
1

ASTR 288C - Lab 1
(Based on the online tutorial http://www.ee.surrey.ac.uk/Teaching/Unix/index.html)

1.1 Listing files and directories
ls (list)
When you first login, your current working directory is your home directory. Your home directory
has the same name as your user-name, for example, jsmith, and it is where your personal files
and subdirectories are saved.
To find out what is in your home directory, type:

% ls

The ls command (lowercase L and lowercase S) lists the contents of your current working
directory. There may be no files visible in your home directory, in which case, the UNIX prompt
will be returned. Alternatively, there may already be some files inserted by the System
Administrator when your account was created.

Files beginning with a dot (.) are known as hidden files and usually contain important program
configuration information. They are hidden because you should not change them unless you are
very familiar with UNIX. To list all files in your home directory including those whose names
begin with a dot, type:

% ls -a

As you can see, ls -a lists files that are normally hidden.

2

1.2 Making Directories
mkdir (make directory)
We will now make a subdirectory in your home directory to hold the files you will be creating and
using in the course of this tutorial. To make a subdirectory called unixstuff in your current
working directory type:

% mkdir unixstuff

To see the directory you have just created, type:

% ls

1.3 Changing directory
cd (change directory)
This command moves your position in the file-system tree from the current working directory to
'directory'. To change to the directory you have just made, type:

% cd unixstuff

Typing cd with no argument always returns you to your home directory. This is very useful if you
are lost in the file system. Try it now.

% cd

Typing:

% cd ..

will take you one directory up the hierarchy, in the parent directory of your current working
directory. Try it now.

1.3 Path names
pwd (print working directory)
Path names tell you where you are in relation to the whole file-system. For example, to find out
the absolute pathname of your current directory, type:

% pwd

The full pathname will look something like this -
/n/ursa/A288C/
which means that the sub-directory A288C (the group directory) is located in the ursa sub-
directory, which is in the “n” sub-directory, which is in the top-level root directory called " / " . If
you now type:

% ls unixstuff

you will receive an error message like:

% ls: cannot access unixstuff: No such file or directory

The reason is that unixstuff is not in your current working directory. To use a command on a file
(or directory) not in the current working directory, you must either change to the correct parent
directory, or specify its full pathname. To list the contents of your unixstuff you must type:

% ls <your_account>/unixstuff

or

3

% ls ~/unixstuff

Home directories can also be referred to by the tilde ~ character. It can be used to specify paths
starting at your home directory, no matter where you currently are in the file system.

1.4 Summary

2.1 Copying files
cp (copy)
cp file1 file2 is the command which makes a copy of file1 in the current working directory and
calls it file2.
Copy the file science.txt in your home directory:

% cd

% cp /n/ursa/A288C/alien/science.txt .

Note: Don't forget the dot . at the end. The dot means the current directory, and allows you to
copy the file in your working directory without specifying its full pathname.

2.2 Moving files
mv (move)
mv file1 file2 moves (or renames) file1 to file2.
To move a file from one place to another, use the mv command. This has the effect of moving
rather than copying the file. It can also be used to rename a file, by moving the file to the same
directory, but giving it a different name.
We are now going to move the file science.txt to your unixstuff directory, and rename it
science.txt. Type:

% mv science.txt unixstuff/science.txt

4

% cp unixstuff/science.txt .

% cd unixstuff

2.3 Removing files and directories
rm (remove), rmdir (remove directory)
To delete (remove) a file, use the rm command.
First, copy the science.txt file back to the current directory so we can delete it later

Then type:

% rm science.txt

 this will remove the file science.txt from your home directory.

You can use the rmdir command to remove a directory. Make sure that the directory is empty
first, since UNIX will not let you remove a non-empty directory.

2.4 Displaying the contents of a file on the screen
clear (clear screen)
You may like to clear the terminal window of the previous commands so the output of the
following commands can be clearly understood. Type:

% clear

This will clear all text and leave you with the % prompt at the top of the window.

cat (concatenate)
The command cat can be used to display the contents of a file on the screen.
Go to your unixstuff directory by typing

Type:

% cat science.txt

As you can see, the file is longer than the size of the window.

