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ABSTRACT
Search logs, which contain rich and up-to-date information
about users’ needs and preferences, have become a critical
data source for search engines. Recently, more and more
data-driven applications are being developed in search en-
gines based on search logs, such as query suggestion, key-
word bidding, and dissatisfactory query analysis. In this
paper, by observing that many data-driven applications in
search engines highly rely on online mining of search logs, we
develop an OLAP system on search logs which serves as an
infrastructure supporting various data-driven applications.
An empirical study using real data of over two billion query
sessions demonstrates the usefulness and feasibility of our
design.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms, Experimentation

Keywords
OLAP, search log, query session, suffix tree

1. INTRODUCTION
Search logs, which record users’ search behavior, contain

rich and up-to-date information about users’ needs and pref-
erences. While search engines retrieve information from the
Web, users implicitly vote for or against the retrieved infor-
mation as well as the services using their clicks. Moreover,
search logs contain crowd intelligence accumulated from mil-
lions of users, which may be leveraged in social computing,
customer relationship management, and many other areas.
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In recent years, search logs have become a more and more
important data source for a wide scope of applications.

Using search logs, we may develop a good variety of data-
driven applications in a search engine, which are truly use-
ful for the users and highly profitable for the search engine.
For example, by examining the queries frequently asked by
users after the query “KDD 2009”, a search engine can sug-
gest queries such as “Paris hotel” which may improve users’
search experience (e.g., [3, 12]). As another example, by
analyzing query sequences and click-through information in
search logs, a search engine can help an advertiser to bid
for relevant keywords (e.g, [9]). Some further examples in-
clude using search logs to improve the web search ranking
(e.g., [1, 13]), personalize web search results (e.g., [6, 18]),
correct search query spellings (e.g., [14, 15]), and monitor
and evaluate the performance of search engines and other
web services (e.g., [2, 7]).

Given that there are many different data-driven applica-
tions in search engines, how many specific search log analysis
tools do we have to build? Obviously, building one specific
search log analysis tool per application is neither effective
nor efficient. Can we develop a search log analysis infras-
tructure supporting the essential needs of many different
data-driven applications? There are some interesting op-
portunities and challenges.

First, although different data-driven applications carry
different purposes and technical demands, by a careful sur-
vey of a variety of real applications, we find that many anal-
ysis tasks can be supported by a small number of search
log pattern mining functions, as exemplified in Section 3.2.
This observation makes the idea of building a central search
log analysis infrastructure feasible and practical. Building a
search log analysis infrastructure presents a new opportunity
for developing more effective and powerful search engines.

Second, although there are numerous previous studies on
extracting interesting patterns from search logs, those meth-
ods cannot be directly applied to building the search log
analysis infrastructure. The target infrastructure should be
able to serve multiple applications and answer general re-
quests on search log pattern mining. However, almost every
previous work is designed for a specific task – the algorithms
and data structures are customized for specific tasks. There-
fore, those methods cannot meet the diverse requirements in
a search log analysis infrastructure.

Third, search logs are often huge and keep growing rapidly
over time. Moreover, many data-driven applications require
online response to the pattern mining queries. Therefore, a
search log analysis infrastructure has to be constructed in
a distributed computation environment. Organizing search
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Figure 1: The framework of the OLAP system.

logs and supporting online mining in a distributed environ-
ment present great challenges.

In this paper, we present an initiative towards building
an online analytic processing (OLAP for short) system on
search logs as the search log analysis infrastructure. The
central idea is that we build a simple yet scalable and dis-
tributable index on search logs so that sequential patterns in
search logs can be mined online to support many real appli-
cations. The role of the OLAP system is shown in Figure 1.
As shown in Section 4, the system not only can support
online applications in search engines, but also can facilitate
online analysis of search logs by search engine developers.
We make the following contributions.

First, we argue that many traditional aggregate functions,
such as sum, min and max, may not be suitable to support
OLAP on search logs. Instead, we identify three novel min-
ing functions, namely forward search, backward search, and
session retrieval, which are particularly useful for data anal-
ysis on search logs. We further illustrate how to integrate
those novel functions with OLAP operations, such as roll-up
and drill-down, on search logs.

Second, we develop a simple yet scalable and distributable
index structure to support OLAP on search logs using the
three mining functions. We do not follow the materialization
approach widely adopted in building data warehouses on re-
lational data, since those approaches cannot be straightfor-
wardly applied to sequential search logs. Instead, we use a
suffix-tree index. Moreover, we develop a distributed suf-
fix tree construction and maintenance method under the
MapReduce programming model [5].

Last, we demonstrate the feasibility and potential of a
search log analysis infrastructure through a systematic em-
pirical study. We extracted from a major commercial search
engine a search log containing more than 4.96 billion searches,
2.48 billion sessions, and 1.48 billion unique queries. The ex-
perimental results indicate that our OLAP system on search
logs is effective to support various data-driven applications,
and our design is efficient in practice.

The rest of the paper is organized as follows. Section 2
briefly reviews the related work. Section 3 identifies several
OLAP functions and operations on search logs. In Section 4,
we propose our approach to scalable OLAP on search logs.
A systematic empirical study conducted on a large real data
set is reported in Section 5. Section 6 concludes the paper.

