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Abstract
The Web is a very large social network. It is important
and interesting to understand the “ecology” of the Web:
the general relations of Web pages to their environment.
The understanding of such relations has a few important
applications, including Web community identification and
analysis, and Web spam detection.

In this paper, we propose the notion of page farm, which
is the set of pages contributing to (a major portion of) the
PageRank score of a target page. We try to understand
the “landscapes” of page farms in general: how are farms of
Web pages similar to or different from each other? In order
to sketch the landscapes of page farms, we need to extract
page farms extensively. We show that computing page farms
is NP-hard, and develop a simple greedy algorithm. Then,
we analyze the farms of a large number of (over 3 million)
pages randomly sampled from the Web, and report some
interesting findings. Most importantly, the landscapes of
page farms tend to also follow the power law distribution.
Moreover, the landscapes of page farms strongly reflect the
importance of the Web pages.

1 Introduction
The Web is a very large social network. Extensive
work has studied a wide spectrum of Web technologies,
such as searching and ranking Web pages, mining Web
communities, etc.

In this paper, we investigate an important aspect of
the Web – its “ecology”. It is interesting to analyze the
general relations of Web pages to their environment. For
example, as rankings of pages have been well accepted
as an important and reliable measure for the utility of
Web pages, we want to understand generally how Web
pages collect their ranking scores from their neighbor
pages.

We argue that the “ecological” information about
the Web is not only interesting but also important for
a few Web applications. For example, we may detect
Web spam pages effectively if we can understand the
“normal” ways that Web pages collect their ranking
scores. A Web page is a suspect of spam if its
environment is substantially different from those normal
models. Moreover, the ecological information can also
help us to identify communities on the Web, analyze
their structures, and understand their evolvement.

In this paper, we try to model the environment of
Web pages and analyze the general distribution of such
environment. We make two contributions.

First, we propose the notion of page farm, which is
the set of pages contributing to (a major portion of)
the PageRank score of a target page. We study the
computational complexity of finding page farms, and
show that it is NP-hard. We develop a simple greedy
method to extract approximate page farms.

Second, we empirically analyze the page farms of a
large number of (over 3 million) Web pages randomly
sampled from the Web, and report some interesting
findings. Most importantly, the landscapes of page
farms tend to also follow the power law distribution.
Moreover, the landscapes of page farms strongly reflect
the importance of the Web pages, and their locations
in their Web sites. To the best of our knowledge, this
is the first empirical study on extracting and analyzing
page farms. Our study and findings highly suggest that
sketching the landscapes of page farms provides a novel
approach to a few important applications.

The remainder of the paper is organized as follows.
The notion of page farm is proposed in Section 2. We
give a simple greedy method to extract page farms in
Section 3, and report an empirical analysis on the page
farms of a large number of Web pages in Section 4. In
Section 5, we review the related work. The paper is
concluded in Section 6.

2 Page Farms
The Web can be modeled as a directed Web graph
G = (V, E), where V is the set of Web pages, and E
is the set of hyperlinks. A link from page p to page q
is denoted by edge p → q. An edge p → q can also
be written as a tuple (p, q). Hereafter, by default our
discussion is about a directed Web graph G = (V,E).

PageRank [13] measures the importance of a page p
by considering how collectively other Web pages point
to p directly or indirectly. Formally, for a Web page p,
the PageRank score is defined as

PR(p,G) = d
∑

pi∈M(p)

PR(pi, G)
OutDeg(pi)

+ (1− d),(2.1)
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Figure 1: Page contributions.

where M(p) = {q|q → p ∈ E} is the set of pages having
a hyperlink pointing to p, OutDeg(pi) is the out-degree
of pi (i.e., the number of hyperlinks from pi pointing to
some pages other than pi), and d is a damping factor
which models the random transitions on the Web.

To calculate the PageRank scores for all pages in a
graph, one can assign a random PageRank score value
to each node in the graph, and then apply Equation 2.1
iteratively until the PageRank scores in the graph
converge.

