
Noname manuscript No.
(will be inserted by the editor)

Aggregate Keyword Search on Large Relational

Databases

Bin Zhou · Jian Pei

Received: November 17, 2009 / Revised: December 05, 2010 / Accepted: December 19, 2010

Abstract Keyword search has been recently extended to relational databases
to retrieve information from text-rich attributes. However, all the existing
methods focus on finding individual tuples matching a set of query keywords
from one table or the join of multiple tables. In this paper, we motivate a
novel problem of aggregate keyword search: finding minimal group-bys cov-
ering a set of query keywords well, which is useful in many applications. We
develop two interesting approaches to tackle the problem. We further extend
our methods to allow partial matches and matches using a keyword ontology.
An extensive empirical evaluation using both real data sets and synthetic data
sets is reported to verify the effectiveness of aggregate keyword search and the
efficiency of our methods.

Keywords aggregate keyword search · data cube · group-by · relational
database

A preliminary version of this paper appears as (Zhou and Pei 2009). The authors are
grateful to the anonymous reviewers and the associate editor for their constructive com-
ments that help to improve the quality of the paper. This research is supported in part by
an NSERC Discovery Grant, an NSERC Discovery Accelerator Supplement Grant, and a
British Columbia Natural Resources and Applied Sciences Endowment Fund. All opinions,
findings, conclusions and recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

Bin Zhou
School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby,
B.C., Canada, V5A 1S6
E-mail: bzhou@cs.sfu.ca

Jian Pei
School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby,
B.C., Canada, V5A 1S6
E-mail: jpei@cs.sfu.ca



2

Month State City Event Description

December Texas Houston Space Shuttle Experience rocket, supersonic, jet
December Texas Dallas Cowboy’s Dream Run motorcycle, culture, beer
December Texas Austin SPAM Museum Party classical American Hormel foods
November Arizona Phoenix Cowboy Culture Show rock music

Table 1: A table of tourism events.

1 Introduction

Keyword search has been well accepted as one of the most popular ways to
retrieve useful information from unstructured or semi-structured data, such
as Web pages (Henzinger et al 2003), images (Gong and Liu 2009), XML
documents (Liu and Chen 2007), and so on. Recently, keyword search has
been applied successfully on relational databases where some text attributes
are used to store text-rich information. As reviewed in Section 3, all of the
existing methods address the following search problem: given a set of keywords,
find a set of tuples that are most relevant (for example, find the top-k most
relevant tuples) to the set of keywords. Here, each tuple in the answer set may
be from one table or from the join of multiple tables.

While searching individual tuples using keywords is useful, in some ap-
plication scenarios, a user may be interested in an aggregate group of tuples
jointly matching a set of query keywords.

Example 1 (Motivation) Table 1 shows a database of tourism event calendar.
Such an event calendar is popular in many tourism web sites and travel agents’
databases (or data warehouses). To keep our discussion simple, in the field of
description, a set of keywords are extracted. In general, this field can store
text description of events.

Scott, a customer planning his vacation, is interested in seeing space shut-
tles, riding motorcycle and experiencing American food. He can search the
event calendar using the set of keywords {“space shuttle”, “motorcycle”,
“American food”}. Unfortunately, the three keywords do not appear together
in any single tuple, and thus the results returned by the existing keyword
search methods may contain at most one keyword in a tuple.

However, Scott may find the aggregate group (December, Texas, ∗, ∗, ∗)
interesting and useful, since he can have space shuttles, motorcycle, and Amer-
ican food all together if he visits Texas in December. The ∗ signs on attributes
city, event, and description mean that he will have multiple events in
multiple cities with different description.

To make his vacation planning effective, Scott may want to have the aggre-
gate as specific as possible – it should cover a small area (for example, Texas
instead of the whole United States) and a short period (for example, December
instead of year 2009).



3

In summary, the task of keyword search for Scott is to find minimal aggre-
gates in the event calendar database such that for each of such aggregates, all
keywords are contained by the union of the tuples in the aggregate.

Different from the existing studies about keyword search on relational
databases which find a tuple (or a set of tuples interconnected by primary-
foreign key relationships) matching the requested keywords well, the aggregate
keyword search investigated in this paper tries to identify a minimal context
where the keywords in a query are covered. Other than the example of the
tourism event query in Example 1, there are quite a few interesting applica-
tions of the aggregate keyword queries in practice.

– For movie retailer stores, their databases store all the information about
thousands of movies, such as title of the movie, director, leading
actor, leading actress, writer, and so on. The aggregate keyword
queries can suggest to the customers some interesting factors of movies that
customers may find interesting. For example, a customer favoring in sci-
ence fiction movies may be suggested that the director Steven Spielberg

has directed quite a few sci-fi movies. Later on, the customer may want to
watch some more movies directed by Steven Spielberg.

– For online social networking sites, their databases store all the information
about different user communities and groups, such as member’s location,
member’s interest, member’s gender, member’s age, and so on. The
aggregate keyword queries can recommend to those new users some impor-
tant factors of those social communities that they may prefer to joining in.
For example, a female university student may find that most people in her
age likes shopping. Thus, she may want to first join those communities
which focus on shopping information.

Similar situations arise in some related recommendation services, such as
restaurant recommendation, hotel recommendation, friend finder suggestion,
shopping goods promotion, and so on.

As analyzed in Section 3, aggregate keyword search cannot be achieved
efficiently using the keyword search methods developed in the existing stud-
ies, since those methods do not consider aggregate group-bys in the search
which are critical for aggregate keyword search. In this paper, we tackle the
problem of aggregate keyword search systematically, and make the following
contributions.

First, we identify and formulate the problem of aggregate keyword search,
and demonstrate its applications. To the best of our knowledge, this is the
first study on aggregate keyword search. Generally, it can be viewed as the
integration of online analytical processing (OLAP) and keyword search, since
conceptually we conduct keyword search in a data cube.

Second, to develop efficient methods for aggregate keyword search, we de-
velop two promising approaches. The maximal-join approach uses the inverted
lists of keywords to assemble the minimal group-bys covering all keywords in
the query. Several effective heuristics are identified to speed up the search.



4

The keyword graph approach materializes the minimal aggregates for every
pair of keywords in a keyword graph index. Then, the aggregate search using
multiple keywords can be reduced to generalizing the aggregates in a clique of
keywords.

Third, we extend the complete aggregate keyword search to general aggre-
gate keyword search, where partial matches (for example, matching m′ of m
keywords in a query) are allowed, and a keyword is allowed to be matched by
some other similar keywords according to a keyword ontology (that is, keyword
“fruit” in a query can be matched by keyword “apple” in the data). To the
best of our knowledge, we are the first to consider the relaxation of keyword
matching using a keyword ontology on relational databases.

Last, we empirically evaluate our techniques using both real data sets and
synthetic data sets. We conduct a comparison with a baseline algorithm which
is an extension of iceberg cube computation algorithm. Our experimental re-
sults show that aggregate keyword search is practical and effective on large
relational databases, and our techniques can achieve high efficiency.

The rest of the paper is organized as follows. In Section 2, we formulate
the problem of aggregate keyword search on relational databases. We review
the related work in Section 3. We develop the maximum join approach in
Section 4, and the keyword graph approach in Section 5. In Section 6, the
complete aggregate keyword search is extended and generalized for partial
matching and matching based on keyword ontology. A systematic performance
study is reported in Section 7. Section 8 concludes the paper.

2 Aggregate Keyword Queries

For the sake of simplicity, in this paper, we follow the conventional terminology
in online analytic processing (OLAP) and data cubes (Gray et al 1996).

Definition 1 (Aggregate cell) Let T = (A1, . . . , An) be a relational table.
An aggregate cell (or a cell for short) on table T is a tuple c = (x1, . . . , xn)
where xi ∈ Ai or xi = ∗ (1 ≤ i ≤ n), and ∗ is a meta symbol meaning that
the attribute is generalized. The cover of aggregate cell c is the set of tuples
in T that have the same values as c on those non-∗ attributes, that is,

Cov(c) = {(v1, . . . , vn) ∈ T |vi = xi if xi 6= ∗, 1 ≤ i ≤ n}

A base cell is an aggregate cell which takes a non-∗ value on every attribute.
For two aggregate cells c = (x1, . . . , xn) and c′ = (y1, . . . , yn), c is an

ancestor of c′, and c′ a descendant of c, denoted by c ≻ c′, if xi = yi for
each xi 6= ∗ (1 ≤ i ≤ n), and there exists i0 (1 ≤ i0 ≤ n) such that xi0 = ∗
but yi0 6= ∗. We write c � c′ if c ≻ c′ or c = c′.

For example, in Table 1, the cover of aggregate cell (December, Texas, ∗, ∗,
∗) contains the three tuples about the events in Texas in December. Moreover,
(∗, Texas, ∗, ∗, ∗) ≻ (December, Texas, ∗, ∗, ∗).

Apparently, aggregate cells have the following property.



5

Corollary 1 (Monotonicity) For aggregate cells c and c′ such that c ≻ c′,
Cov(c) ⊇ Cov(c′).

For example, in Table 1, Cov(∗, Texas, ∗, ∗, ∗) ⊇ Cov(December, Texas,
∗, ∗, ∗).

In this paper, we consider keyword search on a table which contains some
text-rich attributes such as attributes of character strings or large object blocks
of text. Formally, we define an aggregate keyword query as follows.

Definition 2 (Aggregate keyword query) Given a table T , an aggregate
keyword query is a 3-tuple Q = (D, C,W ), where D is a subset of attributes
in table T , C is a subset of text-rich attributes in T , andW is a set of keywords.
We call D the aggregate space and each attribute A ∈ D a dimension. We
call C the set of text attributes of Q. D and C do not have to be exclusive
to each other.

An aggregate cell c on T is an answer to the aggregate keyword query (or
c matches Q for short) if (1) c takes value ∗ on all attributes not in D, that
is, c[A] = ∗ if A 6∈ D; and (2) for every keyword w ∈ W , there exists a tuple
t ∈ Cov(c) and an attribute A ∈ C such that w appears in the text of t[A].

Example 2 (Aggregate keyword query) The aggregate keyword query in Ex-
ample 1 can be written as Q = ({Month, State, City, Event}, {Event,
Description}, {“space shuttle”, “motorcycle”, “American food”}) according
to Definition 2, where table T is shown in Table 1.

Due to the monotonicity of aggregate cells in covers (Corollary 1), if c is
an answer to an aggregate keyword query, then every aggregate cell which is
an ancestor of c (that is, more general than c) is also an answer to the query.
In order to eliminate the redundancy and also address the requirements from
practice that specific search results are often preferred, we propose the notion
of minimal answers.

Definition 3 (Minimal answer) An aggregate cell c is a minimal answer
to an aggregate keyword query Q if c is an answer to Q and every descendant
of c is not an answer to Q.

The problem of aggregate keyword search is to find the complete set
of minimal answers to a given aggregate keyword query Q.

In some situations, the minimal answers can be ranked according to a
specific ranking function (e.g., TF-IDF based ranking function). Users may be
only interested in top-k answers. However, defining a meaningful ranking func-
tion in practice is a challenge. Moreover, in different relational databases, the
ranking functions can be quite different, since the data stored in the databases
may be quite different. In this paper, we focus on finding the complete set of
minimal answers. The problem of top-k answer retrieval is interesting for fu-
ture research.

It is well known that all the aggregate cells on a table form a lattice. Thus,
aggregate keyword search is to search the minimal answers in the aggregate
cell lattice as illustrated in the following example.



6

(a2, b1, *)(a1, *, c2)(a1, *, c1)(a1, b2, *)(a1, b1, *) (a2, b2, *)

(*, b2, *)

(*, *, *)

(*, *, c2)(*, *, c1)(*, b1, *)(a2, *, *)(a1, *, *)

(a2, b1, c2, w1)(a2, b1, c1, w1)(a1, b2, c2, w1)(a1, b1, c2, w2)(a1, b1, c1, w1) (a2, b2, c1, w2)

(*, b2, c2)(*, b2, c1)(*, b1, c2)(*, b1, c1)(a2, *, c2)(a2, *, c1)

Fig. 1: The aggregate lattice on ABC.

