1. Consider the simple OLG model with the following extensions and details: Assume that people face a lump-sum tax of τ goods when old and a rate of expansion of the fiat money supply of $z > 1$. The tax and the expansion of the fiat money stock are used to finance government purchases of g goods per young person in every period. There are N people in every generation. Assume that the utility function of people in the economy is $\ln(c_{1,t}) + \ln(c_{2,t+1})$.

 a. Find the real demand for money in a stationary equilibrium as a function of z, τ, and y.

 b. Find the government budget constraint in a stationary equilibrium. Solve it for τ as a function of z. (The expression will also involve y and g.)

 c. Substitute your expression for τ from the government budget constraint into the demand for money. Use the result to find seigniorage as a function of z, y, g, and N. Using a spreadsheet, graph seigniorage as a function of z, using the following parameter values: $N = 1000$, $y = 100$, and $g = 10$.

2. Go to the St. Louis Federal Reserve’s web page. Download the available data on the monetary aggregates M_1, M_2, and M_3 from the FRED database. Using a spreadsheet, draw a time-series plot of M_1, M_2, and M_3. In the context of the economics we studied in chapters 1 and 3, the optimal monetary policy was to maintain a constant stock of fiat money. Has the Fed followed such a policy?