2. RELATED WORK
Most of the OLAP methods focus on relational data. Re-

cently, OLAP has been extended to other data. In particu-

lar, Lo et al. [16] extended OLAP to S-OLAP on sequence
data, which is highly related to our study. In S-OLAP, a user
defines a pattern template of interest. For example, tem-
plate 〈XY Y X〉 captures a round trip by travelers where X
and Y are two subway stations. Aggregates such as count()
are computed on a sequence database for each instance of the
pattern template such as 〈“Downtown” “Waterfront” “Wa-
terfront”“Downtown”〉. An inverted index and a join-based
algorithm are proposed to support efficient computation.

S-OLAP and the OLAP on search logs in this paper ex-
tend OLAP to sequence data from different angles. First,
S-OLAP assumes that a user specifies pattern templates.
However, in data-driven applications in search engines, pat-
tern templates are often unknown. Instead, specific query
sequences are used as constraints in search. Second, S-
OLAP is inefficient to support online response to several
sequence mining functions, such as forward search, back-
ward search, and session retrieval, since the results have to
be computed by joining the inverted lists on the fly. As
shown in Section 3, these functions are commonly required
by many data-driven applications in search engines. Finally,
the join-based algorithm in S-OLAP cannot be scaled up to
distributed computation environment. Our empirical study
shows that the join-based algorithm may cause heavy net-
work traffic and thus severely degrade the system perfor-
mance when the inverted lists are stored in different ma-
chines. Thus, S-OLAP cannot handle a huge amount of
session data generated by commercial search engines.

Many previous studies were conducted on analyzing search
logs for various application scenarios. Several studies mod-
eled the click-through information in search logs as implicit
relevance feedback, which can be used to improve rank-
ing algorithms. For instance, Joachims [13] analyzed click-
through data and developed a ranking method. Agichtein
et al. [1] proposed a robust interactive model to improve
ranking results. Various approaches using search logs were
also proposed for query suggestion (e.g. [3, 12]), expansion
(e.g., [4, 8]), and substitution (e.g., [14, 15]). For example,
Cui et al. [4] extracted probabilistic correlations between
query terms and document terms by analyzing search logs
and used the correlations to select high-quality expansion
terms for new queries. Jones et al. [14] identified typical sub-
stitutions web searchers made to their queries from search
logs, and leveraged the information to improve the quality
of user queries. Some other studies include using search logs
to improve personalized search (e.g., [6, 18]), generate ad-
vertisement keywords (e.g. [9]), predict clicks on sponsored
search (e.g., [19]), summarize web pages (e.g., [21]), organize
search results (e.g., [22]), evaluate the performance of search
engines (e.g., [2, 7]), and so on. However, there is little work
on building a general log analysis infrastructure to support
various online data-driven applications in search engines.

3. OLAP ON SEARCH LOGS
In this section, we first briefly review how to extract query

sessions from search logs. Then, we present three basic se-
quence mining functions on query sessions, and show that
those functions can be used to conduct OLAP on search logs.

3.1 Query Session Extraction
Conceptually, a search log is a sequence of queries and

click events. Since a search log often contains the informa-
tion from multiple users over a long period, we can divide a
search log into sessions.



In practice, we can extract sessions in two steps, as de-
scribed in [3]. First, for each user, we extract the queries by
the user from the search log as a stream. Then, we segment
each user’s stream into sessions based on a widely adopted
rule [23]: two queries are split into two sessions if the time
interval between them exceeds 30 minutes.

Formally, let Q be the set of unique queries in a search log.
A query sequence s = 〈q1 · · · qn〉 is an ordered list of queries,
where qi ∈ Q (1 ≤ i ≤ n). n is the length of s, denoted
by |s| = n. A subsequence of sequence s = 〈q1 · · · qn〉 is
a sequence s′ = 〈qi+1 · · · qi+m〉 where m ≥ 1, i ≥ 0, and
i + m ≤ n, denoted by s′ v s. In particular, s′ is a prefix of
s if i = 0. s′ is a suffix of s if i = n−m. The concatenation
of two sequences s1 = 〈q1 · · · qn1〉 and s2 = 〈q′1 · · · q′n2〉 is
s1 ◦ s2 = 〈q1 · · · qn1q′1 · · · q′n2〉.

In many search engine applications, frequency is often
used as the measure in analysis. Given a set of query sessions
D = {s1, s2, . . . , sN}, the frequency of a query sequence s is
freq(s) = |{si|s v si}| (si ∈ D). The session frequency of
s is sfreq(s) = |{si|s = si}|.

3.2 Session Sequence Mining Functions
To build a search log analysis infrastructure, we collect

different requirements on mining search logs at a major com-
mercial search engine. We find that the major needs can be
summarized into three basic session sequence mining func-
tions, namely forward search, backward search and session
retrieval. Importantly, many data-driven applications are
based on mining frequent sequences. Moreover, different
from traditional sequential pattern mining [20] which finds
the complete set of sequential patterns, a data-driven appli-
cation typically relies on the top-k query sequences related
to a given query sequence s.

