regard each
other as one of its k-RNN. The definition of mutual pair
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Figure 2: Graph models of co-authorship networks.

can be extended to a group of authors such that any two
authors in the group form a mutual pair. We propose
efficient algorithms to extract those groups of authors.

Last, we conduct systematic experiments on the
DBLP data set, which contains more than 1 million
publications and more than 600 thousand authors. The
experimental results indicate that our supportiveness
analysis is useful and interesting, and our methods are
effective and efficient.

The rest of the paper is organized as follows. We
formulate the supportiveness measure in Section 2, and
review the related work in Section 3. We discuss
the extraction of top-n most supportive authors in
Section 4. We further propose mutual pairs and mutual
cliques, and develop a feasible algorithm to extract
mutual cliques in Section 5. A systematic empirical
study conducted on the DBLP data set is reported in
Section 6. Section 7 concludes the paper.

2 Ranking Authors Based on Supportiveness

Let us start with an example. Table 1 shows a synthe-
sized set of 15 papers and the authors. A co-authorship
network can be built as shown in Figure 2(a), which is an
undirected graph. In the graph, each vertex represents
an author. An author is also labeled by the total num-
ber of papers she/he participates. An edge connects two
authors if they ever co-authored a paper. The weight of
the edge is the total number of papers they co-author.

One may think that the weights on edges show the
closeness among authors – the larger the weight, the
closer the two participating authors. However, using the
weights directly may be misleading. A paper with n co-
authors leads to a clique of

(
n
2

)
edges in the graph. The

paper is counted
(
n
2

)
times in weighting. The number

of papers co-authored by a selected group cannot be
derived by the weights.

As an example, consider the edge (Cathy, Deborah)



in Figure 2(a). It is unclear from the graph where the
weight 2 comes from. Is there a paper co-authored
by Ada, Cathy and Deborah altogether? Using edges
weighted by the number of papers co-authored by two
authors causes ambiguity.

To better model the co-authorship relation, we use
hypergraphs in this paper.

2.1 Co-authorship Networks as Hypergraphs A
co-authorship network can be modeled as a hypergraph
G = (V, E,L,W), where V is the set of authors in the
network, a hyperedge e = {v1, . . . , vn} ∈ E is a subset
of V , that is, e ⊆ V , representing a paper co-authored
by v1, . . . , vn.

The vertices and hyperedges in G are labeled. L
is a labeling function on vertices and W is a labeling
function on hyperedges. Each vertex v ∈ V is labeled
by L(v), the number of papers that author v publishes.
Each edge e = {vi, . . . , vj} is labeled by W(e), the
number of papers exclusively co-authored by authors
vi, . . . , vj . Figure 2(b) shows the hypergraph of the co-
authorship network in Table 1. Immediately, we have
the following property.

Property 2.1. (Labels) For any e = {v1, . . . , vn},

1 ≤ W(e) ≤
n

min
i=1

{L(vi)}

Moreover, for any v ∈ V , let E(v) be the set of edges
that v participates in, that is, E(v) = {e ∈ E|v ∈ e}.
Then, ∑

v∈e,e∈Ev

W(e) ≤ L(v).

Using hypergraphs to model co-authorship net-
works has some advantages. First, a collaboration
among more than 2 authors cannot be captured prop-
erly in a simple graph model. To the contrary, such
information is straightforwardly captured by a hyper-
edge. Second, as analyzed before, the weights on the
edges in a simple graph cannot reveal the precise close-
ness among a set of authors. In a hypergraph model,
each paper only contributes to one hyperedge. Thus,
the total number of papers co-authored by a selected
group can be derived by summing up the weights on
the hyperedges among those vertices.

2.2 A Harmonic Distance Measure As discussed
before, the weights on edges cannot be directly used
to measure the closeness between authors properly. To
model closeness precisely, we introduce a contribution-
based closeness measure.

We consider the collaboration between two authors
as the support to each other. In Figure 2(b), Ada and

Name Ada Bob Cathy Deborah |RNN|
Ada N/A 2.25 8 1.625 1

Bob 2.25 N/A ∞ 2 0

Cathy 8 ∞ N/A 3.75 0

Deborah 1.625 2 3.75 N/A 3

Table 2: The distance matrix of 4 authors.

Bob co-author 2 papers. For Ada, the 2 papers counts
2
7 = 28.6% of her papers, while the 2 papers counts
2
2 = 100% of Bob’s. Therefore, the support from Ada
to Bob is stronger than the other direction.

Definition 1. (Contribution) For authors u and v
(u 6= v), the contribution from v to u, denoted by
cont(u ← v), is

cont(u ← v) =

∑
u,v∈eW(e)
L(u)

.

