

The Third Swift Burst Alert Telescope Gamma-Ray Burst Catalog: Instrumental Sensitivity and Implication on the High-Redshift GRBs

Amy Lien (GSFC/UMBC) Takanori Sakamoto (Aoyama Gakuin Univ.) and the BAT team The 8th Huntsville GRB Symposium, Huntsville, AL, 2016/10/24

The Swift Burst Alert Telescope (BAT)

- Telescope that trigger GRBs
 - \sim 90 burst per year (\sim 2 per week)
- 15 150 keV
- Field-of-view: \sim 2 sr (\sim 1/6 of the sky)

The 3rd BAT GRB catalog

(Lien & Sakamoto et al. (2016) ApJ 829, 7)

- \sim 1000 GRBs seen by BAT till GRB151027B
- Characteristics of prompt emission
 - Burst durations, spectral analysis
- GRB redshift list
- GRB trigger method, burst incident angles
- Discussions of instrumental sensitivity and their effects on GRB detections
- Search for extended emission beyond event data (survey data)

The 3rd BAT GRB catalog

(Lien & Sakamoto et al. (2016) ApJ 829, 7)

- \sim 1000 GRBs seen by BAT till GRB151027B
- Characteristics of prompt emission
 - Burst durations, spectral analysis
- GRB redshift list
- GRB trigger method, burst incident angles
- Discussions of instrumental sensitivity and their effects on GRB detections on high-z GRBs
- Search for extended emission beyond event data (survey data)

The 3rd BAT GRB catalog

(Lien & Sakamoto et al. (2016) ApJ 829, 7)

- \sim 1000 GRBs seen by BAT till GRB151027B
- Characteristics of prompt emission
 - Burst durations, spectral analysis
- GRB redshift list
- GRB trigger method, burst incident angles
- Discussions of instrumental sensitivity and their effects on GRB detections
- Search for extended emission beyond event data (survey data)
- All results and data are public on: <u>http://swift.gsfc.nasa.gov/results/batgrbcat/</u> Website will continue to be updated with recent bursts

BAT Observing Time

BAT Observing Time

- \sim 11+-1% deadtime for the South Atlantic Anomaly (SAA)
- \sim 11+-1% due to slewing

BAT Active Detectors

Year	Number of detections	Number of detections	Average number of active
	(with ground-detected GRBs)	(no ground-detected GRBs)	BAT detectors
2005	88	86	29413
2006	102	100	26997
2007	87	80	27147
2008	105	96	26478
2009	91	81	24387
2010	85	72	24050
2011	82	75	22817
2012	92	89	23017
2013	96	85	22053
2014	94	84	20413

Swift/BAT GRBs to date

- \sim 1095 GRBs till now.
- In this presentation (3rd BAT GRB catalog): 1006 GRBs till GRB151027B

Fig credit: Taka's presentation

Fig credit: Taka's presentation

dependent

GRB Spectral Analysis

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If Δχ²> 6 (false-positive rate: 0.62%; Sakamoto et al. 2008))

GRB Spectral Analysis

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If Δχ²> 6 (false-positive rate: 0.62%; <u>Sakamoto et al. 2</u>008))

Intro BAT Durations Spectra Sensitivity High-z Summary

GRB Sp∈ ≛r

- Following the 2nd BAT GRE
- (a) simple power law (PL)
 (b) cutoff power law (CPL)

• Choose CPL If $\Delta \chi^2 > 6$ (false-posit Photon Energy Sakamoto et al. 2008))

Photon

BAT GRB Spectral and Temporal Distributions

BAT Sensitivity on GRB Detections

BAT Sensitivity on GRB Detections

Swift/BAT GRBs with Redshifts

- 378 (\sim 1/3) GRBs have redshift measurements
 - Thanks to the ground-based follow-up campaign