Definition 1 (Forward search). In a set of sessions,
given a query sequence s and a search result size k, the for-
ward search finds k sequences s1, . . . , sk such that s ◦ si

(1 ≤ i ≤ k) is among the top-k most frequent sequences that
have s as the prefix.

Example 1 (Forward search). A user’s search ex-
perience can be improved substantially if a search engine can
predict the user’s search intent and suggest some highly rel-
evant queries. This is the central idea behind the query sug-
gestion application. For example, a user planning to buy a
car may browse different brands of cars. After the user con-
ducts a sequence of queries s = 〈“Honda”“Ford”〉, a search
engine may use a forward search to find the top-k query se-
quences s ◦ q, and suggest the queries q to the user. Such
queries may be about some other brands like “Toyota”, or
about comparisons and reviews like “car comparison”.

A forward search only considers sequences si that are con-
secutive to query sequence s in sessions. This is because non-
consecutive queries may not be closely related in semantics.
For example, a user may raise a sequence of queries 〈“Beijing
Olympics” “US basketball team 2008” “Kobe Bryant” “LA
Lakers”〉. Although each pair of consecutive queries are
closely related, the relationship between “Beijing Olympics”
and “LA Lakers” is relatively weak. Thus, we only consider
consecutive query sequences in our mining functions.

Symmetrically, we have backward search.

Definition 2 (Backward search). In a set of ses-
sions, given a query sequence s and a search result size k,

the backward search finds k sequences s1, . . . , sk such that
si ◦s (1 ≤ i ≤ k) is among the top-k most frequent sequences
that have s as the suffix.

Example 2 (Backward search). Keyword bidding is
an important service in sponsored search. A search engine
may provide a keyword generation application to help a cus-
tomer to select keywords to bid.

A small electronic store may find keyword “digital cam-
corder” expensive. By a backward search, the search engine
can find the query subsequences that often appear imme-
diately before query “digital camcorder” in query sessions.
For example, some users may raise queries “digital video
recorder”, “DV”, or “DC” before “digital camcorder” in ses-
sions, since they may not get the term “camcorder” at the
first place. The small electronic store may bid for those key-
words which are cheaper than “digital camcorder” but carry
similar search intent.

Forward search and backward search focus on finding sub-
sequences. In some situations, the whole sessions may need
to be retrieved as a pattern.

Definition 3 (Session retrieval). In a set of ses-
sions, given a query sequence s, the session retrieval finds
the top-k query sessions s1, . . . , sk in session frequency (sfreq)
that contain s.

Example 3 (Session retrieval). Search logs can be
analyzed by search engine developers to monitor the search
quality and diagnose the causes of user dissatisfactory queries.
For example, suppose the click-through rate of query“Obama”
is high in the past, but drops dramatically recently. To inves-
tigate the causes, a dissatisfactory query diagnosis (DSAT)
application can find the top-k sessions containing “Obama”
using a session retrieval function. By analyzing those ses-
sions, if a search engine developer finds that the sessions
containing query“election”have high click-through rate, while
the recent sessions containing query “inauguration” have low
click-through rate, the reason for the decrease of the click-
through rate may be that the search engine does not provide
enough fresh results about Obama’s inauguration.

3.3 OLAP on Session Data
OLAP is well defined on relational data. For example,

consider a transaction table on sales of electronic goods in
Canada T (tid, prod, cust, agent, amount) where the at-
tributes tid, prod, cust, agent, and amount are transaction-
id, product name, customer name, agent name, and sales
amount, respectively. A user may want to analyze how
the sales amount is related to various factors such as prod-
uct category, customer group, agent group, as well as their
combinations. OLAP queries retrieve group-by aggregates
on amount using various combinations of dimension val-
ues, such as the sum of amount for all cameras sold by the
Vancouver agents. Using OLAP, a user can roll up or drill
down along different group-by levels, such as comparing the
sales amount of cameras by agents in Vancouver and that
by agents in Canada.

Sessions are query sequences. To conduct OLAP on ses-
sion data, a user can specify a query sequence s. Analogous
to the relational case, each query in s can be considered as a
dimension, while the frequency of s can be considered as the
measure. The three basic session sequence mining functions
in Section 3.2 are then regarded as the aggregate functions.



The sequential drill-down operations (drill-down for short)
on s can be defined as aggregations by either prepending a
sequence s1 at the head of s or appending s1 at the tail of
s. In other words, the sequential drill-down operations per-
form on either sequence s1 ◦ s or sequence s ◦ s1. Reversely,
the sequential roll-up operations (roll-up for short) on s can
be defined as aggregations by removing a subsequence of s
either at the head or tail.

Example 4 (OLAP operations on session data).
In query suggestion application, the search engine provides
suggestions each time the user raises a query. For exam-
ple, when a user raises a query “Honda”, the search engine
can apply a forward search function on s1 = 〈“Honda”〉 and
get the top-k queries as the candidates for query suggestion.
Suppose the user raises a second query “Ford”, the search
engine can drill down using the forward search function to
find out the top-k queries following sequence s2 = 〈“Honda”
“Ford”〉 as the candidates for query suggestion.