For a Web page p, can we analyze which other pages
contribute to the PageRank score of p? An intuitive way
to answer the above question is to extract the Web pages
that contribute to the PageRank score of the target page
p. This idea leads to the notion of page farms.

Generally, for a page p, the page farm of p is
the set of pages on which the PageRank score of p
depends. Page p is called the target page. According to
Equation 2.1, the PageRank score of p directly depends
on the PageRank scores of pages having hyperlinks
pointing to p. The dependency is transitive. Therefore,
a page q is in the page farm of p if and only if there
exists a directed path from q to p in the Web graph.

As indicated in the previous studies [1, 3], the
major part of the Web is strongly connected. Albert
et al. [1] indicated that the average distance of the Web
is 19. In other words, it is highly possible to get from
any page to another in a small number of clicks. A
strongly connected component of over 56 million pages
is reported in [3].

Therefore, the page farm of a Web page can be very
large. It is difficult to analyze large page farms of a
large number of Web pages. Instead, can we capture a
subset of pages that contribute to a large portion of the
PageRank score of a target page?

According to Equation 2.1, PageRank contributions
are only made by the out-edges. Thus, a vertex in the
Web graph is voided for PageRank score calculation if all
edges leaving the vertex are removed. Please note that
we cannot simply remove the vertex. Consider Graph
G in Figure 1. Suppose we want to void page v in the
graph for PageRank calculation. Removing v from the
graph also reduces the out-degree of u, and thus change
the PageRank contribution from u to p. Instead, we
should retain v but remove the out-link v → p.

For a set of vertices U , the induced subgraph of U
(with respect to PageRank score calculation) is given by
G(U) = (V,E′), where E′ = {p → q|p → q ∈ E ∧ p ∈
U}. In other words, in G(U), we void all vertices that
are not in U . Figure 1 shows two examples.

To evaluate the contribution of a set of pages U
to the PageRank score of a page p, we can calculate
the PageRank score of p in the induced subgraph of U .
Then, the PageRank contribution is given by

Cont(U, p) =
PR(p,G(U))

PR(p,G)
× 100%

PageRank contribution has the following property.
The proof can be found in [16].

Corollary 2.1. (PageRank contribution) Let p
be a page and U,W be two sets of pages. If U ⊆ W ,
then 0 ≤ Cont(U, p) ≤ Cont(W,p) ≤ 1.

We can capture the smallest subset of Web pages
that contribute to at least a θ portion of the PageRank
score of a target page p as the θ-(page) farm of p.

Definition 1. (θ-farm) Let θ be a parameter such
that 0 ≤ θ ≤ 1. A set of pages U is a θ-farm of page p
if Cont(U, p) ≥ θ and |U | is minimized.

However, finding a θ-farm of a page is computation-
ally costly on large networks.

Theorem 2.1. (θ-farm) The following decision prob-
lem is NP-hard: for a Web page p, a parameter θ, and
a positive integer n, determine whether there exists a
θ-farm of p which has no more than n pages.
Proof sketch. The proof is constructed by reducing
the NP-complete knapsack problem [11] to the θ-farm
problem. Please see [16] for the complete proof.

Searching many pages on the Web can be costly.
Heuristically, the near neighbors of a Web page often
have strong contributions to the importance of the page.
Therefore, we propose the notion of (θ, k)-farm.

In a directed graph G, let p, q be two nodes. The
distance from p to q, denoted by dist(p, q), is the length
(in number of edges) of the shortest directed path from
p to q. If there is no directed path from p to q, then
dist(p, q) = ∞.

Definition 2. ((θ, k)-farm) Let G = (V, E) be a
directed graph. Let θ and k be two parameters such
that 0 ≤ θ ≤ 1 and k > 0. k is called the distance
threshold. A subset of vertices U ⊆ V is a (θ, k)-farm
of a page p if Cont(U, p) ≥ θ, dist(u, p) ≤ k for each
vertex u ∈ U , and |U | is minimized.