List of high-z (z > 5) GRBs to date

GRB name	Redshift	Method	Reference	
GRB060522	5.11	ba	Cenko S.B. et al. GCN Circ. 5155	
GRB071025	5.20	ba	Fynbo J.P.U. et al. ApJS 185 526 (2009)	
GRB050502B	$5.20^{+0.3}_{-0.3}$	hp	Afonso P. et al. A&A 526 A154 (2011);	
			*Schulze et al. ApJ 808 73 (2015)	
GRB140304A	5.28	ba	de Ugarte Postigo A. et al. GCN Circ. 15924;	
			*Jeong S. et al. GCN Circ. 15936	
GRB050814	$5.30^{+0.3}_{-0.3}$	bp	Jakobsson P. et al. AIPC 836 552 (2006)	
GRB060927	5.46	ba	Ruiz-Velasco A.E. et al. ApJ 669 1 (2007);	
			*Fynbo J.P.U. et al. ApJS 185 526 (2009)	
GRB130606A	5.91	ba	*Chornock R. et al. ApJ 774 26 (2013);	
			Castro-Tirado A.J. et al. arXiv:1312.5631 (2013)	
GRB120521C	$5.93^{+0.11}_{-0.14}$	bp	Tanvir N.R. et al. GCN Circ. 13348;	
			*Laskar T. et al. ApJ 781 1 (2014)	
GRB050904	6.29	ba	Kawai N. et al. Nature 440 184 (2006)	
GRB140515A	6.33	ba	Chornock R. et al. GCN Circ. 16269;	
			*Chornock R. et al. arXiv:1405.7400 (2014)	
GRB060116	$6.60^{+0.15}_{-0.15}$	bp	Grazian A. et al. GCN Circ. 4545	
GRB080913	6.73	ba	Greiner J. et al. ApJ 693 1610 (2009);	
			*Patel M. et al. A&A 512 L3 (2010)	
GRB090423	8.26	ba	*Tanvir N.R. et al. Nature 461 1254 (2009);	
			Salvaterra R. et al. Nature 461 1258 (2009)	
GRB120923A	8.50	bp	Tanvir N.R. arXiv:1307:6156 (2013);	
			provisional; formal results yet to be released	
GRB090429B	$9.38^{+0.14}_{-0.32}$	bp	Cucchiara A. et al. ApJ 736 7 (2011)	

2005: 3
2006: 3
2007: 1
2008: 1
2009: 2
2010: 0
2011: 0
2012: 2
2013: 1
2014: 2
2015: 0
2016: 0

ba: burst absorption lines bp: burst photo-z hp: host photo-z

BAT detectability on high-z burst

BAT detectability on high-z burst

BAT detectability on high-z burst

BAT detectability on high-z burst: simulations

Peak Luminosity [erg/s]		Incident Angle [deg]	Highest Detectable Redshfit	
1-10000 keV	15-150 keV	meldent Angre [deg]	ndet=20000	ndet=30000
	1.52×10^{51}	56.29	0.70	0.90
1.00×10^{52}		44.99	1.80	2.40
1.00 × 10		26.56	2.50	3.00
		0.076	3.00	3.60

Peak Lumine	osity [erg/s]	Incident Angle [deg]	Highest Detectable Redshfit	
1-10000 keV 15-150 keV		mendent Angle [deg]	ndet=20000	ndet=30000
	7.62×10^{51}	56.29	1.50	1.80
5.00×10^{52}		44.99	4.20	5.00
5.00 × 10	1.02 × 10	26.56	5.40	6.90
		0.076	6.40	8.10

•	Use light curve and
	spectra from
	GRB130427A

 Trigger simulator for determining the detectability

(Lien et al. (2014), http:// userpages.umbc.edu/~alien/ trigger_simulator/)

Peak Lumin	osity [erg/s]	Incident Angle [deg]	Highest Detectable Redshfit	
1-10000 keV	15-150 keV	meldent Angle [deg]	ndet=20000	ndet=30000
	1.52×10^{52}	56.29	2.30	2.70
1.00×10^{53}		44.99	5.50	7.60
1.00×10	1.52×10	26.56	8.10	9.90
		0.076	9.50	9.90

Incident angle	FOV [sr (deg^2)]	Fraction of Sky
56.29	2.11 (6926.72)	0.168
44.99	1.14 (3742.40)	0.091
26.56	0.41 (1345.95)	0.033
0.076	0.18 (590.91)	0.014

