

Gamma-ray Bursts from the Swift Burst Alert Telescope: Probing Intrinsic Distributions with Trigger Simulations

Amy Lien Goddard Space Flight Center

CEA Saclay, 2015/09/15

Special Thanks to

- Takanori Sakamoto (Aoyama Gakuin University)
- Scott Barthelmy (GSFC)
- The *Swift*/BAT team:
 - Neil Gehrels (GSFC), Craig Markwardt (GSFC), Jay Cummings (GSFC), David Palmer (LANL), Hans Krimm (GSFC), Wayne Baumgartner (GSFC), Nicholas Collins (GSFC), Michael Stamatikos (OSU), Tilan Ukwatta (LANL)
- Nora Troja (GSFC), John Cannizzo (GSFC), Kevin Chen (Berkeley), Carlo Graziani (U Chicago)

Outline

- Gamma-ray bursts (GRBs)
- Swift Burst Alert Telescope (BAT)
- Observed GRB distributions (The 3rd BAT GRB catalog)
- Probing intrinsic distribution
 - The BAT trigger simulator
- GRB rate
 - Implication on the high-redshift star-formation history
- Summary

- Short pulses in gamma rays
 - Diverse light curve shapes
 - Afterglows in x rays, optical, and radio

- Short pulses in gamma rays
 - Diverse light curve shapes
 - Afterglows in x rays, optical, and radio
- Extremely bright
- Visible out to very high redshift
 - Redshift range:

0.03 - 9.38

Time in Seconds

- Short pulses in gamma rays
 - Diverse light curve shapes
 - Afterglows in x rays, optical, and radio
- Extremely bright
- Visible out to very high redshift
 - Redshift range:
 0.03 9.38
- Long and Short bursts
 - Based on BATSE
 observations

Long GRBs

- Deaths of massive Stars
- Supernovae
- Black holes
- Acceleration of high-energy particles

Short GRBs

- Compact-object mergers
 - Black holes
 - Neutron stars
- Gravitational wave

Figure Credit: NASA/Swift Mission Multimedia

will

UV/Optical Telescope (UVOT)

> Burst Alert Telescope (BAT)

X-Ray Telescope (XRT) Intro Swift Catalog Trigger Simulation GRB rate Summary

Will

1

A. Rate trigger: Stage 1: Rate trigger Stage 2: Image threshold Quad-rate summed light curve black:15-25, red:25-50, green:50-100, blue:100-350, magenta:15-350 3000 2500 supplicated as a solution of the state of th 3000 2500 3000 2500 2000 2200 2000 o180 .1×10 10 9000 8000 425744262.528 **Burst Alert** Telescope (BAT)

A. Rate trigger: B. Image trigger: 2014 Nov 21 Exposure: 189 Stage 1: Rate trigger Stage 2: Image threshold Quad-rate summed light curve GRB140629A black:15-25, red:25-50, green:50-100, blue:100-350, magenta:15-350 3000 2500 windowellished as a set water and the set of the set of the set of the set 3000 2500 3000 2500 2000 GRB141121A Swift-BAT GRB 2200 Maskweighted Lightcurve (1 s binning) using the flight position 2000 o180 .1×10 10 9000 8000 425744262.528 -0,0 -0.0 -0.1 -200 200 40N 800 Time since BAT trigger time [sec] (UT 2014-11-21T03:50:43.1) **Burst Alert** Telescope (BAT)

10 Years of *Swift*

Chart Credit: Neil Gehrels' presentation

Baumgartner et al. 2013

Figure credit: PSU webpage

Cake Credit: Judith Racusin

Chart Credit: Neil Gehrels' presentation

Baumgartner et al. 2013

Figure credit: PSU webpage

Cake Credit: Judith Racusin

BAT Observing Time

- \sim 11+-1% deadtime for the South Atlantic Anomaly (SAA)
- \sim 11+-1% due to slewing

Swift GRBs to date: \sim 11 Years after Launch

- 986 GRBs till now (GRB150911A)
 - About 2 GRBs per weak
- 326 GRBs have redshift measurements
- Complete results will be in the 3rd BAT GRB catalog

Figure credit: PSU webpage

Cake Credit: Judith Racusin

Fig credit: Taka's presentation

Fig credit: Taka's presentation

Distribution is instrument dependent

Off-axis

On-axis

Spectral Fits

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectral fit

$$f(E) = K_{50}^{\text{CPL}} \left(\frac{E}{50 \text{ keV}}\right)^{\alpha^{\text{CPL}}} \exp\left(\frac{-E(2+\alpha^{\text{CPL}})}{E_{\text{peak}}}\right)$$

Spectral Fits – Simple Power Law

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectral fit
- 767 GRBs are well-fitted with simple power law.

Spectral Fits – Simple Power Law

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectral fit
- 767 GRBs are well-fitted with simple power law.

In BAT sample, short GRBs are only slightly harder than long GRBs.

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectrum
- 767 GRBs are well-fitted with simple power law.

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectrum
- 767 GRBs are well-fitted with simple power law.
- 76 GRBs are fitted better with cutoff power law

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectrum
- 767 GRBs are well-fitted with simple power law.
- 76 GRBs are fitted better with cutoff power law (all long GRBs)

- Following the 2nd BAT GRB catalog (Sakamoto et al. 2011)
- (a) simple power law (PL)(b) cutoff power law (CPL)
- Choose CPL If $\Delta \chi^2 > 6$
- Additional criteria for an acceptable spectrum
- 767 GRBs are well-fitted with simple power law.
- 76 GRBs are fitted better with cutoff power law (all long GRBs)

BAT Sensitivity on GRB detections

Short-hard vs long-soft?