We notice that finding the exact (θ, k)-farms is also
NP-hard. The details can be found in [16] as well.



3 Extracting Page Farms
Extracting the exact θ-farm and (θ, k)-farm of a Web
page is computationally challenging on large networks.
In this section, we give a simple greedy method to
extract approximate page farms.

Intuitively, if we can measure the contribution from
any single page v towards the PageRank score of a target
page p, then we can greedily search for pages of big
contributions and add them into the page farm of p.

Definition 3. (Page contribution) For a target
page p ∈ V , the page contribution of page v ∈ V to
the PageRank score of p is PCont(v, p) = PR(p,G) −
PR(p,G(V −{v})) when v 6= p, and PCont(p, p) = 1−d
where d is the damping factor.

Example 1. (Page contributions) Consider a sim-
ple Web graph G in Figure 1. The induced subgraphs
G(V −{u}) and G(V −{v}) are also shown in the figure.
As specified in Section 2, all vertices are retained in an
induced subgraph.

Let us consider page p as the target page, and calcu-
late the page contributions of other pages to the PageR-
ank of p. According to Equation 2.1, the PageRank
score of p in G is given by PR(p,G) = − 1

2d3−d2+ 1
2d+1.

Moreover, the PageRank score of p in G(V − {u}) is
PR(p,G(V −{u})) = −d2 +1, and the PageRank score
of p in G(V −{v}) is PR(p,G(V −{v})) = − 1

2d2− 1
2d+1.

Thus, the page contributions are calculated as
PCont(u, p) = PR(p,G)−PR(p,G(V −{u})) = − 1

2d3+
1
2d, and PCont(v, p) = PR(p,G)−PR(p,G(V −{v})) =
− 1

2d3 − 1
2d2 + d.

Using the page contributions, we can greedily search
a set of pages that contribute to a θ portion of the
PageRank score of a target page p. That is, we calculate
the page contribution of every page (except for p itself)
to the PageRank score of p, and sort the pages in
the contribution descending order. Suppose the list is
u1, u2, · · ·. Then, we select the top-l pages u1, · · · , ul

as an approximation of the θ-farm of p such that
PR(p,G(V−{u1,···,ul}))

PR(p,G) ≥ θ and PR(p,G(V−{u1,···,ul−1}))
PR(p,G) ≤

θ. To extract (θ, k)-farms, we only need to consider
those pages at a distance at most k to the target page
p.

The above greedy method is simple. However, it
may be still quite costly for large Web graphs. In
order to extract the page farm for a target page p, we
have to compute the PageRank score of p in induced
subgraph G(V −{q}) for every page q other than p. The
computation is costly since the PageRank calculation is
an iterative procedure and often involves a huge amount
of Web pages and hyperlinks. On our current PC,
extracting 5000 page farms in a Web graph containing
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Figure 2: The effects of
parameters k and θ.
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Figure 3: The distribution
of distance to the mean of
the data set.

about 3M pages needs more than 3000 seconds. A more
efficient greedy algorithm can be found in [16].

4 Empirical Analysis of Page Farms
In this section, we report an empirical analysis of
page farms of a large sample from the Web. The
data set we used was generated by the Web crawler
from the Stanford WebBase project (http://www-
diglib.stanford.edu/∼testbed/doc2/WebBase). Some
prior studies [8, 9, 10] used the same data set in their ex-
periments. The Web crawler, WebVac, randomly crawls
up to a depth of 10 levels and fetches a maximum of 10
thousand pages per site. The whole directed Web graph
file for May, 2006 is about 499 GB and contains about
93 million pages.

Limited by the computational resource available to
us, in our experiments, we only used a random sample
subgraph of the whole Web graph. The sample we used
is about 16 GB and contains 3, 295, 807 pages. Each
page in our data set has a viable URL string.