In keyword bidding application, suppose a user applies
the backward search function on sequence s1 = 〈“digital
camcorder”〉 and finds the sequence s2 = 〈“DV”
“digital camcorder”〉 interesting. The user may further roll
up using the forward search function and find out the top-
k queries following s3 = 〈“DV”〉. Those top-k queries may
also be good candidates to bid.

To implement OLAP on relational data effectively and
efficiently, materialization is often used. That is, all ag-
gregates are pre-computed and indexed so that whenever
a query comes, the result can be retrieved promptly. One
challenge in OLAP on session data using the three basic
sequence mining functions is that the dimensions are not
explicitly pre-defined. There are a huge number of possible
query sequences. Quantitatively, if a length up to l is con-
sidered, then the total number of possible query sequences is∑l

i=1 |Q|l, where Q is the set of unique queries. In a search
engine, there can be billions of unique queries, which make
the pre-computation for even short query sequences (e.g.,
l = 3) infeasible.

4. SCALABLE OLAP ON SEARCH LOGS
The size of search logs in search engines is usually very

large. It is infeasible to scan a search log on the fly to con-
duct online sequence mining. Thus, we need an effective
index on search logs. Moreover, even an index on search
logs is often too large to be computed and stored in a single
machine. Index construction has to be distributed.

The framework of our OLAP system on search logs, as
shown in Figure 1, consists of a log data engine and an OLAP
engine. The log data engine extracts query sessions from
search logs as described in Section 3.1, constructs distributed
indexes from query sessions, and maintains the indexes when
new logs arrive. We introduce the index structure in Sec-
tion 4.1, and describe in Section 4.2 how to construct and
maintain the index structures in a distributed manner.

The OLAP engine delegates online mining requests from
data-driven applications to corresponding index servers, and
integrates results from index servers. We describe online
mining in Section 4.3.

4.1 Suffix Trees and Reversed Suffix Trees
A core task in the three basic sequence mining functions

is subsequence matching : given a set of sequences D and a

SID Query sequences SID Query sequences

s1 〈q1q2q3q4〉 s5 〈q6q1q2q5〉
s2 〈q1q2q4q5〉 s6 〈q1q2q3q5〉
s3 〈q6q1q2q5〉 s7 〈q1q2q3q6〉
s4 〈q1q2q3q4〉 s8 〈q6q1q2q5〉

Table 1: A running example of 8 query sessions.
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Figure 2: A suffix tree for Table 1.

query sequence s, find the sequences in D of which s is a
subsequence. Suffix trees and their compacted forms [11]
are effective data structures to solve the problem, since a
subsequence s′ of a sequence s must be a prefix of a suffix
of s.

A suffix tree organizes all suffixes of a given sequence into
a prefix sharing tree such that each suffix corresponds to
a path from the root node to a leaf node in the tree. By
organizing all the suffixes of s into a tree structure, to check
whether sequence s′ is a subsequence of s, we can simply
examine whether there is a path corresponding to s′ from
the root of the suffix tree.

Most of the existing methods [10] construct a suffix tree
for indexing one (long) sequence. However, in the case of
query session mining, the average sequence length is short,
but the number of sequences is huge. We extend the suffix
tree structure for indexing query sessions straightforwardly.
Figure 2 shows a suffix tree for the query sessions in Table 1.
In the tree, each edge is labeled by a query and each node
except for the root corresponds to the query sequence con-
stituted by the labels along the path from the root to that
node. Moreover, each node is associated with a value repre-
senting the frequency of the corresponding query sequence
in the search log.

To serve backward search, we also build a reversed suffix
tree. For each query session s = 〈q1q2 . . . qn〉, we obtain a
reversed query sequence s′ = 〈qnqn−1 . . . q1〉 and insert all
suffixes of s′ into the reversed suffix tree. Figure 3 shows
the reversed suffix tree for the query sessions in Table 1.

4.2 Distributed Suffix Tree Construction
A search log may contain billions of query sessions. The

resulting suffix tree and reversed suffix tree cannot be held
into the main memory or even the disk of one machine.
The existing studies on disk-based suffix tree construction
(e.g., [17]) target at indexing one long sequence. To the best
of our knowledge, there is no existing work on efficient con-
struction of a suffix tree for a large number of sequences on
multiple computers.

We develop a distributed suffix tree construction method
under the MapReduce programming model [5], a general ar-
chitecture for distributed processing on large computer clus-
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ters. The central idea of MapReduce is to divide a large task
into chunks so that they can be assigned to computers for
processing in parallel. At the beginning, the whole data set
is stored distributively in the cluster; each computer pos-
sesses a subset of data. In the map phase, each computer
processes its local subset of data and emits pieces of inter-
mediate results, where each piece is associated with a key.
In the reduce phase, all pieces of intermediate results car-
rying the same key are collected and processed on the same
computer.

Figure 4 shows the major steps of our distributed index
construction method. In the first step, we compute all suf-
fixes and the corresponding frequencies using the MapRe-
duce model. In the second step, we partition the entire set
of suffixes into several parts such that each part can be held
in the main memory of one index server. The first two steps
are conducted under the MapReduce model. In the last step,
we construct the local suffix trees and reversed suffix trees
on each index server. As to be explained shortly, the parti-
tioning method in the second step guarantees that the local
(reversed) suffix trees are subtrees of the global (reversed)
suffix trees.