BAT detectability on high-z burst: simulations

Peak Luminosity [erg/s]		Incident Angla [dag]	Highest Detectable Redshfit	
1-10000 keV	15-150 keV	meldent Angre [deg]	ndet=20000	ndet=30000
	1.52×10^{51}	56.29	0.70	0.90
1.00×10^{52}		44.99	1.80	2.40
1.00 × 10		26.56	2.50	3.00
		0.076	3.00	3.60

Peak Luminosity [erg/s]		Incident Angle [deg]	Highest Detectable Redshfit	
1-10000 keV 15-150 keV			ndet=20000	ndet=30000
	7.62×10^{51}	56.29	1.50	1.80
5.00×10^{52}		44.99	4.20	5.00
5.00×10		26.56	5.40	6.90
		0.076	6.40	8.10

Peak Luminosity [erg/s]		Incident Angle [deg]	Highest Detectable Redshfit	
1-10000 keV	15-150 keV	meldent Angre [deg]	ndet=20000	ndet=30000
	1.52×10^{52}	56.29	2.30	2.70
1.00×10^{53}		44.99	5.50	7.60
1.00 × 10		26.56	8.10	9.90
		0.076	9.50	9.90

- BAT can generally detect burst with luminosity (obs 15-150 keV) > 10⁵² erg/s
- Incident angle is important

Incident angle	FOV [sr (deg^2)]	Fraction of Sky
56.29	2.11 (6926.72)	0.168
44.99	1.14 (3742.40)	0.091
26.56	0.41 (1345.95)	0.033
0.076	0.18 (590.91)	0.014

Comparison with real GRBs

• List of high-z burst detected to date

GRB name	Redshift	Avg lumnosity	Incident angle	Partial coding	
		(obs 15-150 keV)		fraction	
GRB060522	5.11	4.20×10^{51}	31.88	0.75	
GRB071025	5.20	5.48×10^{51}	30.56	0.49	< 5.40 - 6.90
GRB050502B	5.20	$6.89 imes 10^{51}$	10.21	0.99	
GRB140304A	5.28	1.96×10^{52}	25.20	0.74	
GRB050814	5.30	3.31×10^{51}	39.66	0.26	
GRB060927	5.46	1.52×10^{52}	16.60	0.82	< 8.10 - 9.90
GRB130606A	5.91	$3.73 imes 10^{51}$	22.74	0.97	
GRB120521C	5.93	1.49×10^{52}	19.15	0.68	
GRB050904	6.29	1.06×10^{52}	35.09	0.57	
GRB140515A	6.33	1.14×10^{52}	13.13	0.99	
GRB060116	6.60	1.09×10^{52}	37.93	0.21	< 5.5 – 7.60
GRB080913	6.73	3.75×10^{52}	46.33	0.39	
GRB090423	8.26	4.41×10^{52}	25.03	0.92	
GRB120923A	8.50	1.23×10^{52}	16.96	0.80	
GRB090429B	9.38	5.56×10^{52}	24.51	0.84	< 9.90

Can we constrain the high-z GRB rate?

GRB090429B

- Can be detected out to z > 9 if occurs fairly on-axis (within \sim 26 deg)
- Assuming ground followup teams get all redshift
 → fz = 1
- Sky fraction = $\pi (26)^2/(4\pi (180/pi)^2) = 0.046$
- Number of detection = 1
- Obs year = 12
- All sky rate = (Number of detection)/(Sky fraction)/ (Obs year)/fz = 1.6/fz yr⁻¹
- All sky comoving rate = 0.8/fz Gpc⁻³ yr⁻¹

Lien et al. (2014)

Summary

 3rd BAT GRB catalog available on: <u>http://swift.gsfc.nasa.gov/results/batgrbcat/</u> Website will continue to be undated with recent burs

Website will continue to be updated with recent bursts

- Tables
- Online webpages (quicklook plots)
- Original data product
- Burst categories: Long, Short, Short with EE, Ultralong (burst longer than 1000 s)
- Extended emission in survey data
- BAT can generally detect GRBs with 10⁵² erg/s (in the obs 15-150 keV) out to z > 9
 - Keep searching!

