
ASTR 288C

Homework 3
Due: 3:30pm, Sept. 25, 2017

• Write everything in this homework assignment in a LaTeX file using the La-

TeX template from /n/ursa/A288C/alien/lab03_latex/Homework3_latex_form/.

• Print out BOTH the original LaTeX file and the output pdf file and turn

them in.

1. Copy the folder /n/ursa/A288C/alien/lab03_latex/Homework3_latex_form/ to your

home directory or your own computer. Fill out your answers to the following ques-

tions in the LaTeX template called Homework3_latex_form.tex. Note that this is a

di↵erent template than the one you used in the lab.

2. [10 points] Make the following table using LaTeX.

Table 1: Summary of the Swift GRBs in each category.

GRB category Number of bursts (percentage)

Long 850 (84.49%)

Short 90 (8.95%)

Short with Extended Emission 12 (1.19%)

Ultra long (T90 & 1000 s) 16 (1.59%)

Bursts with un-constrained durations 66 (6.56%)

3. [10 points] Write the following equation using LaTeX.

✓
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= 2.86⇥ 10�11 [erg s�1 cm�2]
4⇡D2

L
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4. [15 points for each proposal; 30 points total] Proposal reviews:

Attached are two proposals that were submitted to the Swift Guest Investigator Pro-

gram1. These proposals request funding of ⇠ $40, 000 for a one-year research project.

1
https://swift.gsfc.nasa.gov/proposals/swiftgi.html

1

Homework3_latex_form.tex
https://swift.gsfc.nasa.gov/proposals/swiftgi.html


Each proposal contains 4 pages of science justification (to convince the committee that

this research is important and worthy to be funded) and another page or less of budget

narrative (to show how the funding will be spent).

Imaging you were one of the reviewers, read these proposals, and review each proposal

by answering the following questions in the LaTeX template.

(a) [3 points for each proposal] Summarize the goal of the proposal in a few

sentences.

(b) [6 points for each proposal] List three strengths of this proposal that you find.

(c) [6 points for each proposal] List three weaknesses of this proposal that you

find.

Judge the proposal strength and weakness based on the following criteria:

(These should be clearly stated in the proposal, regardless of reviewer’s background.)

• Does the proposal clearly explain the scientific motivation and the adopted meth-

ods of this project?

• Is the science proposed in this project important?

• Is the proposed project timely? That is, is the project better to be done now than

in a few years?

• Is the proposed project tightly related to the Swift mission?

• Is the project doable in the proposed timeline?

• Is the budget arrangement reasonable?

Note that each strength or weakness should address di↵erent points. For example, if

you find three typos in a proposal, you can say “there are several typos in the proposals,

which makes it di�cult to read and understand.”. But you should not list each typo

as an individual weakness.

Your review for each proposal should be less than one page in the compiled pdf file.

We will discuss these proposals based on your review in the next lab.

5. Compile your LaTeX file into a pdf file. Print out and turn in BOTH the original

LaTeX file and the output pdf file.

• Tips: If you are in the Unix/Linux system, you can use command lpr to print.

For example, type “lpr Homework3 latex form.tex”.
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QUANTIFYING THE INSTRUMENTAL EFFECTS AND SYSTEMATIC UNCERTAINTIES IN THE
DURATIONS OF SWIFT/BAT GAMMA-RAY BURSTS

PI: A. Lien (GSFC/CRESST/UMBC)
S. Guiriec, D. Kocevski, T. Sakamoto, J. Hakkila, C. Shrader

1. Abstract
The pulse durations of gamma-ray bursts (GRBs) hold the key to crucial information in understanding the un-

derlying physics. In particular, the widely-adopted classification of long and short GRBs, with the separation of ⇠ 2
sec in the burst durations, has been commonly used to infer the different origins of GRBs. However, the observed
burst duration can suffer from different degrees of instrumental and observational biases, and thus might not reflect
the true intrinsic duration. We propose to study the biases of the burst durations in the GRB sample from the Swift
Burst Alert Telescope (BAT), and quantify the instrumental effects and systematic uncertainties on those durations.
The proposed study will utilize a code we developed that is capable of simulating Swift/BAT GRBs with accurate
instrumental response and the BAT trigger algorithm.
2. Description of the Proposed Program
A) Scientific Rationale:
The importance of the observed burst durations to understanding GRB physics