In the map phase of Step 1, each computer processes a
subset of query sessions. For each query session s, the com-
puter emits an intermediate key-value pair (s′, 1) for every
suffix s′ of s, where the value 1 here is the contribution
to frequency of suffix s′ from s. In the reduce phase, all
intermediate key-value pairs having suffix s′ as the key are
processed on the same computer. The computer simply out-
puts a final pair (s′, freq(s′)) where freq(s′) is the number

of intermediate pairs carrying key s′.
The above MapReduce method returns all suffixes of ses-

sions and their frequencies. We need to organize them into a
suffix tree. Ideally, we want that the suffix tree can be held
in main memory so that online mining can be conducted
quickly. However, since the number of all suffixes is usually
very large, the whole suffix tree cannot fit in one machine.
To tackle the problem, we partition a suffix tree into sub-
trees so that each subtree can be held into the main memory
of an index server. Moreover, we require all subtrees are ex-
clusive from each other so that there are no identical paths
on two subtrees. Finally, we try to make sure that the sizes
of the subtrees do not vary dramatically in the hope that the
online mining workload can be distributed relatively evenly
on the index servers.

One challenge is that it is hard to estimate the size of
a subtree using only the suffixes in the subtree, since the
suffixes may share common prefixes. For example, a subtree
with two suffixes s1 = 〈q1q2q3〉 and s2 = 〈q1q2q4〉 has only 4
nodes since the two suffixes share a prefix 〈q1q2〉.

Given a set of suffix sequences, a simple yet reachable
upper bound of the size of the suffix tree constructed from
the suffix sequences is the total number of query instances
in the suffix sequences. For example, the upper bound of
the size of the suffix tree constructed from s1 = 〈q1q2q3〉
and s2 = 〈q1q2q4〉 is 6. Using this upper bound in space
allocation is conservative. The advantage is that we reserve
sufficient space for the growth of the tree when new search
logs are added.

To partition the suffix tree, for each query q ∈ Q, we
again apply the MapReduce approach and compute the up-
per bound of the subtree rooted at q. In the map phase,
each suffix sequence s generates an intermediate key-value
pair (q1, |s|−1), where q1 is the first query in s, and |s|−1 is
the number of queries in s except for q1. In the reduce phase,
all intermediate key-value pairs carrying the same key, say
q1, are processed by the same computer. The computer out-
puts a final pair (q1, size) where size is the sum of values in
all intermediate key-value pairs with key q1. Clearly, size is
the upper bound of the size of the subtree rooted at query
q1. If size is less than the size limit of an index server, the
whole subtree rooted at q1 can be held in the index server.
In this case, we assign all the suffixes whose first query is q1

to the same index server. Otherwise, we can further divide
the subtree rooted at q1 recursively and assign the suffixes
accordingly. In this way, we can guarantee that the local
suffix trees on different index servers are exclusive.

New search log sessions keep arriving incrementally. To
incrementally maintain the suffix tree, when a new batch of
query sessions arrive, we only process the new batch using
the MapReduce process similar to that in Step 1 and com-
pute the frequency freq(s) of each suffix s within the new
batch. Then, the new set of suffixes are assigned to the index
server according to the subtrees that they should be hosted.
If a subtree in an index server exceeds the memory capacity
after the new suffixes are inserted, the subtree is partitioned
recursively as in Step 2 and more index servers are used.
Finally, each local suffix tree is updated to incorporate the
new suffixes.

The reversed suffix trees can be constructed and main-
tained in a similar way.

4.3 Online Mining
Using a suffix tree and a reversed suffix tree, we can sup-



port the three basic sequence mining functions online.
A forward search can be implemented using a suffix tree.

Let s be a query sequence. We can search the suffix tree and
find a path from the root to a node v that matches s. If such
a path does not exist, then no query session contains s and
thus nothing can be returned by the forward search. If such
a path is found, then we only need to search the subtree
rooted at v, and find the top-k nodes in the subtree with
the largest frequencies. The paths from v to those nodes are
the answers.

A thorough search of the subtree rooted at v can be costly
if the subtree is large. It is easy to see that in a suffix tree,
the frequency at a node v is always larger than or equal to
that at any descendant of the node. Thus, we can conduct
a best-first search to find the top-k answers.

Example 5 (Forward search). Consider the sessions
in Table 1 and the corresponding suffix tree in Figure 2. Sup-
pose the query sequence is s = 〈q1q2〉. A forward search
starts from the root node and finds a path matching s (the
left most path in the figure).