All the experiments were conducted on a PC com-
puter running the Microsoft Windows XP SP2 Profes-
sional Edition operating system, with a 3.0 GHz Pen-
tium 4 CPU, 1.0 GB main memory, and a 160 GB hard
disk. The program was implemented in C/C++ using
Microsoft Visual Studio. NET 2003.

4.1 Extracting Page Farms To understand the ef-
fects of the two parameters θ and k on the page farms ex-
tracted, we extracted the (θ, k)-farms using different val-
ues of θ and k, and measured the average size of the ex-
tracted farms. Figure 2 shows the results on a sample of
4, 274 Web pages from site “http://www.fedex.com”.

When θ increases, more pages are needed to make
up the contribution ratio. However, the increase of
the average page farm size is sublinear. The reason
is that when a new page is added to the farm, the
contributions of some pages already in the farm may
increase. Therefore, a new page often boosts the
contributions from multiple pages in the farm. The
larger and denser the farm, the more contribution can
be made by adding a new page. On average, when



Site-id Site # pages crawled

Site-1 http://www.fedex.com 4274
Site-2 http://www.siia.net 2722
Site-3 http://www.indiana.edu 2591
Site-4 http://www.worldbank.org 2430
Site-5 http://www.fema.gov 4838
Site-6 http://www.liverpoolfc.tv 1854
Site-7 http://www.eca.eu.int 4629
Site-8 http://www.onr.navy.mil 4586
Site-9 http://www.dpi.state.wi.us 5118
Site-10 http://www.pku.edu.cn 6972
Site-11 http://www.cnrs.fr 2503
Site-12 http://www.jpf.go.jp 5685
Site-13 http://www.usc.es 2138

Table 1: List of sites with different domains.

θ ≥ 0.8, page farms are quite stable and capture the
major contribution to PageRank scores of target pages.

When k is small, even selecting all pages of distance
up to k may not be able to achieve the contribution
threshold θ. Therefore, when k increases, the average
page farm size increases. However, when k is 3 or larger,
the page farm size is stable. This verifies our assumption
that the near neighbor pages contribute more than the
remote ones.

We also compared the page farms extracted using
different settings of the two parameters. The farms are
quite robust. That is, for the same target page, the
page farms extracted using different parameters overlap
largely. We also conducted the same experiments on
other sites. The results are consistent. Thus, in the
rest of this section, we report results on (0.8, 3)-farms
of Web pages.

4.2 Page Farm Analysis on Individual Sites To
analyze a large collection of page farms, we conducted
the clustering analysis on the page farms extracted. Our
analysis was in two steps. First, we analyzed the page
farms in individual sites. Then, we analyzed the page
farms in the whole data set (Section 4.3).

In the data set, there are about 50 thousand dif-
ferent sites and about 30 different domains1. In order
to analyze the page farms of individual sites, we ran-
domly selected 13 sites with different domains, as listed
in Table 1. These sites include some popular domains,
such as .com, .net, .edu, .org and .gov, as well as some
unpopular ones, such as .tv, .int and .mil. Moreover,
some domains from different countries and different lan-
guages are also involved, such as .us(USA), .cn(China),
.fr(France), .jp(Japan) and .es(Spain).

1Details can be found at http://dbpubs.stanford.edu:8091/
∼testbed/doc2/WebBase/crawl lists/crawled hosts.05-2006.f

# clusters C1 C2 C3 C4 C5

2 22 4252
3 19 103 4152
4 19 89 543 3623
5 19 87 230 1280 2658

Table 2: The number of pages in each cluster when the
number of clusters varies from 2 to 5.

We first generated the complete Web graph from
the data set containing nearly 3.3 million Web pages.
A normal power method [2] was used to calculate the
PageRank scores. For the pages in each site, we then
extracted the (0.8, 3)-farm.