A B C D

a1 b1 c1 w1, w3

a1 b1 c2 w2, w5

a1 b2 c2 w1

a2 b1 c1 w1, w4

a2 b1 c2 w1, w3

a2 b2 c1 w2, w6

Table 2: Table T in Example 3.

Example 3 (Lattice) In table T = (A,B,C,D) in Table 2, attributeD contains
a set of keywords wi (i > 0). Consider query Q = (ABC,D, {w1, w2}).

Figure 1 shows the aggregate cells in aggregate space ABC and the lattice.
Aggregate cells (a1, b1, ∗), (a1, ∗, c2), (∗, b1, c2), (∗, b2, ∗), and (a2, ∗, c1) are the
minimal answers to the query. They are highlighted in boxes in the figure.

3 Related Work

The aggregate keyword search problem is highly related to the previous studies
on keyword search on relational databases and iceberg cube computation. In
this section, we briefly review some representative studies and point out the
differences between those studies and ours.

3.1 Keyword Search on Relational Databases

Recently, integration of information retrieval and database technology has at-
tracted a lot of attention. A few critical challenges have been identified such
as how to model the query answers in a semantic way and how to address the
flexibility in scoring and ranking models. Chaudhuri et al (2005); Amer-Yahia
et al (2005); Weikum (2007); Chen et al (2009); Chaudhuri and Das (2009);
Park and goo Lee (2010) provided excellent insights into those issues.

As a concrete step to provide an integrated platform for text- and data-rich
applications, keyword search on relational databases becomes an active topic
in database research. Several interesting and effective solutions and prototype



7

systems have been developed (Agrawal et al 2002; Hristidis and Papakonstanti-
nou 2002; Bhalotia et al 2002; Taha and Elmasri 2010).

DBXplorer (Agrawal et al 2002) is a keyword-based search system imple-
mented using a commercial relational database and web server. DBXplorer re-
turns all rows, either from individual tables or by joining multiple tables using
foreign-keys, such that each row contains all keywords in a query. It uses a sym-
bol table as the key data structure to look up the respective locations of query
keywords in the database. DISCOVER (Hristidis and Papakonstantinou 2002)
produces without redundancy all joining networks of tuples on primary and
foreign keys, where a joining network represents a tuple that can be generated
by joining some tuples in multiple tables. Each joining network collectively
contains all keywords in a query. Both DBXplorer and DISCOVER exploit
the schema of the underlying databases. Hristidis et al (2003) developed ef-
ficient methods which can handle queries with both AND and OR semantics
and exploited ranking techniques to retrieve top-k answers.

BANKS (Bhalotia et al 2002) models a database as a graph where tuples
are nodes and application-oriented relationships are edges. Under such an ex-
tension, keyword search can be generalized on trees and graph data. BANKS
searches for Steiner trees (Dreyfus and Wagner 1972) that contain all key-
words in the query. Some effective heuristics are exploited to approximate the
Steiner tree problem, and thus the algorithm can be applied to huge graphs of
tuples. Furthermore, Kacholia et al (2005) introduced the bidirectional expan-
sion techniques to improve the search efficiency on large graph databases. Be-
cause keyword search on graphs takes both vertex labels and graph structures
into account, there are many possible strategies for ranking answers. Differ-
ent ranking strategies reflect designers’ respective concerns. Various effective
IR-style ranking criteria and search methods are developed, such as (Liu et al
2006; Luo et al 2007; Ding et al 2007).

Most of the previous studies concentrate on finding minimal connected
tuple trees from relational databases (Agrawal et al 2002; Hristidis and Pa-
pakonstantinou 2002; Hristidis et al 2003; Bhalotia et al 2002; Kacholia et al
2005; Liu et al 2006; Kimelfeld and Sagiv 2006; Luo et al 2007; Ding et al
2007). Recently, several other semantics of query answers have been proposed.
Under the graph modeling of a relational database, BLINKS (He et al 2007)
proposes to find distinct roots as answers to a keyword query. An m-keyword
query finds a collection of tuples, that contain all the keywords, reachable from
a root tuple within a user-given distance. BLINKS (He et al 2007) builds a
bi-level index for fast keyword search on graphs. Recently, Qin et al (2009b)
modeled a query answer as a community. A community contains several core
vertices connecting all the keywords in the query. Qin et al (2009a) considered
all the three previous semantics of query answers, and showed that the current
commercial RDBMSs are powerful enough to support keyword queries in re-
lational databases efficiently without any additional new indexing to be built
and maintained. Li et al (2008) studied keyword search on large collections of
heterogenous data. An r-radius Steiner graph semantic is proposed to model
the query answers. Instead of returning sub-graphs that contain all the key-



8

words, ObjectRank (Balmin et al 2004) returns individual tuples as answers.
It applies a modified PageRank algorithm to keyword search in a database for
which there is a natural flow of authority between the objects. To calculate
the global importance of an object, a random surfer has the same probability
to start from any object of the base set (Tong et al 2008). ObjectRank returns
objects having high authority with respect to all keywords.

The quality of approximation in top-k keyword proximity search is studied
in (Kimelfeld and Sagiv 2006). Yu et al (2007) used a keyword relationship ma-
trix to evaluate keyword relationships in distributed databases. Most recently,
Vu et al (2008) extended (Yu et al 2007) by summarizing each database using
a keyword relationship graph, which can help to select top-k most promising
databases effectively in query processing.

The existing studies about keyword search on relational databases and
our paper address different types of keyword queries on relational databases.
First, previous studies focus on relational databases which consist of a set
of relational tables. In our paper, an aggregate keyword query is conducted
on a single large relational table. Second, previous studies look for individual
tuples (or a set of tuples interconnected by primary-foreign key relationships)
such that all the query keywords appear in at least one returned tuple in
the database. In other words, the answers to be returned are tuples from
the original database. However, in our paper, the answers to the aggregate
keyword queries are aggregate cells (group-bys). All the query keywords must
appear in at least one tuple in the corresponding group-bys. In other words, the
answers to be returned are aggregated results from the original relational table.
Third, in the previous studies, the tuples to be returned come from different
relational tables which are connected by the primary-foreign key relationships.
However, in our paper, the tuples are in the same table and those tuples in
the same group-by have same values on those group-by attributes. As a result,
the problem of aggregate keyword query is quite different from those existing
studies about keyword search on relational databases.

The existing methods about keyword search on relational databases cannot
be extended straightforwardly to tackle the aggregate keyword search prob-
lem. First, previous studies find tuples from different tables which are inter-
connected by primary-foreign key relationships, it is possible to extend some
of the existing methods to compute those joining networks where tuples from
the same table are joined (that is, self-join of a table). However, for a query of
m keywords, we need to conduct the self-joins of the original table for m− 1
times, which is very time-consuming. Second, the number of joining networks
generated by the self-joins can be much larger than the number of minimal
answers due to the monotonicity of aggregate cells. Such extensions cannot
compute the minimal answers to aggregate keyword queries efficiently. As a
result, we need to develop specific query answering techniques to conduct the
aggregate keyword queries efficiently and effectively.



9

3.2 Keyword-Driven Analytical Processing

Keyword-driven analytical processing (KDAP) (Wu et al 2007) probably is the
work most relevant to our study. KDAP involves two phases. In the differen-
tiate phase, for a set of keywords, a set of candidate subspaces are generated
where each subspace corresponds to a possible join path between the dimen-
sions and the facts in a data warehouse schema (for example, a star schema).
In the explore phase, for each subspace, the aggregated values for some pre-
defined measure are calculated and the top-k interesting group-by attributes
to partition the subspace are found.

For instance, as an example in (Wu et al 2007), to answer a query “Colum-
bus LCD”, the KDAP system may aggregate the sales about “LCD” and break
down the results into sub-aggregates for “Projector Technology = LCD”, “De-
partment = Monitor, Product = Flat Panel (LCD)”, etc. Only the tuples that
link with “Columbus” will be considered. A user can then drill down to aggre-
gates of finer granularity.

Both the KDAP method and our study consider aggregate cells in key-
word matching. The critical difference is that the two approaches address two
different application scenarios. In the KDAP method, the aggregates of the
most general subspaces are enumerated, and the top-k interesting group-by
attributes are computed to help a user to drill down the results. In other
words, KDAP serves the interactive exploration of data using keyword search.

In this study, the aggregate keyword search is modeled as a type of queries.
Only the minimal aggregate cells matching a query are returned. Moreover,
we focus on the efficiency of query answering. Please note that Wu et al (2007)
did not report any experimental results on the efficiency of query answering
in KDAP since it is not a major concern in that study.

3.3 Iceberg Cube Computation

As elaborated in Example 3, aggregate keyword search finds aggregate cells in
a data cube lattice (that is, the aggregate cell lattice) in the aggregate space
D in the query. Thus, aggregate keyword search is related to the problem of
iceberg cube computation which has been studied extensively.

The concept of data cube is formulated in (Gray et al 1996). Fang et al
(1998) proposed iceberg queries which find in a cube lattice the aggregate cells
satisfying some given constraints (for example, aggregates whose SUM passing
a given threshold).

Efficient algorithms for computing iceberg cubes with respect to various
constraints have been developed. Particularly, the BUC algorithm (Beyer and
Ramakrishnan 1999) exploits monotonic constraints like COUNT(∗) ≥ v and
conducts a bottom-up search (that is, from the most general aggregate cells
to the most specific ones). Han et al (2001) tackled non-monotonic constraints
like AVG(∗) ≥ v by using some weaker but monotonic constraints in pruning.
More efficient algorithms for iceberg cube computation are proposed in (Xin



10

et al 2003; Feng et al 2004). The problem of iceberg cube computation on
distributed network environment is investigated in (Ng et al 2001).

A keyword query can be viewed as a special case of iceberg queries, where
the constraint is that the tuples in an aggregate cell should jointly match
all keywords in the query. However, this kind of constraints have not been
explored in the literature of iceberg cube computation. The existing methods
only consider the constraints composed by SQL aggregates like SUM, AVG and
COUNT. In those constraints, every tuple in an aggregate cell contributes to
the aggregate which will be computed and checked against the constraint. In
aggregate keyword search, a keyword is expected to appear in only a small
subset of tuples. Therefore, most tuples of an aggregate cell may not match
any keyword in the query, and thus do not need to be considered in the search.

Due to the monotonicity in aggregate keyword search (Corollary 1), can
we straightforwardly extend an existing iceberg cube computation method like
BUC to tackle the aggregate keyword search problem? In aggregate keyword
search, we are interested in the minimal aggregate cells matching all keywords
in the query. However, all the existing iceberg cube computation methods
more or less follow the BUC framework and search from the most general cell
to the most specific cells in order to use monotonic constraints to prune the
search space. The general-to-specific search strategy is inefficient for aggregate
keyword search since it has to check many answers to the query until the
minimal answers are computed.

4 The Maximum Join Approach

Inverted indexes of keywords (Harman et al 1992) are heavily used in keyword
search and have been supported extensively in practical systems. It is natural
to exploit inverted indexes of keywords to support aggregate keyword search.

4.1 A Simple Nested Loop Solution

For a keyword w and a text-rich attribute A, let ILA(w) be the inverted
list of tuples which contain w in attribute A. That is, ILA(w) = {t ∈
T |w appears in t[A]}.

Consider a simple query Q = (D, C, {w1, w2}) where there are only two
keywords in the query and there is only one text-rich attribute C. How can
we derive the minimal answers to the query from ILC(w1) and ILC(w2)?

For a tuple t1 ∈ ILC(w1) and a tuple t2 ∈ ILC(w2), every aggregate cell
c that is a common ancestor of both t1 and t2 matches the query. We are
interested in the minimal answers. Then, what is the most specific aggregate
cell that is a common ancestor of both t1 and t2?

Definition 4 (Maximum join) For two tuples tx and ty in table R, the
maximum join of tx and ty on attribute set A ⊆ R is a tuple t = tx ∨A ty



11

Algorithm 1 The simple nested loop algorithm.