Gamma-ray bursts (GRBs) are one of the most energetic explosions in the universe, and can be observed across a
wide range of wavelengths (from radio to GeV). Therefore, GRBs provide a rich environment to study astrophysics
and a unique probe of cosmology. GRBs are conventionally categorized into two groups, long and short bursts, based
on the burst duration with the separation of ⇠ 2 sec. The burst duration is usually quantified in terms of the duration
that encloses 90% (or 50%) of the burst emissions, T90 (or T50). The most common way (adopted by many missions
that observe GRBs, such as CGRO/BATSE, Swift/BAT, and Fermi/GBM) defines T90 to start at the time when 5%
of the total fluence is detected, and end at the time when 95% of the total fluence is observed. Similarly, the start
and end time of T50 correspond to the time at which 25% and 75% of the total fluence are measured, respectively.
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Figure 6. T90 (top) and T50 (bottom) distributions from the BAT mask-weighted light curves in the 15–350 keV band.

Figure 7. From top to bottom, T90 distribution of BAT from the mask-weighted
light curves in the 15–350 keV band, BATSE from the light curves in the
50–350 keV band, BeppoSAX from the light curves of the GRBM instrument
in the 40–700 keV band, and HETE-2 from the light curves of the FREGATE
instrument in the 6–80 keV band.

fluence ratio of about 2. On the other hand, the averaged fluence
ratio of the L-GRBs is 1.3. The Kolmogorov–Smirnov (K-S) test
probability of the fluence ratio between L-GRBs and S-GRBs
is 8.3 × 10−20. Based on this comparison, we can conclude that
the S-GRBs are generally harder than the L-GRBs. However,

note that there is a large overlap in hardness between L-GRBs
and S-GRBs in the BAT sample. The S-GRBs with E.E. overlap
the L-GRB samples.

The comparisons in the fluence ratio–T90 plane for the BAT,
the BATSE, the BeppoSAX, and the HETE-2 GRBs are shown
in Figure 9. Both fluences and T90 values for the BATSE sample
are extracted from the 4B catalog. For the BeppoSAX sample,
we used the best-fit simple PL model in the catalog (Frontera
et al. 2009) to calculate the fluence ratios in the 50–100 keV
and the 25–50 keV band. For the HETE-2 sample, we calculated
the fluences in those energy bands using the spectral parameters
reported in Sakamoto et al. (2005) and Pélangeon et al. (2008).
We only calculated the fluences for sources listed with CPL or
Band parameters.17 The T90 values of the HETE-2 sample are
from Pélangeon et al. (2008). As seen in Figure 9, the GRB
samples of different missions are overlaid on each other.

4.4. Peak Fluxes and Fluences

Figure 10 shows the 1 s and the 20 ms peak photon fluxes
versus the fluence in the 15–150 keV band. As we showed in
the BAT1 catalog, there is a positive correlation between peak
photon flux and fluence. Based on the correlation between the
20 ms peak flux and the 15–150 keV fluence (lower panel of
Figure 10), it is now clear that most of the BAT S-GRBs populate
a low fluence but high peak flux region. For S-GRBs, the 1 s peak
flux is systematically lower than the 20 ms peak flux because the
1 s time window is usually predominantly larger than the actual
S-GRB duration used for calculating the flux. That the S-GRB
population has low fluence and high peak flux in the BAT sample
could be due to the selection effect of the imaging requirement
in the trigger algorithm (e.g., more detected photons are needed
to image the source).

The fluence in the 50–150 keV band versus that in the
15–50 keV band for the BAT GRBs is shown in the top panel
of Figure 11. In this figure we also indicate the distribution
expected for a Band function with a low-energy photon index

17 Because of this spectral model requirement, we are excluding a large
number of X-ray flashes in the HETE-2 sample where a PL is the usual
accepted model.
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Fig. 2.— Distribution of GRB durations in the 50–300 keV energy range. The upper plot shows

T50 and the lower plot shows T90.
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S-GRB duration used for calculating the flux. That the S-GRB
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in the trigger algorithm (e.g., more detected photons are needed
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Figure 1: The distributions of GRB duration T90

for three different GRB instruments: Fermi/GBM,
Swift/BAT, and CGRO/BATSE. The red line marks
the 2 second separation for long and short bursts.
The top panel is adopted from Fig. 2 in Paciesas et
al. 2012. The lower two panels are adopted from
Fig. 7 in Sakamoto et al. 2011.