5

less
The command less writes the contents of a file onto the screen a page at a time. Type:

% less science.txt

Press the [space-bar] if you want to see another page, and type [q] if you want to quit reading.
head
The head command writes the first ten lines of a file to the screen. First clear the screen then
type:

% head science.txt

To list only the first three lines of the file, type

% head -3 science.txt

tail
The tail command writes the last ten lines of a file to the screen. Clear the screen and type:

% tail science.txt

 To list only the last three lines of the file, type

 % tail -3 science.txt

2.5 Searching the contents of a file
Simple searching using less
Using less, you can search though a text file for a keyword (pattern). For example, to search for
the word 'Astronomy', type:

% less science.txt

then, still in less, type a forward slash [/] followed by the word to search

/Astronomy

As you can see, less finds and highlights the keyword. Type [n] to search for the next
occurrence of the word.
Note: if you entered astronomy instead of Astronomy, less returns Pattern not found.

grep
grep is one of many standard UNIX utilities. It searches files for specified words or patterns.
First clear the screen, then type:

% grep Astronomy science.txt

As you can see, grep has printed out each line containing the word Astronomy. Also the
grep command is case sensitive, and distinguishes between Astronomy and astronomy.
To ignore upper/lower case distinctions, use the -i option, i.e. type

% grep -i astronomy science.txt

To search for a phrase or pattern, you must enclose it in single quotes (the apostrophe symbol).

% grep -i 'gamma ray' science.txt

Some of the other options of grep are:
-v display those lines that do NOT match
-n precede each matching line with the line number
-c print only the total count of matched lines
Try some of them and see the different results. Don't forget, you can use more than one option
at a time.

6

wc (word count)
To do a word count on science.txt, type:

% wc -w science.txt

 To count the number of lines, type:

% wc -l science.txt

2.6 Summary

3.1 Wildcards
The * wildcard
The character * is called a wildcard, and will match against one or more characters in a file (or
directory) name. For example, in your unixstuff directory, type:

% ls *txt

This will list all files in the current directory ending with ‘list’. Now try typing:

% ls txt*

This will list all files in the current directory starting with ‘list’.

The ? wildcard
The character ? will match exactly one character. So ?ouse will match files like house and
mouse, but not grouse. Try typing:

% ls sci??ce.txt

7

% cat

% cat > list1

% pear
% banana
% apple
^D {this means press [Ctrl] and [d] to

% cat list1

% cat >> list1

% cp list1 list2

3.2 Redirection

Most processes initiated by UNIX commands write to the standard output (that is, they write to
the terminal screen), and many take their input from the standard input (that is, they read it from
the keyboard). There is also the standard error, where processes write their error messages, by
default, to the terminal screen.

We have already seen one use of the cat command to write the contents of a file to the screen.
Now type cat without specifying a file to read
Then type a few words on the keyboard and press the [Return] key.
Finally hold the [Ctrl] key down and press [d] (written as ^D for short) to end the input.
What has happened?
If you run the cat command without specifying a file to read, it reads the standard input (the
keyboard), and on receiving the 'end of file' (^D), copies it to the standard output (the screen).
In UNIX, we can redirect both the input and the output of commands.

3.3 Redirecting the Output

We use the > symbol to redirect the output of a command. For example, to create a file called
list1 containing a list of fruit, type

Then type in the names of some fruit. Press [Return] after each one.