Input: query Q = (D, C, {w1, w2}), ILC(w1) and ILC(w2);
Output: minimal aggregates matching Q;

Step 1: generate possible minimal aggregates

1: Ans = ∅; // Ans is the answer set
2: for each tuple t1 ∈ ILC(w1) do

3: for each tuple t2 ∈ ILC(w2) do

4: Ans = Ans ∪ {t1 ∨D t2};
5: end for

6: end for

Step 2: remove non-minimal aggregates from Ans

7: for each tuple t ∈ Ans do

8: for each tuple t′ ∈ Ans do

9: if t′ ≺ t then

10: Ans = Ans− {t′};
11: else if t ≺ t′ then

12: Ans = Ans− {t};
13: break;
14: end if

15: end for

16: end for

such that (1) for any attribute A ∈ A, t[A] = tx[A] if tx[A] = ty[A], otherwise
t[A] = ∗; and (2) for any attribute B 6∈ A, t[B] = ∗.

We call this operation maximum join since it keeps the common values
between the two operant tuples on as many attributes as possible.

Example 4 (Maximum join) In Table 2, (a1, b1, c1, {w1, w3}) ∨ABC

(a1, b1, c2, {w2, w5}) = (a1, b1, ∗, ∗).

As can be seen from Figure 1, the maximal-join of two tuples gives the
least upper bound (supremum) of the two tuples in the lattice. In general, we
have the following property of maximum joins.

Corollary 2 (Properties) The maximum-join operation is associative. That
is, (t1 ∨A t2) ∨A t3 = t1 ∨A (t2 ∨A t3). Moreover, ∨l

i=1ti is the supremum of
tuples t1, . . . , tl in the aggregate lattice.

Using the maximum join operation, we can conduct a nested loop to answer
a simple query Q = (D, C, {w1, w2}) as shown in Algorithm 1. The algorithm
is in two steps. In the first step, maximum joins are applied on pairs of tuples
from ILC(w1) and ILC(w2). The maximum joins are candidates for minimal
answers. In the second step, we remove those aggregates that are not minimal.

The simple nested loop method can be easily extended to handle queries
with more than two keywords and more than one text-rich attribute. Generally,
for query Q = (D, C, {w1, . . . , wm}), we can derive the inverted list of keyword
wi (1 ≤ i ≤ m) on attribute set C as ILC(wi) = ∪C∈CILC(wi). Moreover, the
first step of Algorithm 1 can be extended so that m nested loops are conducted
to obtain the maximal joins of tuples ∨m

i=1ti where ti ∈ ILC(wi).



12

To answer query Q = (D, C, {w1, . . . , wm}), the nested loop algorithm
has the time complexity O(

∏m

i=1 |ILC(wi)|2). The first step takes time
O(

∏m

i=1 |ILC(wi)|) and may generate up to
∏m

i=1 |ILC(wi)| aggregates in the
answer set. To remove the non-minimal answers, the second step takes time
O(

∏m

i=1 |ILC(wi)|2). In a relational table T = (A1, . . . , An) with N rows, the
total number of aggregate cells is O(N · 2n) or O(Πn

i=1(|Ai|+ 1)), where |Ai|
is the number of distinct values in dimension Ai. Thus, the simple nested
algorithm needs O(N2 · 2n+1) time in the worst case.

Clearly, the nested loop method is inefficacious for large databases and
queries with multiple keywords. In the rest of this section, we will develop
several interesting techniques to speed up the search.

4.2 Pruning Exactly Matching Tuples

Hereafter, when the set of text-rich attributes C is clear from context, we write
an inverted list ILC(w) as IL(w) for the sake of simplicity. Similarly, we write
t1 ∨D t2 as t1 ∨ t2 when D is clear from the context.

Theorem 1 (Pruning exactly matching tuples) Consider query Q =
(D, C, {w1, w2}) and inverted lists IL(w1) and IL(w2). For tuples t1 ∈ IL(w1)
and t2 ∈ IL(w2) such that t1[D] = t2[D], t1∨t2 is a minimal answer. Moreover,
except for t1 ∨ t2, no other minimal answers can be an ancestor of either t1 or
t2.

Proof: The minimality of t1 ∨ t2 holds since t1 ∨ t2 does not take value ∗ on
any attributes in D. Except for t1 ∨ t2, every ancestor of t1 or t2 must be an
ancestor of t1 ∨ t2 in D, and thus cannot be a minimal answer. ⊓⊔

Using Theorem 1, once two tuples t1 ∈ IL(w1) and t2 ∈ IL(w2) are found
such that t1[D] = t2[D], t1 ∨ t2 should be output as a minimal answer, and t1
and t2 should be ignored in the rest of the join.

4.3 Reducing Matching Candidates Using Answers

For an aggregate keyword query, we can use some answers found before, which
may not even be minimal, to prune matching candidates.

Theorem 2 (Reducing matching candidates) Let t be an answer to Q =
(D, C, {w1, w2}) and t1 ∈ IL(w1). For any tuple t2 ∈ IL(w2), if for every
attribute D ∈ D where t1[D] 6= t[D], t2[D] 6= t1[D], then t1 ∨ t2 is not a
minimal answer to the query.

Proof: For every attribute D ∈ D where t1[D] 6= t[D], since t1[D] 6= t2[D],
(t1 ∨ t2)[D] = ∗. On every other attribute D′ ∈ D where t1[D

′] = t[D′],
either (t1 ∨ t2)[D

′] = t1[D
′] = t[D′] or (t1 ∨ t2)[D

′] = ∗. Thus, t1 ∨ t2 � t.
Consequently, t1 ∨ t2 cannot be a minimal answer to Q. ⊓⊔



13

Using Theorem 2, for each tuple t1 ∈ IL(w1), if there is an answer t (not
necessary a minimal one) to query Q = (D, C, {w1, w2}) such that t[D] = t1[D]
on some attribute D ∈ D, we can use t to reduce the tuples in IL(w2) that
need to be joined with t1 as elaborated in the following example.

Example 5 (Reducing matching candidates) Consider query Q =
(ABC,D, {w1, w2}) on the table T shown in Table 2. A maximum join
between (a1, b1, c2) and (a1, b2, c2) generates an answer (a1, ∗, c2) to the query.
Although tuple (a1, b1, c2) contains w1 on D and tuple (a2, b2, c1) contains w2

on D, as indicated by Theorem 2, joining (a1, b1, c2) and (a2, b2, c1) results
in aggregate cell (∗, ∗, ∗), which is an ancestor of (a1, ∗, c2) and cannot be a
minimal answer.

For a tuple t1 ∈ IL(w1) and an answer t to a query Q = (D, C, {w1, w2}),
the tuples in IL(w2) surviving from the pruning using Theorem 2 can be found
efficiently using inverted lists. In implementation, instead of maintaining an
inverted list IL(w) of keyword w, we maintain a set of inverted lists ILA=a(w)
for every value a in the domain of every attribute A, which links all tuples
having value a on attribute A and containing keyword w on the text-rich
attributes. Clearly, IL(w) = ∪a∈AILA=a(w) where A is an arbitrary attribute.
Here, we assume that tuples do not take null value on any attribute. If some
tuples take null values on some attributes, we can simply ignore those tuples
on those attributes, since those tuples do not match any query keywords on
those attributes.

Suppose t is an answer to query Q = (D, C, {w1, w2}) and t1 contains
keyword w1 but not w2. Then, t1 needs to join with only the tuples in

Candiate(t1) = ∪D∈D:t1[D] 6=t[D]ILD=t1[D](w2).

Other tuples in IL(w2) should not be joined with t1 according to Theorem 2.
An answer t is called overlapping with a tuple t1 if there exists at least one

attribute D ∈ D such that t[D] = t1[D]. Clearly, the more answers overlapping
with t1, the more candidates can be reduced.

Heuristically, the more specific t1 ∨ t in Theorem 2, the more candidate
tuples may be reduced for the maximum joins with t1. Therefore, for each tuple
t1 ∈ IL(w1), we should try to find t2 ∈ IL(w2) such that t = t1∨t2 contains as
few ∗’s as possible. To implement the heuristic, for query Q = (D, C, (w1, w2))
and each tuple t1 ∈ IL(w1) currently in the outer loop, we need to measure
how well a tuple in ILC(w2) matches t1 in D. This can be achieved efficiently
using bitmap operations as follows.

We initialize a counter of value 0 for every tuple in inverted list ILC(w2).
For each attribute D ∈ D, we compute ILD=t1[D](w1) ∩ ILD(w2) using
bitmaps. For each tuple in the intersection, the counter of the tuple is incre-
mented by 1. After checking all attributes in D, the tuples having the largest
counter value match t1 the best. Thus, we can sort tuples in ILC(w2) in the
counter value descending order and conduct maximum joins with t1 on them.
In this order, the most specific matches can be found the earliest.



14

Comparing to the traditional solution which builds an inverted list IL(w)
for each keyword w, in our method, the number of inverted lists is larger.
However, in terms of the space complexity, maintaining one inverted list per
keyword and multiple lists per keyword only differs in O(|T | · |D|) space, where
|T | is the number of keywords, and |D| is the number of dimensional attributes.
Since |D| is a constant, the space complexity is the same. Moreover, the in-
verted lists can be accessed in O(1) time using hashing. Furthermore, as ex-
plained above, the number of inverted lists to be accessed only depends on
the number of dimensions on which a tuple t1 and an answer t have different
values. The heuristic used in our method can find the most specific answers
as early as possible, which in turn is beneficial for the pruning strategy, since
the number of dimensions that t1 and t having different values is small. As
a result, maintaining the inverted lists for each dimension values is useful to
improve the query performance.

4.4 Fast Minimal Answer Checking

In order to obtain minimal answers to an aggregate keyword query, we need to
remove non-minimal answers from the answer set. The näıve method in Algo-
rithm 1 adopts a nested loop. Each time when a new answer t (not necessary
a minimal answer) is found, we need to scan the answer set once to consider
if t should be inserted into the answer set. If t is an ancestor of some answers
in the answer set, t cannot be a minimal answer, thus t should not be inserted
into the answer set. In the other case, if t is a descendant of some answers in
the answer set, those answers cannot be the minimal answers, thus need to be
removed from the answer set. Without any index structures, it leads to O(n2)
time complexity, where n is the size of the answer set. Can we do better?

The answers in the answer set can be organized into inverted lists. For an
arbitrary attribute A, ILA=a represents the inverted list for all answers t such
that t[A] = a. Using Definition 1, we have the following result.

Corollary 3 (Ancestor and descendant) Suppose the answers to query
Q = (D, C,W ) are organized into inverted lists, and t is an answer. Let

Ancestor(t) = (∩D∈D:t[D] 6=∗(ILD=∗ ∪ ILD=t[D]))
∩(∩D∈D:t[D]=∗ILD=∗)

and Descendant(t) = ∩D∈D:t[D] 6=∗ILD=t[D]. That is, if an answer t1 ∈
Ancestor(t), for those dimensions that t has a ∗ value, t1 also has a ∗ value; for
those dimensions that t has a non-∗ value, t1 must either have the same non-∗
value or a ∗ value; if an answer t2 ∈ Descendant(t), for those dimensions that
t has a non-∗ value, t2 must have the same non-∗ value.

Then, the answers in Ancestor(t) are not minimal. Moreover, t is not
minimal if Descendant(t) 6= ∅.

Both Ancestor(t) and Descendant(t) can be implemented efficiently us-
ing bitmaps. For each newly found answer t, we calculate Ancestor(t) and



15

Algorithm 2 The fast maximum-join algorithm.

Input: query Q = (D, C, {w1, . . . , wm}), ILC(w1), . . . , ILC(wm);
Output: minimal aggregates matching Q;
1: Ans = ∅; // Ans is the answer set
2: CandList = {ILC(w1), . . . , ILC(wm)};
3: initialize k = 1; /* m keywords need m− 1 rounds of joins */
4: while k < m do

5: k = k + 1;
6: pick two candidate inverted lists IL1

C
and IL2

C
with smallest sizes from CandList,

and remove them from CandList;
7: for each tuple t1 ∈ IL1

C
do

8: use strategy in Section 4.3 to calculate the counter for tuples in IL2
C
;

9: while IL2
C

is not empty do

10: let t2 be the tuple in IL2
C

with largest counter;
11: if the counter of t2 is equal to the dimension then

12: use strategy in Section 4.4 to insert an answer t1 into Ans; /* t1 exactly
matches t2, as described in Section 4.2 */

13: remove t1 and t2 from each inverted list;
14: break;
15: else

16: maximum join t1 and t2 to obtain an answer;
17: use strategy in Section 4.4 to insert the answer into Ans;
18: use strategy in Section 4.3 to find candidate tuples in IL2

C
, and update IL2

C
;

19: end if

20: end while

21: end for

22: build an inverted list for answers in Ans and insert it into CandList;
23: end while

Descendant(t). If Descendant(t) 6= ∅, t is not inserted into the answer set.
Otherwise, t is inserted into the answer set, and all answers in Ancestor(t)
are removed from the answer set. In this way, we maintain a small answer
set during the maximal join computation. When the computation is done, the
answers in the answer set are guaranteed to be minimal.