Contribution cont(u ← v) measures how much the
collaboration between u and v contributes to the total
work of u. Apparently, for u, v ∈ V , 0 ≤ cont(u ← v) ≤
1.

Definition 2. (Closeness and distance) For au-
thors u and v, the closeness is the harmonic mean of
cont(u ← v) and cont(v ← u), that is,

closeness(u, v) = 1
1
2 ( 1

cont(u←v)+
1

cont(v←u) )
= 2cont(u←v)cont(v←u)

cont(u←v)+cont(v←u)

.

If u and v co-author at least one paper, the dis-
tance between u and v is

dist(u, v) = 1
closeness(u,v)

= cont(u←v)+cont(v←u)
2cont(u←v)cont(v←u)

.

A collaboration is bi-directional. A collaboration
between u and v may contribute differently to u and
v. It is natural to use the mean rather than the
contribution from one to the other to measure the
closeness between the two authors. Several Pythagorean
mean measures are available, including the arithmetic
mean, the geometric mean, and the harmonic mean. We
define the closeness measure in harmonic mean instead
of arithmetic mean or geometric mean because harmonic
mean biases on the smaller number. This is desirable in
measuring importance of contributions. For example,
for two authors u, v such that cont(u ← v) = 1 and
cont(v ← u) is very small, the overall importance of
the collaboration should be small instead of the average
which is still larger than 0.5.

Please note that the distance measure defined as
such is not metric. For example, in the co-authorship



network in Figure 2(b), the distances between the au-
thors are shown in Table 2, we have dist(Ada, Cathy) ≥
dist(Ada, Deborah) + dist(Deborah, Cathy).

2.3 Supportiveness Based on k-NN and k-RNN
Let us consider authors’ nearest neighbors in a co-
authorship network.

Example 1. (k-NN and k-RNN) In the co-
authorship network in Figure 2(b) whose distance
matrix is in Table 2, Bob has 2 co-authors, Ada and
Deborah. dist(Ada, Bob) = 2.25 and dist(Deborah,
Bob) = 2. Deborah is Bob’s nearest neighbor. It can be
easily verified that Deborah is Ada’s nearest neighbor
and Cathy’s nearest neighbor as well. Interestingly,
Ada is Deborah’s nearest neighbor.

Ada, Bob and Cathy all consider Deborah as their
nearest neighbor, but only Deborah considers Ada as
her nearest neighbor. In other words, Deborah supports
more authors than Ada, thus Deborah is more support-
ive.

The way to measure supportiveness in Example 1
shares the similar philosophy of reverse nearest neigh-
bors (RNN for short).

Definition 3. (NN and RNN) In a co-authorship
network G = (V, E,L,W), for vertex u ∈ V , the set
of nearest neighbors of u is

NN(u) = {v ∈ V |@v′ ∈ V : dist(u, v) > dist(u, v′)}.
The set of reverse nearest neighbors of u is

RNN(u) = {v ∈ V |u ∈ NN(v)}.
Following the idea in Example 1, we define the sup-

portiveness measure. The RNN-based supportiveness
score mimics a voting process. Every author has one
vote. If ‖NN(u)‖ = 1, u votes for its nearest neighbor.
If ‖NN(u)‖ > 1, u splits its vote evenly for its nearest
neighbors. The supportiveness of an author is the votes
she or he receives.

Definition 4. (Supportiveness) In a co-authorship
network G = (V,E,L,W), the supportiveness of
author u ∈ V is

sup(u) =
∑

v∈RNN(u)

1
‖NN(v)‖ .

Property 2.2. In a co-authorship network G =
(V,E,L,W), for any u ∈ V , sup(u) ≤ L(u).

Example 2. Table 2 shows the distances between the
authors in Figure 2(b). We have RNN(Ada) =

{Deborah}, RNN(Bob) = RNN(Cathy) = ∅, and
RNN(Deborah) = {Ada, Bob, Cathy}. As a result, we
have sup(Ada) = 1, sup(Bob) = 0, sup(Cathy) = 0, and
sup(Deborah) = 3.

The RNN-based supportiveness measure can be
easily extended to the case of k-RNN.

Definition 5. (k-NN and k-RNN) In a co-
authorship network G = (V, E,L,W), for u, v ∈ V , v
is a k-NN vertex of u if there do not exist k other
vertices v′ ∈ V such that dist(u, v) > dist(u, v′). The
set of k-NN vertices of u is denoted by kNN(u).

The set of k-RNN vertices of u is kRNN(u) =
{v|u ∈ kNN(v)}.