Based on Definition 2, a page farm U is a set of
pages. We can easily obtain the induced graph G(U) by
adding the links between pages in the farm. To analyze
the page farms, we extracted the following features of
each farm and its corresponding induced graph: (1)
the number of pages in the farm; (2) the total number
of intra-links in the induced graph; and (3) the total
number of inter-links in the induced graph. Here, intra-
links are edges connecting pages in the same farm, and
inter-links are edges coming from or leaving a farm.
We also considered some other features, such as the
average in- and out-degrees, average PageRank score,
and diameter of the induced graph. The clustering
results are consistent. Thus, we only used the above
three features as representatives to report the results
here.

The above 3 attributes are independent with each
other and each one is an important factor to reveal
the characteristics of the page farms. Each attribute
has the same importance in our analysis. Thus, we
normalized all attribute values into the range [0, 1] in
the clustering analysis. These 3 normalized attribute
values form the vector space for each page farm. We
applied the conventional k-means clustering, where the
Euclidian distance was adopted to measure the distance
between two page farm vectors.

We varied the number of clusters, and compare
the clusters obtained. Interestingly, if we sort all
clusters according to the size (i.e., the number of pages
in the clusters), those small clusters are robust when
the number of clusters increases. Setting the number
of clusters larger tends to split the largest cluster to
generate new clusters.

For example, Table 2 shows the number of pages in
each cluster when the number of clusters varies from 2
to 5. A set of 4, 274 Web pages sampled from Web site
“http://www.fedex.com” was used. By comparing the
pages in the clusters, we found that the pages in C1 are
largely the same no matter how the number of clusters



Cluster URLs

http://www.fedex.com/

http://www.fedex.com/us/customer/

C1 http://www.fedex.com/us/

http://www.fedex.com/us/careers/

http://www.fedex.com/us/services/

http://www.fedex.com/legal/?link=5

http://www.fedex.com/us/search/

http://www.fedex.com/us/

C2 privacypolicy.html?link=5

http://www.fedex.com/us/

investorrelations/?link=5

http://www.fedex.com/us/about/?link=5

http://www.fedex.com/legal/copyright/

?link=2

http://www.fedex.com/us?link=4

C3 http://www.fedex.com/us/about/today/

?link=4

http://www.fedex.com/us/investorrelations/

financialinfo/2005annualreport/?link=4

http://www.fedex.com/us/dropoff/?link=4

http://www.fedex.com/ca_english/rates/

?link=1

http://www.fedex.com/legal/

http://www.fedex.com/us/about/news/

C4 speeches?link=2

http://www.fedex.com/us/customer/

openaccount/?link=4

http://www.fedex.com/us/careers/

companies?link=4

http://www.fedex.com/?location=home&link=5

http://www.fedex.com/ca_french/rates/

?link=1

C5 http://www.fedex.com/ca_french/?link=1

http://www.fedex.com/ca_english/?link=1

http://www.fedex.com/us/careers/

diversity?link=4

Table 3: The top-5 URLs with the highest PageRank
scores in each cluster.

is set. When the number of clusters varies from 3 to
5, the clusters C2 of different runs also largely overlap
with each other.

The above observation strongly indicates that the
distance from Web pages to the center of the whole data
set may follow a power law distribution. To verify, we
analyzed the distances between the page farms in the
site to the mean of the sample set of the site. The results
are shown in Figure 3. The distance follows the power
law distribution as expected. This clearly explains why
the smaller clusters are robust and the new clusters are
often splitting from the largest cluster.

As the clusters are robust, how are the pages in
different clusters different from each other? In Table 3,
we list the top-5 URL’s in each cluster that have the
highest PageRank scores. Interestingly, most pages
in the first cluster are the portal pages. The later
clusters often have more and more specific pages of lower
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PageRanks. Correspondingly, In Figures 4, we show
for each cluster the average size, the average number of
intra-links, and the average number of inter-links. As
can be seen, they follow the similar trend. The smaller
the clusters, the larger the page farms and thus more
intra- and inter-links in the farms.