4.5 Integrating the Speeding-Up Strategies

The strategies described in Sections 4.2, 4.3, and 4.4 can be integrated into a
fast maximum-join approach as shown in Algorithm 2.

For a query containing m keywords, we need m − 1 rounds of maximum
joins. Heuristically, the larger the sizes of the two inverted lists in the maximum
join, the more costly the join. Here, the size of an inverted list is the number of
tuples in the list. Thus, in each round of maximum joins, we pick two inverted
lists with the smallest sizes.

It is a challenging problem to develop a better heuristic to decide the orders
of maximum joins for those keywords in the query. The general principle is to
reduce the total number of maximum joins which are needed in the algorithm.
However, there are a set of challenges which need to be addressed.



16

The first challenge is how to accurately estimate the number of maximum
joins which are needed. In relational databases, we can accurately estimate the
number of joins (e.g., equi-join, left outer join) based on the correlations of
attribute values. However, in our case, the situation is much more complicated.
We developed a set of pruning strategies to prune the number of maximum
joins in the algorithm. Those pruning strategies may affect the estimation
greatly. As a result, the estimation needs to take into account the pruning
strategies, and is far from trivial.

The second challenge is how to estimate the number of intermediate mini-
mal answers generated in each round of maximum joins. In our problem, the
candidate answers generated by any two keywords will become the input to
the next rounds of maximum joins. Thus, the size of the intermediate minimal
answers plays an important role for the performance of the maximum-join al-
gorithm. Consider two pairs of keywords (w1, w2) and (w3, w4). Suppose the
number of maximum joins for w1 and w2 is smaller than that for w3 and w4, we
cannot simply make a conclusion that w1 and w2 should be maximum-joined
first, since it is possible that the number of the intermediate minimal answers
generated by joining w1 and w2 is much larger than that by joining w3 and
w4.

The current heuristic used in our algorithm is very simple, and it achieves
relatively good performance. For a performance comparison, we compared our
simple heuristic to a random selection method (that is, for a query containing
m keywords, we randomly pick two words and get the corresponding lists
of tuples for the next round of maximum joins). In Figure 9, we show the
performance of the maximum-join algorithm using the simple heuristic we
developed in this paper, as well as that using the random method. The simple
heuristic clearly outperforms the random method. We leave the problem of
developing a better heuristic for deciding the orders of maximum-joins as an
interesting future direction.

When we conduct the maximum joins between the tuples in two inverted
lists, for each tuple t1 ∈ IL1

C , we first compute the counters of tuples in IL2
C ,

according to the strategy in Section 4.3. Apparently, if the largest counter value
is equal to the number of dimensions in the table, the two tuples are exactly
matching tuples. According to the strategy in Section 4.2, the two tuples can be
removed and a minimal answer is generated. We use the strategy in Section 4.4
to insert the answer into the answer set. If the largest counter value is less than
the number of dimensions, we pick the tuple t2 with the largest counter value
and compute the maximum join of t1 and t2 as an answer. Again, we use the
strategy in Section 4.4 to insert the answer into the answer set. The answer set
should be updated accordingly, and non-minimal answers should be removed.

Based on the newly found answer, we can use the strategy in Section 4.3
to reduce the number of candidate tuples to be joined in IL2

C . Once IL2
C

becomes empty, we can continue to pick the next tuple in IL1
C . At the end of

the algorithm, the answer set contains exactly the minimal answers.



17

5 The Keyword Graph Approach

If the number of keywords in an aggregate keyword query is not small, or the
database is large, the fast maximum join method may still be costly. In this
section, we propose to materialize a keyword graph index for fast answering
of aggregate keyword queries.

5.1 Keyword Graph Index and Query Answering

Since graphs are capable of modeling complicated relationships, several graph-
based indices have been proposed to efficiently answer some queries. For exam-
ple, Yu et al (2007) proposed a keyword relationship matrix to evaluate key-
word relationships in distributed databases, which can be considered as a spe-
cial case of a graph index. Moreover, Vu et al (2008) extended (Yu et al 2007)
by summarizing each database using a keyword relationship graph, where
nodes represent terms and edges describe relationships between them. The
keyword relationship graph can help to select top-k most promising databases
effectively during the query processing. Recently, Daoud et al (2009) presented
a personalized search approach that involves a graph-based representation of
the user profile.

However, those graph indexes are not designed for aggregate keyword
queries. Can we develop keyword graph indexes for effective and efficient ag-
gregate keyword search?

Apparently, for an aggregate keyword query Q = (D, C,W ), (∗, ∗, . . . , ∗)
is an answer if for every keyword w ∈ W , ILC(w) 6= ∅. This can be checked
easily. We call (∗, ∗, . . . , ∗) a trivial answer. We build the following keyword
graph index to find non-trivial answers to an aggregate keyword query.

Definition 5 (Keyword graph index) Given a table T , a keyword graph
index is an undirected graph G(T ) = (V,E) such that (1) V is the set of
keywords in the text-rich attributes in T ; and (2) (u, v) ∈ E is an edge if
there exists a non-trivial answer to query Qu,v = (T , T , {w1, w2}), where T
represents the complete set of attributes in T . Edge (u, v) is associated with
the set of minimal answers to query Qu,v.

Obviously, the number of edges in the keyword graph index is O(|V |2),
while each edge is associated with the complete set of minimal answers. In
practice, the number of keywords in the text-rich attributes is limited, and
many keyword pairs lead to trivial answers only. Thus, a keyword graph index
can be maintained easily.

Keyword graph indices have the following property.

Theorem 3 (Keyword graph) For an aggregate keyword query Q =
(D, C,W ), there exists a non-trivial answer to Q in table T only if in the
keyword graph index G(T ) on table T , there exists a clique on the set W of
vertices.



18

w1

w2

w3

w4

(a1, ∗, ∗, ∗)

(∗, b1, ∗, ∗)

(∗, ∗, c1, ∗)

(∗, ∗, ∗, d1)

Fig. 2: A counter example showing that the condition in Theorem 3 is not sufficient.

Proof: Let c be a non-trivial answer to Q. Then, for any u, v ∈ W , c must be
a non-trivial answer to query Qu,v = (D, C, {u, v}). That is, (u, v) is an edge
in G(T ). ⊓⊔

Theorem 3 is a necessary condition. It is easy to see that the condition is
not sufficient.

Example 6 (A counter example) Consider a keyword graph index in Figure 2.
There are 4 distinct keywords. For a query Q = {w1, w2, w4}, there exists a
clique in the keyword graph index. However, by joining minimal answers on
edges connecting those keywords, we can find that Q does not have a nontrivial
answer.

Once the minimal answers to aggregate keyword queries on keyword pairs
are materialized in a keyword graph index, we can use Theorem 3 to answer
queries efficiently. For query Q = (D, C, {w1, . . . , wm}), we can check whether
there exists a clique on vertices w1, . . . , wm. If not, then there is no non-trivial
answer to the query. If there exists a clique, we try to construct minimal
answers using the minimal answer sets associated with the edges in the clique.

If the query contains only two keywords (that is, m = 2), the minimal
answers can be found directly from edge (w1, w2) since the answers are ma-
terialized on the edge. If the query involves more than 2 keywords (that is,
m ≥ 3), the minimal answers can be computed by maximum joins on the sets
of minimal answers associated with the edges in the clique. It is easy to show
the following.

Lemma 1 (Maximal join on answers) If t is a minimal answer to query
Q = (D, C, {w1, . . . , wm}), then there exist minimal answers t1 and t2 to
queries (D, C, {w1, w2}) and (D, C, {w2, . . . , wm}), respectively, such that t =
t1 ∨D t2.

LetAnswer(Q1) andAnswer(Q2) be the sets of minimal answers to queries
Q1 = (D, C, {w1, w2}) and Q2 = (D, C, {w2, w3}), respectively. We call the pro-
cess of applying maximal joins on Answer(Q1) and Answer(Q2) to compute



19

the minimal answers to queryQ = (D, C, {w1, w2, w3}) the join of Answer(Q1)
and Answer(Q2). The cost of the join is O(|Answer(Q1)| · |Answer(Q2)|).

To answer query Q = (D, C, {w1, . . . , wm}), using Lemma 1 repeatedly, we
only need to check m−1 edges covering all keywords w1, . . . , wm in the clique.
Each edge is associated with the set of minimal answers to a query on a pair
of keywords. The weight of the edge is the size of the answer set. In order to
reduce the total cost of the joins, heuristically, we can find a spanning tree
connecting the m keywords such that the product of the weights on the edges
is minimized.

The traditional minimum spanning tree problem minimizes the sum of
the edge weights. Several greedy algorithms, such as Prim’s algorithm and
Kruskal’s algorithm (Cormen et al 2001), can find the optimal answers in
polynomial time. The greedy selection idea can also be applied to our prob-
lem here. The greedy method works as follows: all keywords in the query are
unmarked in the beginning. We sort the edges in the clique in the weight
ascending order. The edge of the smallest weight is picked first and the key-
words connected by the edge are marked. Iteratively, we pick a new edge of
the smallest weight such that it connects a marked keyword and an unmarked
one until all keywords in the query are marked.

5.2 Index Construction

A näıve method to construct a keyword graph is to compute maximum joins
on the inverted lists of every keyword pairs. However, the näıve method is
inefficient. If tuple t1 contains keywords w1 and w2, and tuple t2 contains w3

and w4, t1 ∨ t2 may be computed up to 4 times since t1 ∨ t2 is an answer to
four pairs of keywords including (w1, w3), (w1, w4), (w2, w3) and (w2, w4).

As an efficient solution, we conduct a self-maximum join on the table to
construct the keyword graph. For two tuples t1 and t2, we compute t1∨t2 only
once, and add it to all edges of (u, v) where u and v are contained in t1 and
t2, but not both in either t1 or t2. By removing those non-minimal answers,
we find all the minimal answers for every pair of keywords, and obtain the
keyword graph.

Trivial answers are not stored in a keyword graph index. This constraint
improves the efficiency of keyword graph construction. For a tuple t, the set
of tuples that generate a non-trivial answer by a maximum join with t is
∪DILD=t[D], where ILD=t[D] represents the inverted list for all tuples hav-
ing value t[D] on dimension D. Maximum joins should be applied to only
those tuples and t. The keyword graph construction method is summarized in
Algorithm 3.

5.3 Index Maintenance

A keyword graph index can be maintained easily against insertions, deletions
and updates on the table.



20

Algorithm 3 The keyword graph construction algorithm.

Input: A table T ;
Output: A keyword graph G(T ) = (V,E);
1: initialize V as the set of keywords in T ;
2: for each tuple t ∈ T do

3: initialize the candidate tuple set to Cand = ∅;
4: let Cand = ∪DILD=t[D];
5: let Wt be the set of keywords contained in t;
6: for each tuple t′ ∈ Cand do

7: if t = t′ then

8: for each pair w1, w2 ∈ Wt do

9: add t to edge (w1, w2), and remove non-minimal answers on edge (w1, w2)
(Section 4.4);

10: end for

11: else

12: let Wt′ be the set of keywords contained in t′;
13: r = t ∨ t′;
14: for each pair w1 ∈ Wt −Wt′ and w2 ∈ Wt′ −Wt do

15: add r to edge (w1, w2);
16: remove non-minimal answers on edge (w1, w2) (Section 4.4);
17: end for

18: end if

19: end for

20: end for

When a new tuple t is inserted into the table, we only need to conduct
the maximum join between t and the tuples already in the table as well as t

itself. If t contains some new keywords, we create the corresponding keyword
vertices in the keyword graph. The maintenance procedure is the same as lines
3-19 in Algorithm 3.