Redshift and Luminosity Distribution

- Thanks to the ground-based follow-up campaign
- Redshift list compiled by Kevin Chen (U of California, Berkeley)
 - Info from papers, GCNs, online lists (e.g., GRBOX by Dan Perley)

Redshift and Luminosity Distribution

Do we have all we need to find GRB rate?

Finding intrinsic GRB rate: A naïve theorist approach.....

Trigger Algorithm of the BAT

- 1. Rate trigger followed by image threshold:
 - > 500 different trigger criteria
 - Each trigger criterion has different
 - energy bands, time periods, signal-to-noise thresholds, etc

Using Swift's Data to Probe The Intrinsic GRB Rate

- Difficulties of reconstructing the intrinsic rate from the observed rate:
 - Swift is not a single-threshold telescope
 - The selection bias from observations
- Goal of this work:
 - Search for the intrinsic rate by simulating the complex Swift trigger algorithm
 - Trigger simulator: Generally follows the same process as the actual BAT trigger algorithm

1347 rate trigger

53 image trigger

Sensitivity Comparisons

Grid ID: ID name on the detector's plane, related to incoming angle

- Total triggered bursts: 324
- 303 rate trigger
- 21 image trigger

- Redshift and Luminosity distributions (functional form from Wanderman et al. 2010)
- Spectral distribution (Epeak, alpha, beta of the BAND function)
- Pulse shapes (from real Swift observations)

- Different burst incident angles
- Different background levels
- Option of including spectral (Epeak) evolution

- Redshift sample (Fynbo et al. 2009)
- Peak-flux sample (Sakamoto et al. 2011)
- Swift's detection per year (e.g., Gehrels et al. 2012)
- Epeak, Eiso (e.g., Butler et al. 2007, 2010)

Intro Swift Catalog Trigger Simulation GRB rate Summary

Results from the Best-Fit Sample: The Redshift and Peak-flux Distributions

Lien et al. (2014)

Possibilities:

Higher star-formation rate in the early universe
 The ratio of GRB/SN evolves (e.g., Woosley & Heger 2012)
 Luminosity evolution (e.g., Virgili et al. 2011)

Intro Swift Catalog Trigger Simulation GRB rate Summary

Exploring Uncertainties with Machine-Learning Algorithm

Graff et al. (2015)

Intro Swift Catalog Trigger Simulation GRB rate Summary

Summary

- GRBs are important in many aspects of astrophysics and cosmology:
 - Star-formation history, Stellar evolution, supernovae, black holes, gravitational waves, high-energy particle accelerations
- Understanding instrumental biases is important for probing intrinsic GRB characteristics.
- Measurements of GRB redshift (particularly at high redshift) and broadband spectra are crucial.

Summary

- GRBs are important in many aspects of astrophysics and cosmology:
 - Star-formation history, Stellar evolution, supernovae, black holes, gravitational waves, high-energy particle accelerations
- Understanding instrumental biases is important for probing intrinsic GRB characteristics.
- Measurements of GRB redshift (particularly at high redshift) and broadband spectra are crucial.

Thank You!

Back-up slides

GRBs, Supernovae, and Star Formation

- Long GRBs (T90 > 2 sec)
 - Related to core-collapse supernovae (Type Ibc)
 - Related to the death of massive stars
- Long GRBs as probes of star formation
 - Particularly crucial at high redshift (e.g., Ciardi & Leob 2000, Tanvir et al. 2012)
- Important to measure long GRB

rate (e.g., Butler et al. 2010; Wanderman et al. 2010; Yuksel et al. 2008)

GRBs, Supernovae, and Star Formation

- Long G
 Rela
 Do we have enough information?
 Long G
 of star formation
 Particularly crucial
 - , at high redshift (e.g., Ciardi & Leob 2000, Tanvir et al. 2012)
- Important to measure long GRB

rate (e.g., Butler et al. 2010; Wanderman et al. 2010; Yuksel et al. 2008)

Swift GRBs to date

- 926 GRBs till now.
- In this presentation: 919 GRBs till GRB141109B
- 314 have redshift measurements

Swift GRBs to date: 10 Years after Launch

- 926 GRBs till now
 - About 2 GRBs per weak
- 314 GRBs have redshift measurements
- Complete results will be in the 3rd BAT GRB catalog

Figure credit: PSU webpage

Cake Credit: Judith Racusin

Swift GRBs to date: 10 Years after Launch

- 926 GRBs till now
 - About 2 GRBs per weak
- 314 GRBs have redshift measurements
- Complete results will be in the 3rd BAT GRB catalog

Figure credit: PSU webpage

Cake Credit: Judith Racusin

T90: A duration encloses 90% of GRB photons

T90: A duration encloses 90% of GRB photons

Fig credit: Taka's presentation

dependent
BAT selection effect on GRB spectra

Photon Energy

Photon Flux

BAT selection effect on GRB spectra

BAT selection effect on GRB spectra

Spectral Fits

Epeak are likely to be in the BAT-energy range.

Burst Duration vs Spectrum

Burst Duration

Sensitivity Comparisons

• Grid ID: ID name on the detector's plane, related to incoming angle

Summary

- Adopting the complex BAT-trigger algorithm improve the sensitivity and hence more dim (low-flux) bursts are needed in the intrinsic sample.
- Need more bursts from high redshift to create a good match with the observations.
- Very high GRB rate at large redshift, unless luminosity evolution is considered.
- It seems like some kind of relation between bursts' energy output (e.g., Lpeak) and spectral parameters (e.g., Epeak) is needed to generate good match with the observations.
- The 3rd BAT GRB catalog is coming soon! Suggestions welcome!