The k-RNN supportiveness of author u is

supkRNN (u) =
∑

v∈kRNN(u)

k

‖kNN(v)‖ .

3 Related Work

Our work is highly related to the previous studies
on co-authorship network analysis, RNN search and
maximum clique discovery. In this section, we review
some representative work briefly.

3.1 Co-authorship Network Analysis Co-
authorship network analysis has been conducted in
many aspects, such as pattern and degree analy-
sis [1, 16, 4], social community extraction [18, 29],
frequent substructure identification [7, 31, 26], and
centrality discovery [25, 5].

Some previous studies focused on analyzing static
and dynamic properties of various co-authorship net-
works. Nascimento et al. [16] measured the activity of
authors as the average distances to the others, while
the distance is calculated using the length of a path in
the graph. Newman [17] applied modern network anal-
ysis techniques to study the static network properties of
several co-authorship networks. The last several years
have seen the development of systematic algorithmic ap-
proaches to dynamic network analysis [9, 10, 15]. Re-
cently, Huang et al. [6] conducted experimental studies
on the CiteSeer data set to explore the importance of
authors using some inherent properties of the network,
such as structure, centrality and connectivity. All of the
above studies considered that the linkages between au-
thors are bi-directionally equivalent, and some hidden
properties, such as the support to each other and the
closeness between peers as defined in Section 2, have
not been mined.

Several well known link-based ranking algorithms
such as PageRank [20] and HITS [11] have been in-
troduced for ranking entities in social networks. For



each vertex, the amount of ranking contribution from a
neighbor is decided by the ranking score and the out-
degree of the neighbor. Such methods can be applied to
measure the importance of authors in citation network
as well [3, 36]. However, since those link-based methods
are mainly designed for directed graphs, they cannot be
applied on co-authorship networks directly.

Some variations of link-based ranking algorithms
have been proposed. For example, Zhou et al. [36] ex-
tended the traditional PageRank algorithm and pro-
posed a new link analysis ranking approach by co-
ranking authors and documents in the co-authorship
and citation networks. Using the ideas of PageRank,
the method is based on coupling two random walks into
a combined one, presumably exploiting the mutually re-
inforcing relationship between documents and their au-
thors: good documents are written by reputable authors
and vice versa. However, this method is hard to extend
to a group of entities. Furthermore, in co-authorship
networks, the authors are grouped by the co-authored
papers, and in each group, authors are highly knitted.
Such highly connected graphs can be regarded as page
farms [35], which make some individuals benefit from
the members in the groups and get higher score than
their due. Our methods in this paper focus on mining
the sociality of the authors, and can be easily extended
to a group of entities.

3.2 RNN Search in Metric Space and Graphs
Many studies have been conducted on calculating the
RNN (reverse nearest neighbors) in Euclidean space [12,
30, 32, 13]. Pre-computation and vertex pruning are
widely used in the previous studies. However, all those
searching techniques are only capable to RNN search
in metric spaces and cannot be adopted on graphs for
several reasons. First, most of the previous methods are
based on some indexes, such as R-tree. However, those
indices cannot be applied on graphs directly. Second, in
the Euclidean space, the number of RNNs is restricted
by the dimensionality of the space. However, such a
restriction does not hold on graphs.

Recently, Yiu et al. [33] conducted the first work
that deals with RNN queries in large networks. They
considered undirected weighted graphs where each edge
is weighted using some distance measure. The network
distance between two vertices is defined as the minimum
of the sums of weights of all paths between them. Yiu et
al. [33] showed that the network distance requires spe-
cific techniques for RNN processing, since the existing
methods for RNN search in the Euclidean space are in-
applicable on networks. The problem in [33] and the
ones in this paper are different. We do not consider the
network distance on paths. Due to the essential differ-

Algorithm 1 Top-n supportive author extraction: a
straightforward algorithm
Input: a graph G = (V,E,L,W), parameters n and k;
Output: the top-n vertices with the largest k-RNN

supportiveness scores;
1: for each vertex v ∈ V do
2: scan all neighbors of v and generate kNN(v);
3: for each u ∈ kNN(v), give u a vote with weight

k
‖NN(v)‖ ;

4: end for
5: for each vertex v ∈ V do
6: calculate the total vote that v receives;
7: end for
8: output the top-n vertices with the largest votes;

ence in problem settings, the pruning strategies in [33]
cannot be applied to solve our problems.

