	Lab 6 Worksheet You are required to hand this worksheet in at the end of the lab.
	Name: User Name:
•	All the example codes are at /n/ursa/A288C/alien/python_template.
•	The places you need to put your answer in this worksheet are marked by "".
1.	[Hello World!] Follow the example code Hello_world.py to print "Hello World!" in your python script. Run the python script to see if it works.
2.	$[\mathbf{math}]$ Follow the example code $\mathtt{math_example.py}$ and write a code to calculate z in the following equation:
	$z = \frac{2 \times y^2}{(x+y)} \tag{1}$
	where $x = 6$ and $y = 3$.
	Run your python code to print out the value of z.
3.	[for loop] Follow the example code for_loop_sum.py, to calculate the sum of the even number series
	$2 + 4 + 6 + 8 + \dots + 200 \tag{2}$
	The sum found by your code is
4.	[1d array] Follow the example code array_1d.py, modify your code in the previous question to append the sum from each round of the for loop (i.e., the numbers of 2, 6, 12) to an array called "test_array". Get the 60th element of the array and print it out (to the screen).
	The 60th element of the "test_array" is
	(Optional) calculate the sum analytically to check if the answer from the code is correct.
5.	Download the following GRB table to your own personal directory. https://swift.gsfc.nasa.gov/results/batgrbcat/summary_cflux/summary_general_info/summary_general.txt
6.	[read file] Follow the example code read_file.py, write a python script to read in the GRB table. Print out each line in the file to see if it shows up correctly.
7.	[read columns in file] Follow the example code read_column_in_file.py, modify your script in the previous question to separate each line into column. Print out the columns of GRB name and T_{90} .

 T_{90} for short GRBs (i.e., those with $T_{90} \leq 2.0$).

8. [if statement] Follow the example code if_statement.py and convert_variable_type.py, modify your script in the previous question to print out the GRB names and

9.	[save file] Follow the example code save_file.py, modify your script in the previous question to save the list of short GRBs and their T_{90} to an output file called short_GRBs.txt.
	How many short GRBs did you find?
10.	[match string] Follow the example code match_name.py, modify your script in the previous question to print out T_{90} for GRB120224A. The T_{90} for GRB120224A is