When a tuple t is deleted from the table, for a keyword only appearing in
t, the vertex and the related edges in the keyword graph should be removed.
If t also contains some other keywords, we conduct maximum joins between t

and other tuples in the table. If the join result appears as a minimal answer
on an edge (u, v) where u and v are two keywords, we re-compute the minimal
answers of Qu,v = (T , T , {u, v}) by removing t from T .

When a tuple t is updated, it can be treated as one deletion (the original
tuple is deleted) and one insertion (the new tuple is inserted). The keyword
graph index can be updated accordingly.

6 Extensions and Generalization

The methods in Sections 4 and 5 look for complete matches, that is, all key-
words are contained in an answer. However, complete matches may not exist
for some queries. For example, in Table 1, query Q = ({Month, State, City,

Event}, {Event, Descriptions}, {“space shuttle”, “motorcycle”, “rock mu-
sic”}) cannot find a non-trivial answer.

In this section, we propose two solutions to handle queries which do not
have a non-trivial answer or even an answer. Our first solution allows partial



21

matches (for example, matching m′ of m keywords (m′ ≤ m)). In our second
solution, a keyword is allowed to be matched by some other similar keywords
according to a keyword ontology (for example, keyword “fruit” in a query can
be matched by keyword “apple” in the data).

6.1 Partial Keyword Matching

Given a query Q = (D, C, {w1, . . . , wm}), partial keyword matching is to
find all minimal, non-trivial answers that cover as many query keywords as
possible.

For example, in Table 1, there is no non-trivial answer to query Q =
({Month, State, City, Event}, {Event, Descriptions}, {“space shut-
tle”, “motorcycle”, “rock music”}). However, a minimal answer (December,
Texas, ∗, ∗, ∗) partially matching 2

3 of the keywords may still be interesting
to the user.

For a query containing m keywords, a brute-force solution is to consider
all possible combinations of m keywords, m − 1 keywords, . . . , until some
non-trivial answers are found. For each combination of keywords, we need
to conduct the maximum join to find all the minimal answers. Clearly, it is
inefficient at all.

Here, we propose an approach using the keyword graph index. Theorem 3
provides a necessary condition that a complete match exists if the correspond-
ing keyword vertices in the keyword graph form a clique. Given a query con-
taining m keywords w1, . . . , wm, we can check the subgraph G(Q) of the key-
word graph which contains only the keyword vertices in the query. By checking
G(Q), we can identify if some non-trivial answers may exist for a subset of
query keywords. Moreover, we can identify the maximum number of query
keywords that can be matched by extracting the maximum clique from the
corresponding query keyword graph.

Although the maximum clique problem is one of the first problems shown
to be NP-complete (Garey and Johnson 1979), in practice, an aggregate key-
word query often contains a small number of keywords (for example, less than
10). Thus, the query keyword subgraph G(Q) is often small. It is possible to
enumerate all the possible cliques in G(Q).

To find partial matches to an aggregate keyword query, we start from
those largest cliques. By joining the sets of minimal answers on the edges, the
minimal answers can be found. If there is no non-trivial answer in the largest
cliques, we need to consider the smaller cliques and the minimal answers. The
algorithm stops until some non-trivial minimal answers are found.

Alternatively, a user may provide the minimum number of keywords that
need to be covered in an answer. Our method can be easily extended to answer
such a constraint-based partial keyword matching query – we only need to
search answers on those cliques whose size passes the user’s constraint.

In some other situations, a user can specify a subset of keywords that must
be covered in an answer. Our method can also be easily extended to deal with



22

such cases. Those selected keywords are chosen as seed nodes in the keyword
graph index. We only need to find larger cliques containing those seed nodes.

6.2 Hierarchical Keyword Matching

Keywords generally follow a hierarchical structure. A keyword hierarchy (or
a keyword ontology) is a strict partial order ≺ on the set L of all keywords.
We assume that there exists a meta symbol ∗ ∈ L which is the most general
category generalizing all keywords. For two keywords w1, w2 ∈ L, if w1 ≺ w2,
w1 is more general than w2. For example, fruit ≺ apple. We write w1 � w2

if w1 ≺ w2 or w1 = w2.
If an aggregate keyword query cannot find a non-trivial, complete matching

answer, alternatively, we may loosen the query requirement to allow a keyword
in the query to be matched by another keyword in data that is similar in the
keyword hierarchy.

There are two ways of hierarchical keyword matching.

Specialization matches a keyword w in a query with another keyword w′ which
is a descendant of w in the keyword hierarchy. For example, keyword “fruit”
in a query may be matched by keyword “apple” in the hierarchy.

Generalization matches w with keyword w′′ which is an ancestor of w. For
example, keyword “apple” in a query maybe matched by keyword “fruit”
in the hierarchy.

Limited by space, we only discuss specialization here, partly because in
many applications users may be interested in more specific answers. However,
our method can be easily extended to support generalization matching.

Using a keyword graph index, we can greedily loosen the query requirement
to allow hierarchical keyword matching. For a query containing m keywords
w1, . . . , wm which does not have a non-trivial complete match answer, we can
specialize a query keyword to a more specific one according to the hierarchical
structure, and find the complete match answers for the new set of keywords.
The search continues until some non-trivial minimal answers can be found.

When we choose a query keyword to specialize, we should consider two
factors.

First, by specializing w1 to w2 such that w1 ≺ w2, how many new edges
can be added to the query subgraph if w1 is replaced by w2? Since keywords
are specialized in the matching, the edges between w1 and some other query
keywords can be retained. We are interested in the new edges that can be
added to the query subgraph by specializing the keyword which can help to
find a clique and a non-trivial answer.

Example 7 (Specialization) Consider a keyword graph index in Figure 3(a).
There are 4 distinct keywords. For a query Q = {w1, w2, w3}, its correspond-
ing keyword subgraph G(Q) is shown in Figure 3(b). Clearly, keywords in Q

only have 2 edges connecting them, and they do not form a clique structure,



23

(a) A keyword graph index (b) A keyword subgraph (c) A keyword subgraph

w1w1 w1

w2w2 w2

w3w3

w4 w4

G(Q) G(Q)w3→w4

Fig. 3: An example of keyword specialization.

thus there are no exact answers to Q. However, we can replace keyword w3

with another keyword w4 if w4 is a descendent of w3. The keyword subgraph
G(Q)w3→w4

is shown in Figure 3(c). All the keywords in Figure 3(c) form a
clique structure. By replacing keyword w3 with keyword w4, there are 3 edges
connecting the keywords in the query.

Second, how many descendant keywords of w1 are also descendants of w2

in the keyword hierarchy? Formally, we consider the ratio α(w2)
α(w1)

where α(w)

is the number of leaf keywords in the keyword hierarchy that are descendants
of w. The larger the ratio, the less generality is lost in the specialization. By
taking the above two factors into account, we can assign an “extendability”
score for each keyword in the query.

Definition 6 (Extendability) Given a keyword w1 in a query keyword sub-
graph G(Q) and a keyword hierarchy, the extendability score of w1 with
respected to its descendant w2 is

ext(w1 → w2) =
α(w2)

α(w1)
(|E(G(Q)w1→w2

)| − |E(G(Q))|),

where |E(G(Q))| is the number of edges in graph G(Q) and |E(G(Q)w1→w2
|

is the number of edges in graph G(Q) by replacing w1 with w2. The extend-
ability of w1 is the maximum extendability value of ext(w1, desc(w1)) where
desc(w1) is a descendant of w1 in the keyword hierarchy.

We can calculate the extendability of each keyword in a query. The keyword
w with the highest extendability is selected, and the keyword w is replaced by
w′ such that ext(w,w′) is the maximum among all descendant of w. We call
this a specialization of the query.

After a specialization of the query, we examine if a clique exists in the
new query keyword subgraph. The more rounds of specialization, the more
uncertainty introduced to the query. If a clique exists and the clique leads to
a non-trivial answer, we terminate the specialization immediately and return
the query answers; if not, we conduct another round of specialization greedily.



24

When the specialization of all keywords reaches the leaf keywords in the
hierarchy, no more specialization can be conducted. In such an extreme case,
the hierarchical keyword matching fails.

Too many rounds of specializations may not lead to a good answer loyal
to the original query objective. A user may specify the maximum number
of specializations allowed as a control parameter. Our method can be easily
extended to accommodate such a constraint.

There are some other interesting directions to explore in the future study.
For example, a keyword query typically is very short, which on average only
contains two or three keywords1. As a result, keyword queries in practice are
often ambiguous. To overcome this disadvantage, a useful tool is to develop
some error tolerant keyword matching algorithms such that keywords in the
query do not need to be exactly matched in the results. As another example,
tuples in the relational databases may be semantically related. It is interest-
ing to examine whether the semantic relationship among those tuples can be
utilized to improve the performance of keyword search on relational databases.

7 Empirical Study

In this section, we report a systematic empirical study to evaluate our aggre-
gate keyword search methods using both real datasets and synthetic datasets.
All the experiments were conducted on a PC computer running the Microsoft
Windows XP SP2 Professional Edition operating system, with a 3.0 GHz Pen-
tium 4 CPU, 1.0 GB main memory, and a 160 GB hard disk. The programs
were implemented in C/C++ and were compiled using Microsoft Visual Stu-
dio .Net 2005.

7.1 Results on Real Dataset IMDB

We first describe the data set we used in the experiments. Then, we report the
experimental results.

7.1.1 The IMDB Dataset

The Internet Movie Database (IMDB) dataset (http://www.imdb.com/
interfaces/) has been used extensively in the previous work on keyword
search on relational databases (He et al 2007; Luo et al 2007; Ding et al 2007).
We use this dataset to empirically evaluate our aggregate keyword search meth-
ods.

We downloaded the whole raw IMDB data. We preprocessed the dataset
by removing duplicate records and missing values. We converted a subset of

1 http://www.keyworddiscovery.com/keyword-stats.html



25

Attribute Description Cardinality

Movie movie title 134,080
Director director of the movie 62,443
Actor leading actor of the movie 68,214
Actress leading actress of the movie 72,908
Country producing country of the movie 73
Language language of the movie 45

Year producing year of the movie 67

Genre genres of the movie 24
Keyword keywords of the movie 15,224
Location shooting locations of the movie 1,049

Table 3: The IMDB database schema and its statistical information.

its raw text files into a large relational table. The schema of the table and the
statistical information are shown in Table 3.

We used the first 7 attributes as the dimensions in the search space. Some
attributes such as “actor” and “actress” may have more than one value for
one specific movie. To use those attributes as dimensions, we picked the most
frequent value if multiple values exist on such an attribute in a tuple. After
the preprocessing, we obtained a relational table of 134, 080 tuples.

Among the 10 attributes in the table, we use “genre”, “keyword” and “lo-
cation” as the text attributes, and the remaining attributes as the dimensions.
Table 3 also shows the total number of keywords for each text attribute and the
cardinality of each dimension. On average each tuple contains 9.206 keywords
in the text attributes.

In data representation, we adopted the popular packing technique (Beyer
and Ramakrishnan 1999). A value on a dimension is mapped to an integer
between 1 and the cardinality of the dimension. We also map keywords to
integers.

7.1.2 Index Construction

Both the simple nested loop approach in Algorithm 1 and the fast maximum
join approach in Algorithm 2 need to maintain the inverted list index for each
keyword in the table. The total number of keywords in the IMDB dataset is
16, 297. The average length of those inverted lists is 87.1, while the largest
length is 13, 442. The size of the whole inverted list is 5.5 MB.

We used Algorithm 3 to construct the keyword graph index. The construc-
tion took 107 seconds. Among 16, 297 keywords, 305, 412 pairs of keywords
(that is, 0.23%) have non-trivial answers. The average size of the minimal an-
swer set on edges (that is, average number of minimal answers per edge) is
26.0. The size of the whole keyword graph index is 103.3 MB.