Thank You!

Back-up slides

GRB090429B

- Sky_fraction = 24.51*24.51*pi/(4*pi*(180/ pi)^2) = 0.46
- Ndet = 1
- Obs_year = 10
- All_sky_Rate = Ndet/Sky_fraction/Obs_year = 1.82/yr
- All_sky_comov_Rate = 3.7

- Method:
 - Searching for period of T0-0.2 day to T0+10 days
 - From 2004 to 2013/08 (e.g., Baumgartner et al. 2013)

- Method:
 - Searching for period of T0-0.2 day to T0+10 days
 - From 2004 to 2013/08 (e.g., Baumgartner et al. 2013)

- Method:
 - Searching for period of T0-0.2 day to T0+10 days
 - From 2004 to 2013/08 (e.g., Baumgartner et al. 2013)

GRB name	detection time (since T0) [s]	image exposure time [s]	SNR in 14-195 keV
GRB121027A	1327.45	496.0	19.32
GRB121027A	5351.45	732.0	11.64
GRB111215A	703.0	840.0	12.27
GRB111209A	4814.0	2600.0	40.98
GRB111209A	10606.0	2584.0	14.08
GRB111209A	16427.0	2400.0	7.58
GRB111209A	565.0	630.0	92.73
GRB101225A	1372.0	300.0	10.28
GRB101225A	4936.0	2601.0	4.55
GRB101024A	-5252.13	779.0	4.73
GRB100728A	981.73	792.0	4.83
GRB100316D	-775.0	600.0	9.01
GRB091127	5192.90	409.0	4.36
GRB090417B	662.0	1140.0	23.51
GRB090404	44356.93	557.0	4.31
GRB090309	4075.176	2400.0	4.40
GRB080319B	938.1	799.0	11.26
GRB070518	57158.83	1381.0	4.92
GRB070419B	3724.13	2400.0	5.22
GRB060218	404.0	2327.0	19.20
GRB050730	356.2	390.0	8.53

GRB name	detection time (since T0) [s]	image exposure time [s]	SNR in 14-195 $\rm keV$
GRB121027A	1327.45	496.0	19.32
GRB121027A	5351.45	732.0	11.64
GRB111215A	703.0	840.0	12.27
GRB111209A	Previo	ously classified a	S .98
GRB111209A	1		.08
GRB111209A	ultra-long GRBs		.58
GRB111209A	565.0	630.0	92.73
GRB101225A	1372.0	300.0	10.28
GRB101225A	4936.0	2601.0	4.55
GRB101024A	-5252.13	779.0	4.73
GRB100728A	981.73	792.0	4.83
GRB100316D	-775.0	600.0	9.01
GRB091127	5192.90	409.0	4.36
GRB090417B	662.0	1140.0	23.51
GRB090404	44356.93	557.0	4.31
GRB090309	4075.176	2400.0	4.40
GRB080319B	938.1	799.0	11.26
GRB070518	57158.83	1381.0	4.92
GRB070419B	3724.13	2400.0	5.22
GRB060218	404.0	2327.0	19.20
GRB050730	356.2	390.0	8.53

GRB name	detection time (since T0) [s]	image exposure time [s]	SNR in 14-195 $\rm keV$
GRB121027A	1327.45	496.0	19.32
GRB121027A	5351.45	732.0	11.64
GRB111215A	703.0	840.0	12.27
GRB111209A	Previously classified as		
GRB111209A	1		.08
GRB111209A	ultra-long GRBs		.58
GRB111209A	565.0	630.0	92.73
GRB101225A			1.28
GRB101225A		Precursors	
GRB101024A	3-	TTCCUISOIS	.73
GRB100728A	981.73	792.0	4.83
GRB100316D	-775.0	600.0	9.01
GRB091127	5192.90	409.0	4.36
GRB090417B	662.0	1140.0	23.51
GRB090404	44356.93	557.0	4.31
GRB090309	4075.176	2400.0	4.40
GRB080319B	938.1	799.0	11.26
GRB070518	57158.83	1381.0	4.92
GRB070419B	3724.13	2400.0	5.22
GRB060218	404.0	2327.0	19.20
GRB050730	356.2	390.0	8.53

