Lab 8 Worksheet You are required to hand this worksheet in at the end of the lab.

Name:_____ User Name:_____

- All the example codes are at /n/ursa/A288C/alien/python_template.
- The places you need to put your answer in this worksheet are marked by "_____".
- 1. [Poisson distribution] Photon counting instruments, like the *Swift* BAT, XRT, and most of the high-energy telescopes, follows Poisson statistics. The Poisson distribution is expressed as the following,

$$P(x) = \frac{\mu^x e^{-\mu}}{x!} \tag{1}$$

The example code Poisson_distribution.py shows how you can use python to create an array of random numbers that follow the Poisson distribution, with average μ and sample size N. Modify from this example code and do the following:

- (a) Create an array of randomly distributed numbers that follow a Poisson distribution with average $\mu = 5$ and a sample size N = 100000.
- (b) Plot the histogram of this distribution (you can use the "hist" command in python, as shown in the example code).
- (c) Calculate the average, variance, and the standard deviation of this sample.

Average = _____. Variance = _____. Standard deviation = _____. What is the percentage of uncertainty at the mean value? That is, (Standard deviation)/Average × 100 = _____ %.

(d) Repeat step (a) to (c) with different sample sizes of N = 10, N = 100, N = 1000, N = 10000, and fill out the following table:

Sample size	Average	Variance	Standard deviation	Percentage of uncertainty

 Table 1:
 Poisson distribution

2. [Gaussian distribution] The Poisson distribution can be approximated by a Gaussian distribution in the high-count regime, which is applicable for BAT. The example code Gaussian_distribution.py shows how you can use python to create an array of random numbers that follow the Gaussian distribution, with average μ , standard deviation σ , and sample size N. Modify this example code and do the following:

- (a) Create an array of randomly distributed numbers that follow a Gaussian distribution with average $\mu = 5$ and a sample size N = 100000.
- (b) Plot the histogram of this distribution (you can use the "hist" command in python, as shown in the example code).
- (c) Calculate the average, variance, and the standard deviation of this sample.

```
Average = _____.
Variance = _____.
Standard deviation = _____.
What is the percentage of uncertainty at the mean value?
That is, (Standard deviation)/Average × 100 = _____ %.
```

(d) Repeat step (a) to (c) with different sample sizes of N = 10, N = 100, N = 1000, N = 10000, and fill out the following table:

Sample size	Average	Variance	Standard deviation	Percentage of uncertainty

Table 2: Gaussian distribution

3. **[False-detection rate]** The normalized Gaussian distribution is expressed as the following

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (2)

Assuming = 100.0 and $\sigma = 10.0$.

- (a) Write a code to integrate this Gaussian from $x=\mu 10\sigma$ to $x=\mu + 10\sigma$. The answer is ______.
- (b) Modify your code and integrate from $x = -3\sigma$ to $x = 3\sigma$. The $x \pm 3\sigma$ covers ______% of the total area.
- (c) If you have a detection that is 7 σ, what is the chance that this is detection is coming from the background?
 That is, the chance of having a false detection (i.e., the false-detection rate) for ≥ 7σ is _____.
- 4. [Chi-square (χ^2)] The example code Chi-square.py adds some Gaussian noise to data points that follow a linear correlation y = 2.0x + 20.0. Follow this example code to
 - (a) Write a code that produces a set of 10 data points that is drawn from this linear relation, with Gaussian noise.

- (b) Plot both the data point vs x, and the underlying model vs x.
- (c) Modify your code to calculate the value of $\chi^2 = \sum \frac{(\text{data}-y)^2}{\sigma^2}$ for your data set. χ^2 is ______. The degree of freedom is ______. The reduced χ^2 is ______.
- (d) Increase your data set to 100 samples, 1000 samples, 10000, and 100000 samples. Repeat (b) and (c) and fill out the following table.

Sample size	Chi-square	Reduce Chi-square	

Table 3: χ^2 Test