What happens is the cat command reads the standard input (the keyboard) and the > redirects
the output, which normally goes to the screen, into a file called list1
To read the contents of the file, type

Copy list1 to list2 to save for further use

3.4 Appending to a file

The form >> appends standard output to a file. So to add more items to the file list1, type

8

% peach
% grape
% orange
^D (Control D to

% cat list1

% cat list1 list2 > biglist

% cat biglist

% who

% who | wc

Then type in the names of more fruit

To read the contents of the file, type

You should now have two files. One contains six fruits, the other contains three fruits.
We will now use the cat command to join (concatenate) list1 and list2 into a new file called
biglist. Type

What this is doing is reading the contents of list1 and list2 in turn, then outputting the text to the
file biglist
To read the contents of the new file, type

3.5 Pipes

To see who is on the system with you, type

To see how many people there are (that is, how many lines listed with the “who” command), type

The vertical bar | (pipe) means taking the output of the first command as the input of the following
command.

3.6 Filename conventions
In naming files, characters with special meanings such as / * & % , should be avoided. Also,
avoid using blank spaces within names. The safest way to name a file is to use only
alphanumeric characters, that is, letters and numbers, together with _ (underscore) and . (dot)
The rules and conventions for naming files apply also to directories.

Good Filename Bad Filename

project.txt project

my_program.pro my program.pro

mark_lisa.jpg mark & lisa.jpg

9

% :w

% :q

% :wq

% emacs –nw test.txt

File names conventionally end with a dot followed by a group of letters indicating the contents of
the file (extension). For example, all files consisting of Python code may be named with the
ending .pro, for example, prog1.py . Then in order to list all files containing Python code in your
home directory, you need only type ls *.py in that directory.

3.7 Getting Help
There are online manuals which gives information about most commands. The manual pages
tell you which options a particular command can take, and how each option modifies the
behavior of the command. Type man command to read the manual page for a particular
command. For example, to find out more about the grep command, type:

% man grep

4.1 Text Editor
There are several text editors available in the terminal environment. Here we introduce you two
commonly used text editors.

4.2 vim
Open the text editor by typing

% vi test.txt

Press the letter i to go into the “insert” mode, and type

% This is a test.

in the file.

When you finish editing, press the escape key (esc) to leave the insert mode, and type

to save the file, and

to quit the file.

Alternatively, you can also just type

to save and quit the file.

4.3 emacs
Open the text editor by typing

Start editing the file, type

% This is a test.

in the file.

1
0

^x^s

^x^c

% cd ~

#!/bin/bash

cd unixstuff
pwd

echo “This is a shell script.”

% chmod 777 test_shell.sh

% ./test_shell.sh

When you finish editing, type

 to save the file, and

to quit the file.

5.1 Shell Script
Shell script is a powerful tool to combine your commands into one single script. When you
execute the script, computer will go through the commands in the script. This is very useful if you
need to automate your commands.

Here we will create a simple shell script to go to the unixstuff directory and print out the current
location.

First, go to your home directory by typing

Use either vi or emacs, open a file called test_shell.sh in your home directory, and type the
following lines in the file test_shell.sh.

The first line “#! /bin/bash” indicates which shell you are using. The current line means that we
are using the “bash shell”, which is the recommended shell to use.

To make the shell script executable, type

If you type “ls”, you should see the name of “test_shell.sh” is now green, meaning that this is an
executable file. The number “777” after chmod indicates granting write, read, and execute
permissions to everyone.

Now the file is executable, we can execute/run the script by typing

You should see the following output
“””
/n/ursa/A288C/<your_account>/lab01
This is a shell script.
“””

1
1

Lab 1 Worksheet
You’re required to hand this worksheet in at the end of the lab.

Name: ____________________________ User Name: ____________________________

a) Create a directory lab01 inside unixstuff, and write the full pathname of the directory lab01.

b) Copy science.txt to the directory lab01 created in Exercise 1, write down the command you
use.

c) Write down the command that lists the first 3 lines in science.txt

d) Write down the command that lists the last 5 lines in science.txt

e) How many words are there in the file science.txt? How many lines?

f) Write down the command to count the number of lines that contain term “physics” in

science.txt?

g) In your directory unixstuff, what is the command to list all the files with names that include

“txt”?

h) What does the command diff do?

Remember to fill in the doodle poll for alternative office hour:
http://doodle.com/poll/mrfqbp259sraqsyq
(Multiple choices)