GRB name	detection time (since T0) [s]	image exposure time [s]	SNR in 14-195 $\rm keV$
GRB121027A	1327.45	496.0	19.32
GRB121027A	5351.45	732.0	11.64
GRB111215A	703.0	840.0	12.27
GRB111209A	Previously classified as		S
GRB111209A	1		- .08
GRB111209A	ultra-long GRBs		.58
GRB111209A	565.0	630.0	92.73
GRB101225A			1.28
GRB101225A		Procursors	
GRB101024A			.73
GRB100728A	981.73	792.0	4.83
GRB100316D	-775.0	600.0	9.01
GRB091127	5	Super-bright GRB	
GRB090417B	Sup		
GRB090404	44		.31
GRB090309	4075.176	2400.0	4.40
GRB080319B	938.1	799.0	11.26
GRB070518	57158.83	1381.0	4.92
GRB070419B	3724.13	2400.0	5.22
GRB060218	404.0	2327.0	19.20
GRB050730	356.2	390.0	8.53

Comparison with XRT light curves

Swift/BAT GRB Detection Overlook

Year	Number of detections	Number of detections	Number of active
	(with ground-detected GRBs)	(no ground-detected GRBs)	BAT detector
2005	88	85	29413
2006	98	97	26997
2007	85	79	27147
2008	103	95	26478
2009	91	81	24387
2010	83	72	24050
2011	81	75	22817
2012	92	89	23017
2013	95	84	22053
2014	93	84	20413

GRBs, Supernovae, and Star Formation

- Long GRBs (T90 > 2 sec)
 - Related to core-collapse supernovae (Type Ibc)
 - Related to the death of massive stars
- Long GRBs as probes of star formation
 - Particularly crucial at high redshift (e.g., Ciardi & Leob 2000, Tanvir et al. 2012)
- Important to measure long GRB

rate (e.g., Butler et al. 2010; Wanderman et al. 2010; Yuksel et al. 2008)

GRBs, Supernovae, and Star Formation

- Long G
 Rela
 Do we have enough information?
 Long G
 of star formation
 Particularly crucial
 - , at high redshift (e.g., Ciardi & Leob 2000, Tanvir et al. 2012)
- Important to measure long GRB

rate (e.g., Butler et al. 2010; Wanderman et al. 2010; Yuksel et al. 2008)

Swift GRBs to date

- 926 GRBs till now.
- In this presentation: 919 GRBs till GRB141109B
- 314 have redshift measurements

Swift GRBs to date: 10 Years after Launch

- 926 GRBs till now
 - About 2 GRBs per weak
- 314 GRBs have redshift measurements
- Complete results will be in the 3rd BAT GRB catalog

Figure credit: PSU webpage

Cake Credit: Judith Racusin

Swift GRBs to date: 10 Years after Launch

- 926 GRBs till now
 - About 2 GRBs per weak
- 314 GRBs have redshift measurements
- Complete results will be in the 3rd BAT GRB catalog

Figure credit: PSU webpage

Cake Credit: Judith Racusin

Fig credit: Taka's presentation

Fig credit: Taka's presentation

Distribution is instrument dependent

Spectral Fits

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectral fit

$$f(E) = K_{50}^{\text{CPL}} \left(\frac{E}{50 \text{ keV}}\right)^{\alpha^{\text{CPL}}} \exp\left(\frac{-E(2+\alpha^{\text{CPL}})}{E_{\text{peak}}}\right)$$

Spectral Fits – Simple Power Law

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectral fit
- 767 GRBs are well-fitted with simple power law.

Spectral Fits – Simple Power Law

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectral fit
- 767 GRBs are well-fitted with simple power law.

In BAT sample, short GRBs are only slightly harder than long GRBs.

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectrum
- 767 GRBs are well-fitted with simple power law.