Both the inverted list index and the keyword graph index can be main-
tained on the disk. We can organize the indexes into chunks, while each chunk
only contains a subset of the whole index. In the query answering, only those



26

Query Keywords in Text Attributes
Query ID Genre Keyword Location # answers

Q1 Action explosion / 1,404
Q2 Comedy / New York 740
Q3 / mafia-boss Italy 684

Q4 Action explosion, war / 2,109
Q5 Comedy family New York 1,026
Q6 / mafia-boss, revenge Italy 407

Q7 Action explosion, war England 724
Q8 Comedy family, christmas New York 308
Q9 Crime mafia-boss, revenge Italy 341

Q10 Action explosion, war, superhero England 215
Q11 Comedy family, christmas, revenge New York 0
Q12 Crime mafia-boss, revenge, friendship Italy 43

Table 4: The aggregate keyword queries.

related inverted lists, or the related keywords and the answer sets on the re-
lated edges need to be loaded into the main memory. Since the number of
keywords in a query is often small, the I/O cost is low.

Recently, most of the modern computers have large main memories (typ-
ically several gigabytes). In general, the whole keyword graph index is small
enough to be held in the main memory. As shown later in the performance
comparisons, the query answering algorithm using the keyword graph index
can achieve the smallest response time. In practice, which query answering
algorithm to choose really depends on the requirements on the response time
and the memory usage. If the response time is more crucial than the memory
usage, the keyword graph algorithm is a better choice.

We will examine the index construction cost in detail using synthetic
datasets.

7.1.3 Aggregate Keyword Queries – Complete Matches

We tested a large number of aggregate keyword queries, which include a wide
variety of keywords and their combinations. We considered factors like the fre-
quencies of keywords, the size of the potential minimal answers to be returned,
the text attributes in which the keywords appear, etc.

We first focus our performance evaluation on a representative test set of 12
queries here. Our test set has 12 queries (denoted by Q1 to Q12) with query
length ranging from 2 to 5. Among them, each length contains 3 different
queries. Note that the query Qi+3 (1 ≤ i ≤ 9) is obtained by adding one more
keyword to the query Qi. In this way, we can examine the effect when the
number of query keywords increases. The queries are shown in Table 4.

We list in Table 4 the number of minimal answers for each query. When
the number of query keywords increases from 2 to 3, the number of minimal
answers may increase. The minimal answers to a two keyword query are often
quite specific tuples. When the third keyword is added, for example, query Q4,



27

1 empty

6 B 8 C

7 BC5 AC

4 ABC

3 AB

2 A

Fig. 4: The processing tree of the baseline algorithm.

the minimal answers have to be generalized. One specific answer can generate
many ancestors by combining with other tuples. Query Q3, however, is an
exception, since most of the movies containing keywords “mafia-boss” and
“Italy” also contain “revenge”. Thus, many minimal answers to Q3 are also
minimal answers to Q6.

When the number of query keywords increases further (for example, more
than 3 keywords), the number of minimal answers decreases. When some new
keywords are added into the query, the minimal answers are becoming much
more general. Many combinations of tuples may generate the same minimal
answers. The number of possible minimal answers decreases.

As discussed in Section 3.1, the existing studies about keyword search on
relational databases and our paper address different types of keyword queries
on relational databases. The existing methods cannot be extended straight-
forwardly to tackle the aggregate keyword search problem. Thus, we do not
conduct the performance comparison with those existing keyword search al-
gorithms on relational databases. Alternatively, to examine the efficiency of
our methods, we compare our methods to the following baseline algorithm
which is an extension of the conventional iceberg cube computation (Beyer
and Ramakrishnan 1999). Consider Example 3 and the corresponding lattice
in Figure 1, we compute the cells using the processing tree in Figure 4. The
numbers in Figure 4 indicate the orders in which the baseline algorithm visits
the group-bys.

The baseline algorithm first produces the empty group-by. Next, it par-
titions on dimension A. Since there are two distinct values on dimension A

(that is, a1 and a2), we produce two partitions 〈a1〉 and 〈a2〉. Then, the base-
line algorithm recurses on partition 〈a1〉. The 〈a1〉 partition is aggregated and
produces a cell c1 = (a1, ∗, ∗) for the A group-by. To examine whether c1 is a
valid answer, we need to examine whether all the query keywords w1 and w2

appear in some tuples in the cover Cov(c1). To efficiently achieve that goal, for
each keyword w in the database, we maintain an inverted list IL(w). For each
keyword w in the query, we scan Cov(c1) once to examine if there exists at
least one tuple in IL(w). If it is not the case, we conclude that cell c1 is not a
valid answer, and the baseline algorithm stops the current loop, since there is
no need to further examine the children in the processing tree. If all keywords
in the query appear in Cov(c1), c1 is a valid answer, and it is placed in the
candidate answer set. We continue to partition the 〈a1〉 partition on dimen-



28

 0.001

 0.01

 0.1

 1

 10

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

T
im

e 
(s

ec
)

Query ID

Baseline Simple Fast Index

Fig. 5: Query time of queries with different sizes.

sion B. It recurses on the 〈a1, b1〉 partition and generates a cell c2 = (a1, b1, ∗)
for the AB group-by. The baseline algorithm again examines whether c2 is a
valid answer. If c2 is an valid answer due to c2 being more specific than c1, c1
cannot be a minimum answer, thus c1 is removed from the candidate answer
set and c2 is placed into the candidate answer set. Similarly, we process par-
titions 〈a1, b1, c1〉 and 〈a1, b1, c2〉. The baseline algorithm then recurses on the
〈a1, b2〉 partition. When this is completed, it partitions the 〈a1〉 partition on
dimension C to produce the 〈a1, C〉 aggregates.

After we obtain the candidate answer set, the baseline algorithm needs to
scan the candidate answer set once and remove any non-minimum answers.
Finally, the baseline algorithm can find the complete set of minimum answers
for an aggregate keyword query.

To load the whole keyword graph index into the main memory, it took
9.731 seconds. On average, the loading time for one specific edge in the key-
word graph index is 0.032 milliseconds, which is a very small number. In the
experimental evaluation, we focus only on the efficiency of the query answering
algorithms. Thus, for the response times with respect to different queries in
the following analysis, we ignore the I/O costs and only consider the response
time of the query answering algorithms.

Figure 5 compares the query answering time for the 12 queries using the
baseline algorithm (denoted by Baseline), the simple nested loop algorithm
(Algorithm 1, denoted by Simple), the fast maximum join algorithm (Algo-
rithm 2, denoted by Fast), and the keyword graph index method (denoted by
Index ). The time axis is drawn in logarithmic scale.

The baseline algorithm performs the worst among the four methods. The
major reason is that the baseline algorithm needs to compute the whole lat-
tice. Moreover, the baseline algorithm needs to consider all the tuples in the
database. In practice, given a keyword query, only a part of tuples are needed
to be considered. The simple nested loop algorithm performs better than the
baseline algorithm, but it is the worst among the three methods other than
the baseline algorithm. The fast algorithm adopts several speed up strategies,



29

 0

 5

 10

 15

 20

 25

Q1 Q2 Q3

T
im

e 
(s

ec
)

Query ID

Simple
All 3

No Strategy Sec 4.2
No Strategy Sec 4.3
No Strategy Sec 4.4

Fig. 6: Effectiveness of each pruning strategy in the maximum-join method.

thus its query time is about an order of magnitude shorter than the simple
nested loop algorithm. The keyword graph index based algorithm is very fast
in query answering. When the number of query keywords is 2, we can directly
obtain the minimal answers from the edge labels, and thus the query answer-
ing time is ignorable. When the number of query keywords is at least 3, the
query time is about 20 times shorter than the fast maximum join algorithm.
One reason is that the keyword graph index method already calculates the
minimum answers for each pair of keywords, thus, given m query keywords,
we only need to conduct maximum joins on m − 1 edges. Another reason is
that only the minimal answers stored on the edges participate in the maximum
joins, which are much smaller than the total number of tuples involved in the
maximum join methods.

Generally, when the number of query keywords increases, the query time
increases, since more query keywords lead to a larger number of maximum join
operations. It is interesting to find that when the number of query keywords
increases, the query time of the baseline algorithm does not increases greatly.
The reason is that the size of queries is not the bottleneck in the baseline
algorithm. The major time-consuming part of the baseline algorithm is to
compute the whole lattice.

Using the keyword graph index, the query time for Q11 is exceptionally
small. The reason is that by examining the keyword graph index, the 5 query
keywords in Q11 do not form a clique in the graph index, thus we even do not
need to conduct any maximum join operations. The results confirm that the
query answering algorithm using keyword graph index is efficient and effective.

We also examine the effectiveness of the speed up strategies in Algorithm 2.
Limited by space, we only show the basic cases Q1, Q2 and Q3 each of which
has 2 keywords. In Figure 6, for each query, we tested the query answering
time of adopting all three speed up strategies, as well as leaving one strategy
out.

All the speed up strategies contribute to the reduction of query time. How-
ever, their contributions are not the same. The strategy of reducing matching



30

 0
 20
 40
 60
 80

 100
 120

 1  2  3  4  5  6  7  8

T
im

e 
(s

ec
)

Query size

Baseline
Simple

Fast
Index

Fig. 7: Query time of queries with different sizes (random queries).

candidates (Section 4.3) contributes the best, since it can reduce the candi-
date tuples to be considered greatly. The fast minimal answer checking strat-
egy (Section 4.4) removes non-minimal answers. Comparing to the nested-loop
based superset checking, it is much more efficient. The effect of pruning ex-
actly matching tuples (Section 4.2) is not as much as the other two, since the
exact matching tuples are not frequently met.

In the above analysis, we focus on a set of 12 representative queries. To
examine the performance of the query answering algorithms in general situa-
tions, we also conduct the performance evaluation on a large set of randomly
generated queries.

We first examine the effect of the query size. The query size plays an im-
portant role in query answering. In practice (e.g., Web search), the number
of keywords in a keyword query is relatively small (e.g, 2 or 3 words in Web
search queries2). As explained in Section 4, the running time of our algorithms
are highly related to two factors: (1) the rounds of maximum joins (the maxi-
mum join algorithm)/the number of edges to be examined in the graph index
(the keyword graph algorithm); (2) the size of the intermediate minimal an-
swers after each round of maximum joins. When the number of keywords in
the query increases, the first factor obviously increases as well. However, the
second factor does not increases always. At some stage, the number of inter-
mediate minimal answers achieves the maximum value; then it decreases even
more keywords appear in the query. This can be verified based on the results
shown in Table 4. In general, in the IMDB dataset, the size of the minimal
answers is largest when the number of keywords in the query is equal to 3.

In Figure 7, we plot the running time of the two algorithms with respect
to different sizes of queries. For each fixed query size, the running time refers
to the average time of 100 randomly generated queries. When the number of
keywords is small (e.g., less than or equal to 3), the increase of the running
time is large; however, when the number of keywords is large (e.g., larger than
4), the increase of the running time is small. The results in Figure 7 also verify

2 http://www.keyworddiscovery.com/keyword-stats.html



31

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8

T
im

e 
(s

ec
)

Query size

Simple
All 3

No Strategy Sec 4.2
No Strategy Sec 4.3
No Strategy Sec 4.4

Fig. 8: Effectiveness of each pruning strategy in the maximum-join method (random
queries).

 0
 5

 10
 15
 20
 25

 1  2  3  4  5  6  7  8

T
im

e 
(s

ec
)

Query size

Simple Heuristic
Random Heuristic

Fig. 9: Effectiveness of the heuristic for the orders of maximum joins (random queries).

that even if the size of the query is very large, our algorithms still can achieve
reasonably good performance.

We next examine the effect of each pruning strategy in the maximum-join
method using randomly generated queries. In Figure 8, we plot the running
time of the queries with different sizes in terms of adopting all three speed up
strategies, as well as leaving one strategy out. For each fixed query size, the
running time refers to the average time of 100 randomly generated queries.
The results are similar to those in Figure 6.

As we mentioned in Section 4.5, for a keyword query which contains m

different keywords, we need to conduct m− 1 rounds of maximum joins. The
orders of maximum joins is crucial to the performance of the query answering
algorithms. In this paper, we adopt a simple heuristic, that is, in each round
of maximum joins, we pick two inverted lists with the smallest sizes.

The heuristic used in our algorithm is very simple, and it achieves relatively
good performance. For a performance comparison, we compared our simple
heuristic to a random selection method (that is, for a query containing m



32

keywords, we randomly pick two words and get the corresponding lists of tuples
for the next round of maximum joins). In Figure 9, we show the performance
of the maximum-join algorithm using the Simple Heuristic we developed
in this paper, as well as that using the Random Method. All the pruning
strategies are adopted. The simple heuristic clearly outperforms the random
method.