3.3 Clique discovery in Graphs In computational
complexity theory, the problem of determining whether
a graph contains a clique of a given size is one of Richard
Karp’s original 21 problems shown NP-complete [8].
The maximum clique problem of finding the largest
clique in a graph is also proved to be NP-complete [8].
In Section 5, we advocate to find mutual cliques as
communities in co-authorship networks where authors
in the clique support each other strongly. We do not
aim at finding the largest cliques. Instead, we focus
on finding the cliques with high supportiveness. We
develop heuristics to speed up the search. Recently,
some studies [21, 19] explore mining quasi-cliques on
one or multiple graphs, which cannot be applied to our
problems here directly.

4 Mining Top-n Most Supportive Authors

In this section, we study the problem of mining sup-
portive authors. Given a co-authorship network G =
(V, E,L,W), we want to compute the top-n authors
with the highest k-RNN supportiveness scores.

4.1 A Straightforward Method To calculate the
k-RNN supportiveness score for a vertex u, we can scan
the set of vertices once. For each vertex v, we can
identify its k nearest neighbors kNN(v). Then, we
can give the votes from v to u ∈ kNN(v) with weight

1
‖NN(v)‖ . Finally, we calculate the vote received by each
vertex and output the top-n vertices with the largest
scores. Algorithm 1 gives the pseudocode.

4.2 Pruning Strategies
Apparently, the straightforward algorithm has to



scan the whole graph. This can be costly when the
graph is large. Can we prune the search space and speed
up the mining process?

Heuristically, a vertex with a large degree is less
likely to have a small k-RNN supportiveness score.
Therefore, at the beginning of the search, we can pick n
“seed” vertices in G which have high degrees. We can
use these seed vertices to prune other vertices.

We can extend Property 2.2 to k-RNN supportive-
ness. For a vertex u, let d(u) be the number of co-
authors of u, that is, the degree of u in the co-authorship
network. It is easy to show the following.

Property 4.1. For a vertex v in a graph G =
(V,E,L,W), supkRNN (v) ≤ d(v).

When mining the top-n k-RNN supportive authors,
if we already have n vertices and their k-RNN sup-
portiveness scores, let δ be the smallest k-RNN sup-
portiveness score. Using Property 4.1, those vertices in
Vpruned = {v ∈ V |d(v) < δ} cannot be ranked in the
top-n list, and thus can be pruned.

The degrees of vertices in a large social network of-
ten follow the power law distribution which has a heavy
tailed distribution [4]. Such degree distributions have
been identified in various social networks including In-
ternet, biological networks, and co-authorship networks.
As a result, the number of vertices with large degrees
is often very small, while the majority of vertices in
the network only have very small degrees. According
to property 4.1, if the smallest k-RNN supportiveness
score δ is relatively large, many vertices in the network
can be pruned.

Using this simple pruning rule, it is not necessary
to compute the k-NN for each vertex. Moreover, for
a vertex v ∈ V , to calculate the kRNN(v), we only
need to examine all the neighbors of v. In other
words, by extracting a 2-neighborhood graph of vertex
v (which is an induced subgraph containing v’s 1-
neighbors and v’s 2-neighbors), we can calculate the
k-RNN supportiveness score of v.

Algorithm 2 implements the above pruning tech-
niques.

5 Mining Mutual Cliques

In a co-authorship network, a group of authors strongly
supporting each other are interesting and significant
since they should be inherently regarded as a collabora-
tive community. In this section, we consider the prob-
lem of mining such communities. We first model the
communities using mutual cliques. Then, we discuss
how to mine significant mutual cliques.

Algorithm 2 Efficient top-n supportive author extrac-
tion
Input: same as Algorithm 1;
Output: same as Algorithm 1;
1: let Cand contain top-n vertices with the largest

degrees;
2: for each vertex v ∈ Cand do
3: extract its 2-neighborhood graph, and calculate

its k-RNN supportiveness score;
4: end for
5: let δ be the smallest k-RNN supportiveness score for

the vertices in Cand;
6: let S = V − Cand;
7: let Vprune = {v ∈ S|d(v) < δ};
8: S = S − Vprune;
9: while S 6= ∅ do

10: let u be the vertex in S with the largest degree;
11: if supkRNN (u) ≥ δ then
12: calculate supkRNN (u);
13: update Cand and δ;
14: else
15: remove u from S;
16: end if
17: end while
18: return Cand;

5.1 Mutual Cliques Intuitively, two vertices u and
v support each other strongly if u is one of the k nearest
neighbors of v, and vice versa. The smaller the value of
k, the stronger their mutual support.

Definition 6. (k-NN mutual pair) In a co-
authorship network G = (V, E,L,W), for two
vertices u, v ∈ V , u and v form a k-NN mutual
pair if v ∈ kNN(u) and u ∈ kNN(v). Moreover,
the closeness between u and v is k, denoted by
closeness(u, v) = k, if (u, v) is a k-NN mutual pair but
not a (k − 1)-NN mutual pair.