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectrum
- 767 GRBs are well-fitted with simple power law.
- 76 GRBs are fitted better with cutoff power law

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectrum
- 767 GRBs are well-fitted with simple power law.
- 76 GRBs are fitted better with cutoff power law (all long GRBs)

BAT selection effect on GRB spectra

Photon Energy

Photon Flux

BAT selection effect on GRB spectra

BAT selection effect on GRB spectra

Spectral Fits

Epeak are likely to be in the BAT-energy range.

Burst Duration vs Spectrum

Burst Duration

Ultra-Long GRBs

- \sim 15 GRBs
- Burst duration > 1000 s (beyond event data)
- Burst durations here are very crude estimations

GRB Name	Burst Duration in BAT
GRB121027A	$\sim 5500~{ m s}$
GRB111215A	\sim 1123 s
GRB111209A	\sim 17627 s
GRB101225A	\sim 6237 s
GRB101024A	\sim 5661 s
GRB100728A	\sim 1378 s
GRB100316D	\sim 2028 s
GRB091127	\sim 5397 s
GRB090417B	\sim 1232 s
GRB090404	\sim 44635 s
GRB090309(?)	\sim 5275 s
GRB080319B	\sim 1338 s
GRB070518	\sim 57849 s
GRB070419B	\sim 4924 s
GRB060218	\sim 1568 s

Sensitivity Comparisons

• Grid ID: ID name on the detector's plane, related to incoming angle

Swift/BAT GRB Detection Overlook (old table)

Year	Number of detections	Number of detections	Number of active
	(with ground-detected GRBs)	(no ground-detected GRBs)	BAT detector
2005	88	86	29413
2006	101	100	26997
2007	86	80	27147
2008	102	94	26478
2009	91	82	24387
2010	85	72	24050
2011	80	75	22817
2012	92	89	23017
2013	96	85	22053
2014	91	83	20413

Summary

- Adopting the complex BAT-trigger algorithm improve the sensitivity and hence more dim (low-flux) bursts are needed in the intrinsic sample.
- Need more bursts from high redshift to create a good match with the observations.
- Very high GRB rate at large redshift, unless luminosity evolution is considered.
- It seems like some kind of relation between bursts' energy output (e.g., Lpeak) and spectral parameters (e.g., Epeak) is needed to generate good match with the observations.
- The 3rd BAT GRB catalog is coming soon! Suggestions welcome!

Redshift Distribution

- Thanks to the ground-based follow-up campaign
- Redshift list compiled by Kevin Chen (U of California, Berkeley)
 - Info from papers, GCNs, online list (e.g., GRBOX by Dan Perley)

- Photo-z: 9%
- Host galaxy spectrum: 28%
- Host galaxy photo-z: 3%

BAT GRB Spectral and Temporal Distributions

High-z rate estimation

• List of high-z burst detected to-date

GRB name	Redshift	Avg lumnosity	Incident angle	Partial coding	
		(obs 15-150 keV)		fraction	
GRB060522	5.11	4.20×10^{51}	31.88	0.75]
GRB071025	5.20	5.48×10^{51}	30.56	0.49	< 5.40 - 6.90
GRB050502B	5.20	6.89×10^{51}	10.21	0.99	< 6.40 - 8.10
GRB140304A	5.28	1.96×10^{52}	25.20	0.74	
GRB050814	5.30	$3.31 imes 10^{51}$	39.66	0.26	
GRB060927	5.46	1.52×10^{52}	16.60	0.82	< 8.10 - 9.90
GRB130606A	5.91	$3.73 imes 10^{51}$	22.74	0.97	
GRB120521C	5.93	1.49×10^{52}	19.15	0.68	< 8.10 - 9.90
GRB050904	6.29	1.06×10^{52}	35.09	0.57	
GRB140515A	6.33	1.14×10^{52}	13.13	0.99	
GRB060116	6.60	1.09×10^{52}	37.93	0.21	< 5.5 - 7.60
GRB080913	6.73	3.75×10^{52}	46.33	0.39	
GRB090423	8.26	4.41×10^{52}	25.03	0.92	
GRB120923A	8.50	1.23×10^{52}	16.96	0.80	< 8.10 - 9.90
GRB090429B	9.38	5.56×10^{52}	24.51	0.84	< 9.90