The node v corresponding to s has 3 child nodes. We can
follow the labels on the edges from v and form a candidate
answer set Cand. During the forward search process, Cand
is maintained as a priority queue in frequency descending or-
der. Therefore, Cand = {q3, q5, q4} at the beginning. If the
user is interested in top-2 answers, we first pick the head
element q3 from Cand. As Cand is maintained as a pri-
ority queue, q3 has the largest frequency and can be safely
placed into the final answer set R. This is due to a good
property of the suffix tree: any descendant node v′ cannot
have a frequency higher than that in any of its ancestor
nodes v. In the next step, all the sequences corresponding
to the child node of v are inserted into Cand. The pri-
ority queue now becomes Cand = {q5, q3q4, q4, q3q5, q3q6}.
Again, we pick the head element q5 from Cand and place it
in R. Therefore, the top-2 answers are R = {q3, q5}. If the
user is interested in top-3 answers, the queue is updated to
Cand = {q3q4, q4, q3q5, q3q6} since q5 does not have a child.
The top-3 answers are R = {q3, q5, q3q4}.

A suffix tree may be distributed in multiple index servers.
When the search involves multiple index servers, each in-
dex server looks up the local subtree and returns the local
top-k results to the OLAP server. Since the local subtrees
are exclusive, the global top-k results must be among the
local top-k results. Therefore, the OLAP server only needs
to examine all the local top-k results and select the most
frequent ones as the global top-k results.

Similarly, a backward search can be conducted using a
reversed suffix tree.

To conduct session retrieval online, we pre-compute the
frequencies of sessions in a session table by a MapReduce
process. Specifically, in the map phase, each session s gen-
erates a key value pair (s, 1). In the reduce phase, all identi-
cal sessions are assigned to the same computer and thus the
frequency of the session can be computed.

We enhance the suffix tree by adding the session informa-
tion. Each leaf node of the suffix tree is attached a list of
the IDs of the sessions containing the suffix. This can be
easily computed as a byproduct in the suffix tree construc-
tion. Moreover, all session IDs in the list are sorted in the
frequency descending order. Figure 5 shows the enhanced
suffix tree of our running example.
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Figure 5: An enhanced suffix tree.

Session retrieval with a query sequence s can be conducted
online using the enhanced suffix tree. We first find the node
v such that the path from the root of the suffix tree to v
matches s. We then search the leaf nodes in the subtree
rooted at v and find the IDs of the top-k frequent sessions.
Once we have the IDs of the top-k sessions, the last step is
to get the query sequences of the corresponding sessions. To
avoid physically storing the query sequences, which could
be expensive in space, we reuse the query sequences on the
suffix tree. That is, instead of storing the actual query se-
quence in the mapping table, for each session ID, we store a
pointer to the leaf node corresponding to the query session
in the suffix tree. We call this mapping table id-pointer ta-
ble. As an example, in Figure 5, the entry for session s1 in
the id-pointer table points to leaf node n1. To find out the
sequence of s1, we only need to trace the path from the leaf
node n1 back to the root and then reverse the order of the
labels on the path. In this example, the path from n1 to the
root is 〈q4q3q2q1〉, and thus s1 = 〈q1q2q3q4〉.

To speed up the search, we can further store at each inter-
nal node v in the suffix tree a list of k0 sessions that are most
frequent in the subtree of v, where k0 is a number so that
most of the session retrieval requests ask for less than k0 re-
sults. In practice, k0 is often a small number like 10. Once
the list is stored, the session retrieval operations requesting
less than k0 results obtain the IDs of the top-k sessions di-
rectly from the node and thus do not need to search the leaf
nodes in the subtree. Only when a session retrieval requests
more than k0 results we need to search the subtree.

5. AN EMPIRICAL STUDY
In this section, we report a systematic evaluation of our

OLAP system using a real query log data set extracted from
a major commercial search engine. The data set contains
4, 963, 601, 307 searches and 1, 481, 946, 526 unique queries.
We apply the session segmentation method discussed in Sec-
tion 3.1 and derive 2, 488, 594, 484 sessions.

We first examine the characteristics of session data. Fig-
ure 6(a) shows the distribution of the length of sessions. For
those sessions of lengths greater than 1, the length of ses-
sions follows a power-law distribution. It indicates that the
majority of sessions in the search log are not long. As intro-
duced in Section 4, the level of a suffix tree is at most the
length of the longest query sequence. Therefore, the suffix
tree for the session data is not high, which suggests that the
query answering process could be very efficient since it is not
necessary to traverse deep in the suffix tree index.

We also plot the number of unique sessions with respect
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to their frequencies in Figure 6(b). The figure shows that
the frequency of unique query sessions also follows a power-
law distribution. This indicates that the suffix tree index can
greatly compress the data since many sessions have identical
query sequences.

5.1 Index Construction
We build the suffix tree index and the reversed suffix tree

index using the methods developed in Section 4. In Sec-
tion 4.3, we presented several strategies to achieve the ses-
sional retrieval function. Based on the analysis, the strategy
in which each leaf node is associated with a list of session
IDs can balance the storage size and the query answering
response time. By default, the index built in the following
subsections refers to that strategy.

Our index construction methods follow a distributed im-
plementation. We use a MapReduce cluster consisting of
20 computers. The map phase and the reduce phase are
automatically scheduled by the system. Moreover, up to 6
computers are used as index servers. All the 26 comput-
ers run the 64 bit Microsoft Windows Server 2003 operating
system, each with an Intel Xeon 2.33 GHz CPU and 8 GB
main memory.