Example 3. (k-NN mutual pairs) In Table 2,
(Ada,Deborah) form a 1NN-based mutual pair, and
(Ada,Bob) form a 2NN-based mutual pair.

There are 3 2-NN mutual pairs: (Ada, Bob),
(Bob, Deborah), and (Ada, Deborah). closeness(Ada,
Bob) = closeness(Bob, Deborah) = 2. closeness(Ada,
Deborah) = 1.

Closeness measures the strength of the support
between two co-authors to each other. The smaller the
closeness value, the stronger the mutual support.

Can we extend the mutual pair relation to a group
of authors, that is, a set of vertices in a co-authorship
network which strongly support each other in the group?



Definition 7. (k-NN mutual clique) In a co-
authorship network G = (V,E,L,W), a set of vertices
S ⊆ V is a k-NN clique if for any two vertices
u, v ∈ S, (u, v) is a k-NN mutual pair.

The closeness of S, denoted by closeness(S), is

closeness(S) = max
u,v∈S

{closeness(u, v)}.

Apparently, a k-NN mutual pair S is a special case
of a k-NN clique of size 2.

Given a co-authorship network G = (V, E,L,W),
we can derive a mutual graph Gm = (V, Em) where
(u, v) ∈ Em if closeness(u, v) 6= |V |. Edge (u, v) is
labeled by closeness(u, v). Clearly, a k-NN clique S is
the set of vertices of a complete subgraph in Gm such
that every edge in the subgraph has a label at most k.

While supporting each other strongly is a desirable
feature of communities in a co-authorship network,
productivity in terms of the number of papers generated
by a community is another important measure. We
define the productivity measure formally as follows.

Definition 8. (Productivity) For a vertex v in a
co-authorship network G = (V,E,L,W), the produc-
tivity of v is

prod(v) =
∑

e∈E(v)

W(e)
‖e‖ .

The productivity of a set of vertices S ⊆ V (‖S‖ ≥
2) is

prod(S) =
∑

e∈E,‖S∩e‖≥2

‖e ∩ S‖
‖e‖ · W(e).

For a k-NN clique, the productivity prod(S) is the
weighted count of papers co-authored by at least 2
members in the clique. The reason we count only the
papers co-authored by at least 2 members in the clique
is that we want to measure the papers produced by
collaboration in the clique. If there are m ≥ 2 members
participating in a paper of n-authors, the weight of this
paper in prod(S) is counted by m

n .
The productivity sums up the papers generated by

collaborations in a group. However, it does not tell
how the contributions are distributed on members in
the group.

Example 4. (Balanced clique) Figure 3 shows a 4-
NN clique of size 5 in a mutual graph. The edges are
labeled by the number of papers co-authored by pairs
of authors. The thickness of an edge represents the
productivity contribution from the corresponding pair of
authors.
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Figure 3: An example of unbalanced clique.

The productivity in this clique mainly comes from
the collaboration among Bob, Cathy and Deborah. The
sub-group {Bob, Cathy, Deborah} do not contribute to
the productivity at the same level in strength.

We define the balance factor to measure how evenly
productivity is distributed in a clique.

Definition 9. (Balance factor) For a k-NN clique
S = {v1, . . . , vn} (n ≥ 2), the productivity vector

−→
S = 〈prod(v1, v2), prod(v1, v3), . . . , prod(vn−1, vn︸ ︷︷ ︸

(n
2)

).

The balance factor of S, denoted by bf(S), is
measured by cos θ, where θ is the angle between the per-
fectly balanced vector −→I = 〈1, . . . , 1︸ ︷︷ ︸

(n
2)

〉 and −→S . Formally,

bf(S) =

∑
u,v∈S prod(u, v)√(‖S‖

2

) ∑
u,v∈S prod(u, v)2

For any S, 0 < bf(S) ≤ 1. When ‖S‖ = 2,
bf(S) = 1. The larger the balance factor, the more
evenly the distribution of productivity contributions in
the clique. When bf(S) = 1, every pair of co-authors in
the clique contributes the same number of papers.

5.2 Mining Top-n Mutual Cliques When measur-
ing the quality of cliques, both the productivity and the
balance factor should be taken into account. Therefore,
we use the productivity and balance measure (PB for
short) PB(S) = prod(S)bf(S) as the quality measure
for cliques with at least 3 members.