Throughout the history of GRB studies, the burst dura-
tion plays a crucial rule in understanding GRB origins and
the relevant physics. The total burst duration provides impor-
tant clues of the total energy released from a burst, and the
time profile of the pulse encloses information of the underly-
ing mechanism that powers the burst. Long GRBs are found
to be associated with the death of massive stars (e.g., Mac-
Fadyen & Woosley 1999; Gehrels & Mészáros 2012, and ref-
erence therein), and thus are useful tools for studying stellar
evolution and star-formation history, particularly in the early
universe due to the extraordinary brightness of GRBs. The
origin of the short GRBs remains mysterious. Current stud-
ies suggest that they might be generated from compact ob-
ject mergers (e.g., see reviews and references in Berger et al.
2003), which makes them strong candidates of gravitational
wave sources. As a results, short GRBs are of particular in-
terest in light of the recent detections of gravitational wave by
Advanced LIGO (Abbott et al. 2015; Abbott et al. 2016).

Instrumental and observational biases in GRB durations

Despite the importance of the GRB durations to studying
the GRB origins and their intrinsic properties, it is well-
recognized that the burst durations are likely to suffer from
different degrees of biases and uncertainties. In particular, the
observed GRB durations are coupled with the time dilation
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that in turn depends on the redshift of the burst. However, only ⇠ 30% of the BAT-detected GRBs have redshift
measurements. Moreover, different instrumental effects, such as background noise and the detector sensitivity at
different energies, can bias the burst durations.

The conventional GRB classification is based on burst durations measured from the BATSE sample, which show
an obvious double-peaked distribution (see the bottom panel of Fig. 1). However, many studies have shown that
the observed burst distributions are instrumental dependent (e.g., Sakamoto et al. 2011, Bromberg et al. 2012,
Kocevski & Petrosian 2013). As shown in Fig. 1, the distributions of burst durations for GRBs detected by different
instruments can be very different. Short bursts compose of a larger fraction in the BATSE GRB sample (⇠ 26%),
in comparison to the fractions detected by the Fermi/GBM (⇠ 17%) and Swift/BAT (⇠ 10%). In fact, Bromberg et
al. (2012) suggests that different missions should adopt different durations that separate the short and long GRBs in
order to reflect the correct correspondence to the physical origins of the bursts (i.e., compact-object mergers versus
core-collapses of massive stars).

Furthermore, the background noise could hide an unknown fraction of the burst, which is sometimes referred to
as the “tip-of-the-iceberg” effect. As shown in Fig. 2 (adopted from Kocevski & Petrosian 2013), Fig 3, and Fig 4,
some fraction of the burst can be buried under the background noise and become undetectable as the burst becomes
dimmer. Kocevski & Petrosian (2013) demonstrates the importance of this effect, and quantified the hidden fraction
of a single-pulse burst as the burst becomes fainter at larger redshifts. These authors use the instrumental response
of BATSE and adopt a single-pulse time profile, in order to examine the observed burst duration at different redshift
and explain the lack of time-dilation signature in the GRB light curves.

Figure 2 presents plots adopted from Kocevski & Petrosian (2013), which show some of the main results in their
study. The left panel demonstrates how the observed burst duration for a single-pulse GRB can actually become
shorter at large redshift because the “tip-of-the-iceberg” effect dominates over the time-dilation effect. The right
panel shows that when the signal-to-noise ratio drops, a larger fraction of the pulse will be hidden under the back-
ground noise. As seen in these plots, the observed burst duration can miss as much as 90% of the intrinsic pulse.
These authors adopt a slightly modified way to quantify the burst duration, which is noted as TKP and encloses a
time range when the pulse count is larger than the background variation (

p
N , where N is the number of count of

the pre-burst background; see Kocevski & Petrosian 2013 for detailed definition).
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Figure 4. Effects of increasing redshift on the observed light curve of a GRB pulse. The effects of time dilation are hidden by the decreasing S/N and the pulse
duration in fact decreases with increasing redshift.
(A color version of this figure is available in the online journal.)

We then add a Poisson-distributed, energy-dependent, back-
ground spectrum derived from the median backgrounds of a
sample of BATSE detected bursts to each time-resolved count
spectra. A count light curve with a realistic background spec-
trum can then be produced as a function of time by integrating
the individual time-resolved count spectra over the instrument’s
effective energy range for each time bin. The burst duration is
then measured using a Bayesian block algorithm to determine
periods of emission that are above the Poisson background. To
ensure that this Bayesian-block-determined duration does not
grow without bound as the pulse’s peak flux increases, we de-
fine the upper bound of the duration to be the first change point
after the pulse peak that is consistent with

√
N of the pre-burst

background. We refer to this duration estimate as TKP. In ad-
dition to our modified Bayesian block implementation, we also
employ the traditional fluence based T90 and T50 estimates as
well as the standard Bayesian block method used by the Swift
team, which we refer to as TSwift. We refer the reader to Kocevski
(2012) for a more comprehensive description of the GRB model
used for the present analysis.