To examine the scalability of our index construction al-
gorithm, we measure the construction time with respect to
uniform samples of the whole search log data with different
sizes. As elaborated in Section 4.2, the index construction
consists of three steps. The first step extracts all suffixes and
their frequencies using a MapReduce approach. The second
step partitions the suffixes and allocates them to individual
index servers. These two steps are carried out in the MapRe-
duce cluster. The last step constructs the local suffix tree as
well as the reversed suffix tree on each index server. We first
use three computers as index servers. The run time for each
step is shown in Figures 7(a), 7(b) and 7(c), respectively.

For the first two steps, the runtime increases over-linearly
when data size increases. By monitoring the CPU usage and
I/O status of the computers in the MapReduce system, we

find that the overall time of each step is dominated by writ-
ing intermediate and final results to disks. In the first step,
both intermediate and final results are (suffix, frequency)
pairs. Since the total number of intermediate and final pairs
increases over-linearly with respect to the size of sessions,
so does the total runtime of the first step. In the second
step, both intermediate and final results of the MapReduce
procedure are (prefix, size) pairs, where prefix corresponds
to a subtree and size is the estimated number of nodes in
the subtree. To reduce the chances of recursive partition of
the suffix and reverse suffix trees, in our implementation,
we choose the length of prefixes to be 2. Consequently, the
overall time for the second step is over-linear since the total
numbers of intermediate and final (prefix, size) pairs increase
over-linearly with respect to the size of sessions.

Although the first two steps do not scale linearly, the over-
all time is acceptable. In particular, even on the whole data
set containing about 2.5 billion sessions, the first step and
the second step still finish within one hour, respectively.
This verifies that our algorithms under the MapReduce pro-
gramming model are efficient to handle large data sets.

In Figure 7(c), the curve shows the average runtime, while
the deviation bars indicate the variance of the runtime among
the three index servers. We can see the average run time
scales well with respect to the size of data. Moreover, the
variation of runtime is very small, which indicates that the
suffixes are partitioned evenly and the load of the index
servers is well balanced.

To measure the effectiveness of distributed indexing, we
use more machines as index servers. The runtime for the first
two steps is similar to that in Figures 7(a) and 7(b), since
we only add index servers without changing the MapRe-
duce cluster. Figure 7(d) shows the average runtime for
the third step using four, five, and six machines, respec-
tively. All machines have the same configuration. We can
see that the average runtime per index server drops dramat-
ically when more machines are used. Although the decrease
is not strictly linear, the average runtime when six machines
are used is only 64.4% of that when three machines are used.

We also measure the size of index storage. Figure 8(a)
shows the memory usage of the index structure using three
servers. Clearly, the index size is roughly linear with respect
to the data set size. Moreover, the deviation bars show that
the index servers have balanced load. Last, as shown in
Figure 8(b), the memory usage per index server drops to
nearly half when the number of index servers increases from
three to six.

5.2 OLAP Performance
To test the efficiency of our system, we randomly extract

a sample set of 1, 000 query sequences of length varying be-
tween 1 and 4 from the original search log. We evaluate
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Figure 9: The effect of l and k on response time.

the response time on the three OLAP functions, i.e., for-
ward search (FS), backward search (BS), and session re-
trieval (SR). Three index servers are used to hold the index
and run the mining tasks jointly.

Two factors may affect the response time: the length l of
the input query sequences and the answer set size k. In the
following experiments, we set l = 2 and k = 10 by default.

In the experiments, the average response time for a for-
ward/backward search is 0.19 second and the average re-
sponse time for a session retrieval is 0.72 second. The results
verify the feasibility of our approach for online data-driven
applications in search engines. Obviously, the response time
can be further decreased by caching technologies and more
advanced hardware.

We further investigate the effect of the factors, l and k,
respectively, by varying one factor but keeping the other
factor fixed at the default value. The effect of the length
parameter l is shown in Figure 9(a). When l increases, the
response time for all three OLAP functions decreases. This
is because the longer the query sequence, the more specific
the sequence is, and thus the smaller the search space that
the query answering algorithms need to traverse.

The effect of the size parameter k is shown in Figure 9(b).
When k increases, the response time of all the three func-
tions increases. Generating a larger result set requires visit-
ing more candidate nodes during the search procedure.

5.3 Comparison with S-OLAP
For comparison, we implement the S-OLAP system as de-

scribed in [16] and extend the pattern manipulation oper-
ations in [16] to answer the forward/backward search and
session retrieval. These extended solutions are referred to
as the inverted list approach. The main extension is as fol-
lows. For each query sequence of length 1, the inverted list
method constructs an inverted list in which the IDs of the
sessions containing that query sequence are kept. For each
query sequence of length greater than one, the inverted list
can be derived by joining the two inverted lists for two sub-
sequences. Since the join operation does not guarantee the
consecutiveness of subsequences, the joined inverted list has
be to scanned once to remove invalid sessions. The join oper-
ation in the inverted list approach can be carried out either
offline or on the fly. To make a tradeoff between the index
storage size and the response time, only the inverted lists
for short query sequences, e.g., 1 and 2, are pre-computed
offline, while the inverted lists for long sequences are com-
puted on the fly.