Query size 2 3 4 5 6 7
# queries 100 100 100 100 100 100

# queries that the traditional keyword search
methods cannot find a single matching tuple 61 82 87 88 93 95

# queries that the aggregate keyword
search cannot find a non-trivial answer 2 6 7 11 13 13

Table 5: The effectiveness of the aggregate keyword queries.

We examine the effectiveness of the proposed aggregate keyword search
using randomly generated queries. We vary the number of keywords in the
query from 2 to 7; and for each fixed query size, we randomly generate 100
different queries. For each query, we examine whether there exists a single tuple
matching all the keywords in the query. If there does, the traditional keyword
search algorithms on relational databases can retrieve some results; if not, the
traditional keyword search algorithms cannot find any results. Table 5 shows
the results. When the number of keywords in a query is not very small (e.g.,
more than 3), the majority of queries cannot find any single tuple matching
all the keywords in the query. However, the aggregate keyword search is still
able to find some useful results even if the query keywords do not appear in
a tuple. In the worst case, the aggregate keyword search may just return a
trivial answer (that is, an answer with ∗ on all the dimensions). We count the
number of queries when the aggregate keyword search only returns a trivial
answer, and the results are shown in Table 5. In general, only a small number
of queries cannot find a non-trivial answer using the aggregate keyword search.
The results clearly indicate that the aggregate keyword search is quite useful
in practice.

7.1.4 Partial Keyword Matching Queries

We first examine the effectiveness of the partial keyword matching. We use
the same set of randomly generated queries in Section 7.1.3. As discussed
in Section 7.1.3, some aggregate keyword queries may return a trivial an-
swer that is not informative to users. For those queries which cannot find a
non-trivial answer using the aggregate keyword search, we adopt the partial
keyword matching technique. We count the maximal number of keywords in
the query that can be matched using the partial keyword matching. If most
of the keywords in the query can be matched, the answers returned by the
partial keyword matching may still be interesting to users. Table 6 shows the



33

Query size 2 3 4 5 6 7
# queries 100 100 100 100 100 100

# queries that the aggregate keyword
search cannot find a non-trivial answer 2 6 7 11 13 13

Percentage of queries that the aggregate key-
word search cannot find a non-trivial answer 2% 6% 7% 11% 13% 13%

Average # matched keywords
using partial keyword matching 1 2 2.86 3.73 4.23 4.85

Table 6: The effectiveness of the partial keyword matching.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Q7 Q8 Q9

T
im

e 
(s

ec
)

Query ID

+0
+1
+2
+3

Fig. 10: Query time for partial keyword
matching queries.

 0.5
 1

 1.5
 2

 2.5
 3

 3  4  5  6  7  8

T
im

e 
(s

ec
)

Query size

+0
+1
+2
+3

Fig. 11: Query time for partial keyword
matching queries (random queries).

results. In general, the majority of keywords in the query are matched using
the partial keyword matching. The results indicate that the partial keyword
matching is useful to find some good answers even if the aggregate keyword
search cannot find a non-trivial answer.

We conducted the experiments to evaluate our partial keyword matching
queries using the keyword graph index. To simulate the partial keyword match-
ing scenario, we used queries Q7, Q8 and Q9 in Table 4 as the base queries
and add some irrelevant keywords into each query. Specifically, for each query,
we manually added 1, 2 and 3 irrelevant keywords into the query to obtain
the extended queries, and make sure that any of those irrelevant keywords do
not have non-trivial complete match answers together with the keywords in
the base query.

Our method returns the answers to the base queries as the partially match
answers to the extended queries. The experimental results confirm that our
partial matching method is effective. Moreover, Figure 10 shows the runtime
of partial matching query answering. When the number of irrelevant query
keywords increases, the query time increases, because more cliques need to be
considered in the query answering.

We also examine the performance of the partial matching using randomly
generated queries. Figure 11 shows the results of the running time with respect
to different sizes of queries. For each randomly generated query, we randomly
added 1, 2 and 3 irrelevant keywords into the query to obtain the extended
queries. The results are similar to those in Figure 10.



34

7.1.5 Hierarchical Keyword Matching Queries

Query size 2 3 4 5 6 7
# queries 100 100 100 100 100 100

# queries that the aggregate keyword
search cannot find a non-trivial answer 2 6 7 11 13 13

Percentage of queries that the aggregate key-
word search cannot find a non-trivial answer 2% 6% 7% 11% 13% 13%

Average # rounds of specialization 2 2.5 2.71 3.09 3.46 3.62

Table 7: The effectiveness of the hierarchical keyword matching.

We first examine the effectiveness of the hierarchical keyword matching. We
use the same set of randomly generated queries in Section 7.1.3. As discussed in
Section 7.1.3, some aggregate keyword queries may return a trivial answer that
is not informative to users. For those queries which cannot find a non-trivial
answer using the aggregate keyword search, we adopt the hierarchical keyword
matching technique. We count the number of rounds that the specification
needs to be conducted. Too many rounds of specializations may not lead to a
good answer loyal to the original query objective. Table 7 shows the results.
In general, only a few rounds of specification are needed for the hierarchical
keyword matching technique to find a non-trivial answer. The results indicate
that the hierarchical keyword matching is useful to find some good answers
even if the aggregate keyword search cannot find a non-trivial answer.

We also conducted experiments to evaluate our hierarchical keyword
matching methods using the keyword graph index. A critical issue is to build
a keyword hierarchy for the keywords in the data set. Since the number of
keywords is large, we adopted the WordNet taxonomy (Fellbaum 1998) as
the hierarchy. WordNet is a semantic lexicon for the English language. It
groups English words into sets of synonyms. We queried the WordNet tax-
onomy database for each keyword, and built the hierarchical relations among
them according to the WordNet synonyms.

To simulate the hierarchical keyword matching scenario, we used queries
Q7, Q8 and Q9 in Table 4 as the base queries, and replaced some keywords in
those queries by their ancestors in the hierarchy. Specifically, for each query, we
manually replaced 1, 2 or 3 keywords with some ancestor keywords to obtain
the extended queries, and make sure that the keywords in each extended query
do not form a clique in the keyword graph index.

When only 1 keyword is replaced with an ancestor keyword, among the 3
queries, all the returned results match the answers to the base queries. When
the number of keywords to be replaced increases, however, the results become
weaker. In the case of 2 keywords are replaced, only the extended queries based
on Q7 and Q8 return the expected answers. In the case of 3 keywords are re-
placed, only the extended query based on Q7 returns the expected answer.
The reason is, when more keywords are replaced, when we select a keyword to



35

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Q7 Q8 Q9

T
im

e 
(s

ec
)

Query ID

Original
Replace 1
Replace 2
Repalce 3

Fig. 12: Query time for hierarchical
keyword matching queries.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 3  4  5  6  7  8

T
im

e 
(s

ec
)

Query size

Original
Replace 1
Replace 2
Replace 3

Fig. 13: Query time for hierarchical
keyword matching queries (random

queries).

specialize, the number of choices increases, thus the probability to return the
expected answers becomes smaller. However, our hierarchical keyword match-
ing algorithm can still find meaningful answers. For example,Q4 is a 3-keyword
query {“Animation”, “Animal”, “USA”}. There is no exact answer in the table
for this query. We can find an approximate keyword matching {“Animation”,
“lions”, “Walt Disney World”}, and one answer with the movie title “The Lion
King” will be returned.

Figure 12 shows the query answering time in hierarchical matching. Similar
to the partial matching method, when the number of query keywords to be
replaced increases, the query time increases. This is because more calculation
for extendability score is needed. Generally, the hierarchical keyword matching
queries can be answered efficiently using the keyword graph index.

We also examine the performance of the hierarchical matching using ran-
domly generated queries. Figure 13 shows the results of the running time with
respect to different sizes of queries. For each randomly generated query, we
randomly replaced 1, 2 or 3 keywords with some ancestor keywords to obtain
the extended queries. The results are similar to those in Figure 10.

7.2 Results on Synthetic Datasets

To test the efficiency and the scalability of our aggregate keyword search meth-
ods, we generated various synthetic data sets. In those data sets, we randomly
generated 1 million tuples for each data set. We varied the number of dimen-
sions from 2 to 10. We tested the data sets of the cardinalities 100 and 1, 000
in each dimension. Since the number of text attributes does not affect the key-
word search performance, for simplicity, we only generated 1 text attribute.
Each keyword appears only once in one tuple. We fixed the number of key-
words in the text attribute for each tuple to 10, and varied the total number of
keywords in the data set from 1, 000 to 100, 000. The keywords are distributed
uniformly except for the experiments in Section 7.2.2. Thus, on average the
number of tuples in the data set that contain one specific keyword varied from



36

 0.01

 0.1

 1

 10

 100

 2  4  6  8  10

T
im

e 
(s

ec
)

# dimensions

Fast(card=100)
Fast(card=1K)

Index(card=100)
Index(card=1K)

Number of keywords is 1K.

 0.01

 0.1

 1

 10

 100

 2  4  6  8  10

T
im

e 
(s

ec
)

# dimensions

Fast(card=100)
Fast(card=1K)

Index(card=100)
Index(card=1K)

Number of keywords is 10K.

 0.001

 0.01

 0.1

 1

 10

 2  4  6  8  10

T
im

e 
(s

ec
)

# dimensions

Fast(card=100)
Fast(card=1K)

Index(card=100)
Index(card=1K)

Number of keywords is 100K.

Fig. 14: Query time of the two methods on different synthetic data sets.

10, 000 to 100. We also use the packing technique (Beyer and Ramakrishnan
1999) to represent the data sets.

7.2.1 Efficiency and Scalability

To study the efficiency and the scalability of our aggregate keyword search
methods, we randomly picked 10 different keyword queries, each of which
contains 3 different keywords. Figure 14 shows the query answering time.

The keyword graph index method is an order of magnitude faster than the
fast maximum join algorithm. The simple nested loop method is an order of
magnitude slower than the fast maximum join method. To make the figures
readable, we omit them here.

The number of dimensions, the cardinality of the dimensions and the to-
tal number of keywords affect the query answering time greatly. In general,
when the number of dimensions increases, the query answering time increases.
First, the maximum join cost is proportional to the dimensionality. Moreover,
the increase of runtime is not linear. As the dimensionality increases, more
minimal answers may be found, thus more time is needed. When the cardi-
nality increases, the query answering time decreases. The more diverse the
dimensions, the more effective of the pruning powers in the maximum join
operations. The total number of keywords in the text attribute highly affects
the query time. The more keywords in the table, on average less tuples contain
a keyword.

We generated the keyword graph index using Algorithm 3. The keyword
graph generation is sensitive to the number of tuples in the table. We con-
ducted the experiments on 10 dimensional data with cardinality of 1, 000 on
each dimension, set the total number of keywords to 10, 000, and varied the
number of tuples from 0.25 million to 1.25 million. The results on runtime are
shown in Figure 15. The runtime increases almost linearly as the number of tu-
ples increases, since the number of maximum join operations and the number
of answers generated both increase as the number of tuples increases.



37

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0.25  0.5  0.75  1  1.25
T

im
e 

(s
ec

)
# tuples (million)

Fig. 15: Running time for the keyword graph index generation.

 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+006

 0.25  0.5  0.75  1  1.25

# 
ed

ge
s

# tuples (million)

Fig. 16: The number of edges in the
keyword graph index.

 350
 360
 370
 380
 390
 400
 410
 420

 0.25  0.5  0.75  1  1.25

A
ve

ra
ge

 la
be

l s
iz

e

# tuples (million)

Fig. 17: The average length of edge
labels in the keyword graph index.

Figures 16 and Figure 17 examine the size of the keyword graph index with
respect to the number of tuples, where the settings are the same as Figure 15.
To measure the index size, we used the number of edges in the graph and the
average number of minimal answers on each edge. Generally, when the number
of tuples increases, the number of edges increases because the probability that
two keywords have a non-trivial answer increases. Meanwhile, the average
number of minimal answers on each edge also increases because more tuples
may contain both keywords.