Given a co-authorship network, how can we mine
the top-n mutual cliques in PB measure? The problem
of extracting k-NN cliques from a hypergraph is a gen-
eral case of extracting cliques from undirected graphs.
As discussed in Section 3, the problem of determining
whether a graph contains a clique of a certain size is



NP-complete. So is the maximum clique problem which
finds the largest clique in a graph.

In this subsection, we provide an exact algorithm to
mine top-n k-NN cliques in a mutual graph. In the worst
case, the algorithm takes exponential time. However,
as shown in our experiments, the algorithm works well
in practice. Particularly, we develop several pruning
techniques to speed up the search.

The first pruning technique is to prune edges. The
following result follows with the definition of k-NN
cliques immediately.

Proposition 5.1. (Edge Pruning) In a co-
authorship network G = (V, E,L,W), if u and v
are in a k-NN clique, then (u, v) is a k-NN mutual
pair.

Using the proposition, we can remove all edges
(u, v) in the mutual graph such that (u, v) is not a k-NN
mutual pair.

Computing the PB measure and the productivity of
a group is not cheap. However, the PB measure and the
productivity of a group can be bounded as follows.

Theorem 5.1. (Productivity) In a co-authorship
network G = (V,E,L,W), for any vertex v and any
k-NN clique S containing v,

PB(S) ≤ prod(S) ≤ prod(v)+
∑

u∈kNN(v)∩kRNN(v)

prod(u)

Proof. For any members u, v in a k-NN clique S, (u, v)
is a k-NN mutual pair (Definition 6). Therefore, the
size of a clique containing v cannot be greater than
‖kNN(v) ∩ kRNN(v)‖ + 1. Thus, we have S ⊆ {v} ∪
(kNN(v) ∩ kRNN(v)). Since PB(S) = prod(S)bf(S)
and 0 < bf(S) ≤ 1, we have the inequality in the
theorem.

Using Theorem 5.1, we can prune vertices in a
mutual graph. Suppose we already find n mutual
cliques. For any vertex u, we calculate the upper bound
of the PB measure using Theorem 5.1. If the bound
is smaller than the PB measures of the top-n mutual
cliques found so far, vertex u as well as the edges in the
mutual graph using u as an end point can be pruned.
This pruning can be applied iteratively to reduce the
graph until no vertex or edge can be removed. If a vertex
u is pruned, the upper bounds of the PB measures of
all neighbors of u are also reduced.

Using Theorem 5.1, we can further have the follow-
ing result.

Proposition 5.2. For vertices u, v, w, if u,w ∈
kNN(v) ∩ kRNN(v), but u /∈ kNN(w) ∩ kRNN(w),

Algorithm 3 Mining top-n k-NN cliques.
Input: A graph G = (V,E,L,W), parameter k and n;
Output: Top-n k-NN cliques with largest PB measure;

Initialization:
// construct an adjacent list and only k-NN neigh-
bors will be kept;

1: prepare an adjacent list and add all the vertices;
2: the threshold of top-n δ = 0;
3: add the k-NN-based edges using Proposition 5.1;
4: remove these vertices which have no any neighbor;

Processing:
//traverse the vertices, when a vertex is visited, it
will be removed

5: while there are some vertices left do
6: pick one vertex v as a seed vertex and calculate

the upper bound of v with Theorem 5.1;
7: if up(v) ≥ δ then
8: while there are unvisited combinations left do
9: get next next combination C;

10: if the C is a clique then
11: calculate the PB(v + C);
12: if PB(v + C) ≥ δ then
13: update the top-n and δ
14: end if
15: end if
16: end while
17: end if
18: remove v;
19: end while
20: return top-n;

then for any clique S containing v

prod(S) ≤ prod(v) +
∑

u∈kNN(v)∩kRNN(v)

prod(u)

−min{prod(u), prod(w)}

Using Proposition 5.2, for a vertex v, if prod(v) +∑
u∈kNN(v)∩kRNN(v) prod(u) is larger than the smallest

PB measure in the current top-n cliques, the top-2 most
productive neighbors of v should be checked. If those
two neighbors are not a mutual pair, the maximum
possible productivity of v can be reduced.

The search algorithm is given in Algorithm 3. In
the initialization step, the co-authorship network G =
(V, E,L,W) is organized as an adjacent list, where
each entry represents a vertex in G, and only mutual
neighbors are kept for each vertex. The vertices without
any neighbors are deleted.

Algorithm 3 exploits some useful properties in co-
authorship networks to speed up the searching process.

For any vertex v, if the neighbors of v are sorted
in the productivity descending order, all subsets of the
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Figure 4: The neighbor enumeration tree of v,
prod(a) ≥ prod(b) ≥ prod(c) ≥ prod(d).

neighbors of v can be enumerated systematically using
a set enumeration tree [22], where each node represents
a subset of neighbors. Figure 4 shows an example.
Each subset combining with v can be regarded as a
candidate set. The following result can be obtained
easily using the related definitions and the property of
the set enumeration tree.