4.3 Page Farms of Multiple Sites and in the
Whole Data Set The findings in Section 4.2 are not
specific for a particular Web site. Instead, we obtained
consistent observations in other Web sites, too. For
example, we clustered the page farms for the 13 Web
sites listed in Table 1 by setting the number of clusters
to 5. For each site, the clusters were sorted in ascending
order of the number of pages, and the ratio of the
number of pages in a cluster versus the total number
of pages sampled from the site was used as the relative
size of the cluster. Figure 5 shows the result. We can
observe that the distributions of the relative cluster size
follow the same trend in those sites.

In Section 4.2, we examined the page farms in in-
dividual Web sites. To test whether the properties ob-
served were scale-free, we conducted the similar exper-
iments on the large sample containing 3, 295, 807 Web
pages. The experimental results confirm that the prop-
erties are scale-free: we observed the similar phenomena
on the large sample.

Figure 6 shows the distribution of distances of page
farms to the mean of the whole data set. Clearly, it
follows the power law distribution.

Moreover, we clustered the page farms by varying
the number of clusters from 2 to 5, and sorted the
clusters in size ascending order. The results are shown in
Figure 7, where parameter n is the number of clusters.



The figure clearly shows that the smaller clusters are
robust and the new clusters are splitting from the largest
clusters when the number of clusters is increased.

4.4 Summary From the above empirical analysis of
the page farms of a large sample of the Web, we can
obtain the following two observations.

First, the landscapes of page farms follow a power
law distribution and the distribution is scale-free. The
phenomena observed from individual large Web sites is
nicely repeated on the large sample containing many
Web sites across many domains.

Second, Web pages can be categorized into groups
according to their page farms. Some interesting features
are associated with the categorization based on cluster-
ing, such as the relative importance of the pages and the
relative positions in the Web sites. The distinguishing
groups are robust with respect to the clustering param-
eter settings.

5 Related Work
Our study is highly related to the previous work on the
following two areas: (1) link structured-based ranking
and its applications in Web community identification
and link spam detection; and (2) social network anal-
ysis. Social network analysis is a topic that has been
studied extensively and deeply (see [15, 14] as text-
books). In this section, we only focus on some repre-
sentative studies on the first area.

A few link structured-based ranking methods such
as HITS [12] and PageRank [13] were proposed to assign
scores to Web pages to reflect their importance. The
details of PageRank are recalled in Section 2. Using
the link structure-based analysis, previous studies have
developed various methods to identify Web communities
– collections of Web pages that share some common
interest on a specific topic.

For example, Gibson et al. [4] developed a notion
of hyper-linked communities on the Web through an
analysis of the link topology. As another example,
Kleinberg [12] showed that the HITS algorithm, which
is strongly related to spectral graph partitioning, can
identify “hub” and “authority” Web pages. A hub page
links to many authority pages and an authority page
is pointed by many hub pages. Hubs and authorities
are especially useful for identifying key pages related to
some community.

Most of the popular search engines currently adopt
some link structure-based ranking algorithms, such as
PageRank and HITS. Driven by the huge potential
benefit of promoting rankings of pages, many attempts
have been conducted to boost page rankings by making
up some linkage structures, which is known as link
spam [2, 7].

Because the PageRank score are determined based
on the link structure of the Web, PageRank is a natural
target to link spam. Gyöngyi et al. [7, 6] referred link
spam to the cases where spammers set up structures of
interconnected pages, called link spam farms, in order
to boost the connectivity-based ranking.

6 Conclusions
To the best of our knowledge, this is the first empirical
study on extracting and analyzing page farms from
samples of the Web. We developed a simple yet effective
model of page farms, and devised a simple greedy
algorithm to extract page farms for a large Web graph
with numerous pages.

As future work, we plan to develop more efficient
algorithms for page farm extraction and analysis, and
extend the applications of page farm analysis.
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