7.2.2 Skewness

The aggregate keyword search methods are sensitive to skewness in data. In
all of the previous experiments, the data was generated uniformly. We ran
an experiment on the synthetic data set with 1 million tuples, 10 dimensions
with cardinality 1, 000, and a total number of 10, 000 keywords. We varied the
skewness simultaneously in all dimensions. We used the Zipf distribution to
generate the skewed data. Zipf uses a parameter α to determine the skewness.
When α = 0, the data is uniform, and as α increases, the skewness increases
rapidly: at α = 3, the most frequent value occurs in about 83% of the tuples.
We randomly picked 10 different keyword queries with query size 3. The av-
erage query answering time is shown in Figure 18. The performance of the
two methods becomes as the skewness on dimensions increases. However, the
keyword graph index method still performs well.



38

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  1  2  3

T
im

e 
(s

ec
)

Skew parameter

Fast
Index

Fig. 18: Skew on dimensional attributes.

 0
 2
 4
 6
 8

 10
 12

 0  1  2  3

T
im

e 
(s

ec
)

Skew parameter

Fast
Index

Fig. 19: Skew on text attribute.

Skewness may occur on text attributes, too. We ran another experiment
on the data set with 1 million tuples, 10 dimensions with cardinality of 1, 000,
and a total number of 10, 000 keywords. We made the skewness happen in the
text attribute only. We also used a Zipf distribution. We randomly picked 10
different keyword queries with query size 2, in which one keyword has a high
frequency and the other does not. The average query answering time is shown
in Figure 19. When the parameter α is small (for example, 0.5), the query
answering time increases when the data becomes skewed. This is because the
tuples containing the frequent keyword in a query increases dramatically. How-
ever, when α is further larger, the query answering time decreases because the
number of tuples containing the infrequent keyword in a query decreases dra-
matically. The query answering time is dominated by the infrequent keyword.

In summary, our experimental results on both real data and synthetic data
clearly show that aggregate keyword queries on large relational databases are
highly feasible. Our methods are efficient and scalable in most of the cases.
Particularly, the keyword graph index approach is effective.

8 Conclusions

In this paper, we identified a novel type of aggregate keyword queries on rela-
tional databases. We showed that such queries are useful in some applications.
We developed the maximum join approach and the keyword graph index ap-
proach. Moreover, we extend the keyword graph index approach to address
partial matching and hierarchical matching. We reported a systematic perfor-
mance study using real data and synthetic data to verify the effectiveness and
the efficiency of our methods.

The techniques developed in this paper are useful in some other applica-
tions. For example, some techniques in this paper may be useful in KDAP (Wu
et al 2007). As future work, we plan to explore extensions of aggregate keyword
queries and our methods in those applications. Moreover, in some applications,
a user may want to rank the minimal answers in some meaningful way such
as finding the top-k minimal answers. It is interesting to extend our method
to address such a requirement.



39

References

Agrawal S, Chaudhuri S, Das G (2002) DBXplorer: A system for keyword-based search
over relational databases. In: Proceedings of the 18th International Conference on Data
Engineering (ICDE’02), IEEE Computer Society, Washington, DC, USA, pp 5–16

Amer-Yahia S, Case P, Rölleke T, Shanmugasundaram J, Weikum G (2005) Report on the
DB/IR panel at sigmod 2005. ACM, New York, NY, USA, vol 34, pp 71–74

Balmin A, Hristidis V, Papakonstantinou Y (2004) Objectrank: authority-based keyword
search in databases. In: Proceedings of the Thirtieth international conference on Very
large data bases (VLDB’04), VLDB Endowment, pp 564–575

Beyer K, Ramakrishnan R (1999) Bottom-up computation of sparse and iceberg cube. In:
Proceedings of the 1999 ACM SIGMOD international conference on Management of
data (SIGMOD’99), ACM, New York, NY, USA, pp 359–370

Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S (2002) Keyword searching and
browsing in databases using banks. In: Proceedings of the 18th International Conference
on Data Engineering (ICDE’02), IEEE Computer Society, pp 431–440

Chaudhuri S, Das G (2009) Keyword querying and ranking in databases. PVLDB 2(2):1658–
1659

Chaudhuri S, Ramakrishnan R, Weikum G (2005) Integrating DB and IR technologies: What
is the sound of one hand clapping? In: Proceedings of the 2nd Biennial Conference on
Innovative Data Systems Research (CIDR’05), pp 1–12

Chen Y, Wang W, Liu Z, Lin X (2009) Keyword search on structured and semi-structured
data. In: Proceedings of the 2009 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’09), ACM, pp 1005–1010

Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to Algorithms. McGraw-
Hill Higher Education

Daoud M, Lechani LT, Boughanem M (2009) Towards a graph-based user profile modeling
for a session-based personalized search. Knowledge and Information Systems 21(3):365–
398

Ding B, Yu JX, Wang S, Qin L, Zhang X, Lin X (2007) Finding top-k min-cost connected
trees in databases. In: Proceedings of the 23rd IEEE International Conference on Data
Engineering (ICDE’07), IEEE Computer Society, Washington, DC, USA, pp 836–845

Dreyfus SE, Wagner RA (1972) The steiner problem in graphs. Networks 1:195–?07
Fang M, Shivakumar N, Garcia-Molina H, Motwani R, Ullman JD (1998) Computing iceberg

queries efficiently. In: Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), New
York, NY, pp 299–310

Fellbaum C (ed) (1998) WordNet: an electronic lexical database. MIT Press
Feng Y, Agrawal D, Abbadi AE, Metwally A (2004) Range Cube: Efficient cube computation

by exploiting data correlation. In: Proc. 2004 Int. Conf. Data Engineering (ICDE’04),
Boston, MA, pp 658–669

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA

Gong Z, Liu Q (2009) Improving keyword based web image search with visual feature dis-
tribution and term expansion. Knowledge and Information Systems 21(1):113–132

Gray J, Bosworth A, Layman A, Pirahesh H (1996) Data cube: A relational operator gen-
eralizing group-by, cross-tab and sub-totals. In: Proc. 1996 Int. Conf. Data Engineering
(ICDE’96), New Orleans, Louisiana, pp 152–159

Han J, Pei J, Dong G, Wang K (2001) Efficient computation of iceberg cubes with complex
measures. In: Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’01),
Santa Barbara, CA, pp 1–12

Harman D, Baeza-Yates R, Fox E, Lee W (1992) Inverted files. In: Information retrieval:
data structures and algorithms, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, pp
28–43

He H, Wang H, Yang J, Yu PS (2007) Blinks: ranked keyword searches on graphs. In:
Proceedings of the 2007 ACM SIGMOD international conference on Management of
data (SIGMOD’07), ACM, New York, NY, USA, pp 305–316



40

Henzinger M, Motwani R, Silverstein C (2003) Challenges in web search engines. In: Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03),
pp 1573–1579

Hristidis V, Papakonstantinou Y (2002) Discover: Keyword search in relational databases.
In: Proceedings of the 28st international conference on Very large data bases (VLDB’02),
Morgan Kaufmann, pp 670–681

Hristidis V, Gravano L, Papakonstantinou Y (2003) Efficient IR-style keyword search over
relational databases. In: Proceedings of the 29st international conference on Very large
data bases (VLDB’03), pp 850–861

Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R, Karambelkar H (2005) Bidi-
rectional expansion for keyword search on graph databases. In: Proceedings of the 31st
international conference on Very large data bases (VLDB’05), ACM, pp 505–516

Kimelfeld B, Sagiv Y (2006) Finding and approximating top-k answers in keyword proximity
search. In: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems (PODS’06), ACM, New York, NY, USA, pp
173–182

Li G, Ooi BC, Feng J, Wang J, Zhou L (2008) Ease: an effective 3-in-1 keyword search
method for unstructured, semi-structured and structured data. In: Proceedings of the
2008 ACM SIGMOD international conference on Management of data (SIGMOD’08),
ACM, New York, NY, USA, pp 903–914

Liu F, Yu C, Meng W, Chowdhury A (2006) Effective keyword search in relational databases.
In: Proceedings of the 2006 ACM SIGMOD international conference on Management of
data (SIGMOD’06), ACM, New York, NY, USA, pp 563–574

Liu Z, Chen Y (2007) Identifying meaningful return information for xml keyword search.
In: Proceedings of the 2007 ACM SIGMOD international conference on Management of
data (SIGMOD’07), ACM, New York, NY, USA, pp 329–340

Luo Y, Lin X, Wang W, Zhou X (2007) Spark: top-k keyword query in relational databases.
In: Proceedings of the 2007 ACM SIGMOD international conference on Management of
data (SIGMOD’07), ACM, New York, NY, USA, pp 115–126

Ng RT, Wagner AS, Yin Y (2001) Iceberg-cube computation with PC clusters. In: Proc.
2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’01), Santa Barbara,
CA

Park J, goo Lee S (2010) Keyword search in relational databases. Knowledge and Information
Systems (Online First) , dOI: 10.1007/s10115-010-0284-1

Qin L, Yu JX, Chang L (2009a) Keyword search in databases: the power of rdbms. In:
Proceedings of the 35th SIGMOD International Conference on Management of Data
(SIGMOD’09), ACM Press, Providence, Rhode Island, USA, pp 681–694

Qin L, Yu JX, Chang L, Tao Y (2009b) Querying communities in relational databases.
In: Proceedings of the 25th International Conference on Data Engineering (ICDE’09),
IEEE, pp 724–735

Taha K, Elmasri R (2010) Bussengine: a business search engine. Knowledge and Information
Systems 23(2):153–197

Tong H, Faloutsos C, Pan JY (2008) Random walk with restart: fast solutions and applica-
tions. Knowledge and Information Systems 14(3):327–346

Vu QH, Ooi BC, Papadias D, Tung AKH (2008) A graph method for keyword-based selec-
tion of the top-k databases. In: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data (SIGMOD’08), ACM, New York, NY, USA

Weikum G (2007) DB&IR: both sides now. In: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data (SIGMOD’07), ACM, New York, NY,
USA, pp 25–30

Wu P, Sismanis Y, Reinwald B (2007) Towards keyword-driven analytical processing. In:
Proceedings of the 2007 ACM SIGMOD international conference on Management of
data (SIGMOD’07), ACM, New York, NY, USA, pp 617–628

Xin D, Han J, Li X, Wah BW (2003) Star-cubing: Computing iceberg cubes by top-down and
bottom-up integration. In: Proc. 2003 Int. Conf. on Very Large Data Bases (VLDB’02),
Berlin, Germany, pp 476–487

Yu B, Li G, Sollins K, Tung AKH (2007) Effective keyword-based selection of relational
databases. In: Proceedings of the 2007 ACM SIGMOD international conference on Man-



41

agement of data (SIGMOD’07), ACM, New York, NY, USA, pp 139–150
Zhou B, Pei J (2009) Answering aggregate keyword queries on relational databases using

minimal group-bys. In: Proceedings of the 12th International Conference on Extending
Database Technology (EDBT’09), Saint-Petersburg, Russia

Author biographies

Bin Zhou received his B.Sc. degree in Computer Science from
Fudan University, China, in 2005 and his M.Sc. degree in Com-
puting Science from Simon Fraser University, Canada, in 2007.
He is currently a Ph.D. candidate at the School of Computing
Science at Simon Fraser University, Canada. His research inter-
ests lie in graph analysis, graph mining, data privacy, and their
relations to Web-scale data management and mining, as well as
their applications in Web search engines.

Jian Pei is an Associate Professor at the School of Computing
Science at Simon Fraser University, Canada. His research inter-
ests can be summarized as developing effective and efficient data
analysis techniques for novel data intensive applications. He is
currently interested in various techniques of data mining, Web
search, information retrieval, data warehousing, online analytical
processing, and database systems, as well as their applications in
social networks, health-informatics, business and bioinformatics.
His research has been supported in part by government funding
agencies and industry partners. He has published prolifically and
served regularly for the leading academic journals and confer-
ences in his fields. He is an associate editor of ACM Transactions
on Knowledge Discovery from Data (TKDD) and an associate
editor-in-chief of IEEE Transactions of Knowledge and Data En-

gineering (TKDE). He is a senior member of the Association for Computing Machinery
(ACM) and the Institute of Electrical and Electronics Engineers (IEEE). He is the recipient
of several prestigious awards.