The inverted list approach cannot be extended to a dis-
tributed computation environment straightforwardly. First,
during the query answering procedure, the inverted lists for
long sequences have to be computed on the fly. In a dis-
tributed environment, the inverted lists to be joined may
be stored in different machines. Consequently, the join op-
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Figure 10: Comparison between ST and IL on (a)
index construction time and (b) memory usage.

eration may make the network traffic a bottleneck of the
system. Moreover, the computation of the inverted lists for
long sequences may need multiple rounds of join operation,
where each round involves the combination of subsequences.
It is a costly to maintain the intermediate joining results in
a distributed way.

Since the inverted list approach cannot be easily extended
to a distributed environment, we use a small uniform sample
data set whose inverted lists can be held in the main mem-
ory of a single machine. This small set contains 27, 091, 874
searches, 13, 587, 124 sessions, and 6, 579, 346 unique queries.
To make a fair comparison, our method also uses only one
index server. Moreover, for a thorough comparison, we con-
sider different options to construct the inverted lists. Specif-
ically, IL(1) refers to the option that only the inverted lists
for sequences of length 1 are pre-computed, IL(2) refers to
the option that the inverted lists for sequences of lengths 1
and 2 are pre-computed, and IL(all) refers to that the com-
plete set of inverted lists for all sequences are pre-computed.
Finally, we use ST to refer to our suffix tree method.

We first examine the index construction time for the suffix
tree approach and the inverted list approach. For the suffix
tree approach, the index construction includes building both
the suffix tree and the reversed suffix tree. The results are
shown in Figure 10(a). When the IL(1) option is adopted,
only the inverted lists for the sequences of length 1 are pre-
computed. Therefore, the construction time for the IL(1)
option is the smallest. However, when the inverted lists
for longer sequences are built, the index construction time
increases dramatically. The runtime for the IL(all) option
is the most costly, almost 7 times longer than that of the
suffix tree approach.

Figure 10(b) shows the actual memory usage of the in-
dexes in different approaches. The results have a trend sim-
ilar to that in Figure 10(a). The IL(1) option has the small-
est index size, while the inverted lists for option IL(all) are
the largest. The index of the suffix tree approach is slightly
smaller than that of option IL(2).

We further analyze the query response time of our ap-
proach and the inverted list approach. Similar to the evalu-
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ation in Section 5.2, we consider the effect of the length l of
the input query sequences and the size k of answer sets. By
default, l = 2 and k = 10.

Figure 11(a) shows the query response time when the
length of input query sequences varies from 1 to 4. Our
suffix tree approach has the shortest response time, and the
IL(all) option has comparable performance. However, the
IL(1) option is very slow for all lengths of input query se-
quences, while the response time for option IL(2) increases
dramatically when the length of input sequences is greater
than 1. In general, to conduct the forward search for a query
sequence of length l, the inverted list approach needs to look
up the inverted lists for sequences of length l + 1. If the in-
verted lists are not pre-computed, they have to be generated
by expensive join operations on the fly. That is the reason
why option IL(1) is slow for all lengths and option IL(2)
becomes dramatically more costly at length 2.

Figure 11(b) shows the query response time when the size
k changes. For all the four curves, the response time in-
creases when k increases because the larger the size k, the
more candidates need to be processed. The suffix tree ap-
proach and the IL(all) option are much faster than options
IL(1) and IL(2) because by default l = 2. We omit the re-
sults on backward search here, since the results are similar
to those on forward search.

We finally examine the response time for session retrieval.
Figure 12(a) shows the results when the length l of the in-
put query sequences varies. In general, to retrieve sessions
using query sequence of length l, the inverted list approach
needs to look up the inverted lists for sequences of length l.
Consequently, the response time for option IL(1) increases
dramatically when the length is larger than 1, since the an-
swer to longer sequences requires more join operations on
the fly. Similarly, the response time for option IL(2) in-
creases dramatically when the length is over 2. The suffix
tree approach and the IL(all) option have better perfor-
mance, and the response time is much shorter than that
of the cases when the online join operations are executed.
Figure 12(b) shows the results when the size k varies. The
IL(1) option is the slowest, since l = 2.

The suffix tree approach is more suitable than the inverted
list approach to serve as the index structure of a log analysis
infrastructure. First, compared with the options such as
IL(1) and IL(2), where only partial inverted lists are pre-
computed, the suffix tree approach is more scalable to the
length of input sequences and the efficiency is comparable
to that of the IL(all) option. Second, compared with the
IL(all) option, where all inverted lists are pre-computed,
the suffix tree approach has much smaller construction time
and memory usage. Finally and most importantly, the suffix
tree approach can be scaled up to a distributed environment
and handle a huge amount of log data in real applications.

6. CONCLUSIONS
In this paper, we proposed an OLAP system on search

logs. It can support many data-driven applications in search
engines, such as query suggestion and keyword bidding. We
formalized three OLAP functions on search logs, and devel-
oped a simple yet effective suffix-tree index to support online
mining of query sessions. We implemented our methods in
a prototype system and conducted a systematic empirical
study to verify the usefulness and feasibility of our design.
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