Lemma 5.1. In the set enumeration tree of the neigh-
bors of vertex v, for any node S in the tree, prod(S) ≥
prod(S′) where S′ is the parent node of S. Moreover,
if S1 is a left sibling of S2 in the set enumeration tree,
then prod(S1) ≥ prod(S2).

For each vertex u, we construct a set enumeration
tree of the neighbors of u to explore the possible cliques
containing u. We conduct a depth-first search of the
tree. Using Lemma 5.1, if a node in the tree fails
the productivity requirement, then the node as well
as its ancestors and the right siblings can be pruned
immediately.

5.3 A Skyline of Mutual Cliques In the k-NN
clique analysis, the cliques with high PB measure and
large size can be regarded as the “successful” groups.
However, the PB measure and the clique size are often
two conflicting goals. When the clique size becomes
larger, the average productivity and the balance factor
often decrease. Thus, we want to find the cliques that
present the tradeoffs among the three factors: size, PB
measure, and closeness.

Definition 10. (Domination and skyline) For
two cliques S1 and S2 in a mutual graph, S1 dom-
inates S2, denoted by S1 ≺ S2, if ‖S1‖ ≥ ‖S2‖,
PB(S1) ≥ PB(S2), closeness(S1) ≤ closeness(S2),
and not all the three equalities hold.

In a co-authorship network G = (V, E,L,W), a
clique S in the mutual graph is a skyline clique if there
exists no other clique S′ in the mutual graph such that
S′ ≺ S.

To discover all skyline cliques, we first slice the
search space (that is, all possible cliques in the mutual
graph) on the dimension of size. The reason we slice on
this dimension is that once the skyline cliques of size m
are found, all vertices having degree m − 1 or less can
be pruned.

For each slice, that is, the possible cliques of size
m, we calculate the skyline on closeness factor and PB
measure. The algorithm discussed in Section 5.2 can be
applied with a minor revision: instead of maintaining
the top-n cliques, we maintain the set of cliques which
are not dominated by any others. Limited by space, we
omit the details here.

6 Experimental Results

In this section, we report a systematic experimental
study on a large real data set. All programs were
implemented in C++ using Microsoft Visual Studio
2008.Net. We conducted the experiments on a laptop
computer with a Pentium 4 3.0GB CPU and 2GB main
memory, running on a 32-bit Windows XP system.

We use two data sets in our experiments. We use
a data set containing 10, 307 authors and 10, 372 pa-
pers published in 9 database conferences (SIGMOD,
VLDB, PODS, ICDE, ICDT, DOOD, EDBT, SSD, and
CIKM) from January 2000 to August 2008. This data
set is extracted from DBLP Computer Science Bibli-
ography Server (http://www.informatik.uni-trier.
de/~ley/db/index.html). We call this data set the
DB data set. We use this data set to analyze some
interesting mining results using our methods.

To test the efficiency of our methods, we use a
snapshot of the DBLP data set in August 2008, which
contains more than 1 million publications and more
than 600 thousand authors. We call the data set the
DBLP data set.

6.1 Ranking Authors Table 3 lists the top-10 sup-
portive authors in the DB data set with different k val-
ues. The supportiveness values are also given.

One observation is that, as the value of k increases,
the order of the top-10 authors tends to be stable.
When k is very small, only the closest collaborators are
considered in the computation of the supportiveness.
When k is not too small, the major collaborators are
counted. The most impactive authors can be captured.

Section 4.2 indicates that the supportiveness score
of an author is relevant to the number of his/her co-
authors. In Figure 5, for the top-250 authors in support-
iveness, we plot the ranks of each author in terms of the
supportiveness and the number of co-authors. When
k is small, the correlation is weak. However, when k
increases, the correlation is strengthened dramatically.



k = 1 k = 3 k = 5 k = 7 k = 9

Amr El Abbadi: 11.0 Amr El Abbadi: 30.0 Jiawei Han: 54.18 Jiawei Han: 63.65 Jiawei Han: 75.51
Christos Faloutsos: 10.0 Christos Faloutsos: 29.0 Christos Faloutsos: 51.0 Christos Faloutsos: 62.0 Christos Faloutsos: 69.0
Z. Meral Özsoyoglu: 9.0 Jiawei Han: 26.0 Beng Chin Ooi: 41.83 Elke A. Rundensteiner: 49.58 Elke A. Rundensteiner: 61.75
Gultekin Özsoyoglu: 9.0 Kian-Lee Tan: 25.0 Amr El Abbadi: 38.0 Beng Chin Ooi: 47.77 Michael Stonebraker: 57.0
Jayant R. Haritsa: 8.0 Divyakant Agrawal: 24.0 Jian Pei: 36.03 Michael Stonebraker: 44.0 Kian-Lee Tan: 54.64
Raymond T. Ng: 7.0 Beng Chin Ooi: 23.0 Elke A. Rundensteiner: 34.83 Kian-Lee Tan: 43.77 Beng Chin Ooi: 51.64
Shunsuke Uemura: 7.0 Philip S. Yu: 22.0 Kian-Lee Tan: 33.0 Donald Kossmann: 42.65 Philip S. Yu: 51.49
Roger King: 6.5 Hector Garcia-Molina: 22.0 Hector Garcia-Molina: 33.0 Divyakant Agrawal: 41.7 Hector Garcia-Molina: 49.82
Arie Segev: 6.0 Elisa Bertino: 22.0 Divyakant Agrawal: 33.0 Jian Pei: 41.44 Michael J. Carey: 48.82
Guido Moerkotte: 6.0 Anthony K. H. Tung: 20.0 Philip S. Yu: 32.62 Philip S. Yu: 40.11 Clement T. Yu: 48.00
Peter Triantafillou: 6.0 Elke A. Rundensteiner: 20.0
Ada Wai-Chee Fu: 6.0 Jayant R. Haritsa: 20.0
Sharma Chakravarthy: 6.0
Vram Kouramajian: 6.0

Table 3: An example of top-10 “supportive” authors in DB dataset, the numbers after the names represent the
supportiveness score.
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Figure 5: The relationship between the supportiveness and the number of co-authors.
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Figure 6: The supportiveness distribution in the DB
data set.

When k = 5, all of the top-250 most supportive au-
thors are among the top-1000 authors in the number of
co-authors.

In Figure 6, we show the distribution of the sup-
portiveness measure on the authors in the DB data set
with respect to different values of k. Clearly, the sup-
portiveness measure follows a long tail distribution.

6.2 Ranking Cliques Figure 7 shows the size of the
top-100 cliques in PB score. The sizes of the top cliques
are small, most of the time in the range between 3 and 5.
When the value of k increases, the size of some cliques
also increases.

Figure 8 shows the productivity of the top-100

cliques in PB measure. When k is small (e.g., k =
5), the cliques are small. Thus, the PB measure
is dominated by the productivity. The productivity
decreases as the ranks of the cliques increase. When
k increases, the balance factor starts to play a role.
Thus, the sorted list of top-100 cliques is not in the
productivity descending order anymore.

Figure 9 shows the corresponding balance factor
distribution. When k is small, the clique sizes are very
small and thus the cliques are well balanced. When k
increases, some larger cliques may be ranked high due
to their high productivity. The balance factor in those
cliques may not be high. Thus, the range of balance
factors becomes larger.

6.3 Efficiency We run our algorithms on different
subsets of the DBLP data set to test the scalability
of our methods. The different subsets have various
numbers of authors. To preserve the connectivity
among authors, we do not sample the authors directly.
Instead, we randomly pick papers from the DBLP data
set until the required number of authors are obtained.
The results are shown in Figure 10.

Our methods have linear scalability in mining top-
n supportive authors and cliques, and thus can be
applied on large co-authorship networks. Our method is
insensitive to k when mining top-n supportive authors.
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Figure 7: The size of the top-100 cliques in PB measure.
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Figure 8: The productivity of top 100 cliques with highest PB measure.
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Figure 10: Scalability: mining top-100 authors/cliques.

When mining top-n cliques, k plays an important role.
The larger the value of k, the more neighbors we need
to search, and thus the longer the runtime.

7 Conclusions

In this paper, we proposed a novel and interesting sup-
portiveness measure on co-authorship networks. We
modeled the collaboration between two authors as
a supporting activity between them. We discussed
contribution-based distance and a k-RNN supportive-
ness measure. An efficient algorithm was developed

to mine top-n most supportive authors in a network.
Moreover, we extended the supportiveness analysis from
a pair of vertices to a group of vertices, and proposed
the notion of k-NN cliques. The experimental results
conducted on a large real co-authorship network indi-
cates that our supportiveness measures are meaningful,
and our methods are efficient in practice.

There are some interesting future directions. For
example, we only considered the clique structure in this
paper. In general social networks, some other structures
like stars may also be meaningful patterns. Moreover, it
is interesting to analyze the supportiveness contribution
in a PageRank-like style.
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