3. RESULTS

Figure 4 shows the resulting count light curves for the
simulated GRB shown in Figure 2 placed at three different
redshifts, along with the Bayesian block reconstruction of the
burst duration (solid green lines). Contrary to what is expected
due to cosmological time dilation, the duration of the simulated
pulse decreases as a function of increasing redshift. This is
primarily due to the decreasing S/N of the observed pulse with
increasing redshift, which progressively limits only the brightest
portion of the GRB’s light curve from being accessible to the
detector. This effect is analogous to the problem faced when
measuring the physical radii of galaxies at large distances, where
the regions of lower surface brightness fall below the sensitivity
of the collecting instrument. In addition, the energy at which
most of the energy is emitted (i.e., the peak of the νFν spectra)
is redshifted to energies at which the instrument becomes less
sensitive, reducing the observed signal even further.

Both of these effects can be seen in Figure 5, where we plot
the observer frame duration for a set of simulated GRB pulses,
of equal intrinsic duration but varying intrinsic luminosity, as
a function of redshift. The solid line represents the expected
observer frame duration in an FLRW universe, found by
multiplying the pulse’s intrinsic duration by (1 + z). The dotted
line represents the observed duration as measured from the
photon flux light curves, found by integrating the photon spectra
over the detector’s energy range. The dashed lines represent
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Figure 5. Observer frame duration for a set of simulated GRB pulses, of equal
intrinsic duration but varying intrinsic luminosity, as a function of redshift.
Even a perfect detector collecting data over a limited energy range would not
faithfully measure the expected time dilation effects on a GRB pulse as a function
of redshift. When noise is added to the observed signal, the measured duration
turns over and begins to decrease with increasing redshift.
(A color version of this figure is available in the online journal.)

the observed duration as measured from count light curves
for each of the simulated GRB pulses. These count durations
actually represent the median value of 200 count light curve
realizations for each redshift bin, computed in order to account
for statistical fluctuations in the simulated background which
may dominate the duration measurements as the observed S/N
decreases with increasing redshift. The error bars represent the
standard deviation of the resulting duration distribution for each
set of 200 realizations.

The divergence between the predicted observer frame du-
ration and the duration of the photon flux light curve can be
understood as due to the redshifting of the underlying GRB
spectra. Because the simulated photon flux light curves are non-
bolometric, their shape will be greatly affected by the redshifting
of Epk toward the lower edge of the detector’s energy range. Es-
sentially, the pulse profile that would have been seen by the
detector if the burst had occurred at z = 0.01, for example, is
not the same as the profile seen at z = 2, because the lower end
of the GRB spectrum is no longer detected by the instrument.
Therefore, even a perfect detector that observes over a limited
energy range would not faithfully measure the expected time
dilation effects on a GRB pulse as a function of redshift.

The divergence between the predicted observer frame dura-
tion and the measured duration becomes wider when considering
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Figure 6. Estimated source frame duration, normalized to the true intrinsic
duration, for a set of simulated bursts of varying luminosity. Transforming the
underestimated observer frame durations into the source frame has the effect of
further widening the difference between the pulse’s true intrinsic duration and
our duration estimates.
(A color version of this figure is available in the online journal.)

duration measurements made through the use of the detector’s
count data. When noise is added to the observed signal, the mea-
sured duration turns over and begins to decrease with increasing
redshift. As the pulse’s S/N falls, only the brightest portion of
the pulse becomes accessible to the detector, until the observed
duration approaches zero and the pulse is no longer detected.
As seen in Figure 5, the redshift at which the transition between
a rising and falling duration occurs depends largely on the lumi-
nosity of the pulse, but is also influenced by the burst’s intrinsic
Epk,src, since the redshifting of Epk,src toward the lower edge of
the detector’s energy range acts to further reduce the S/N of the
pulse.

Transforming the observed durations into the source frame
by dividing by (1 + z) has the effect of further widening the
difference between the pulse’s true intrinsic duration and the
measured duration. The systematic error that this duration bias
introduces also propagates into our estimate of the burst’s total
energy release, as Eiso is estimated by integrating the burst’s flux
over the observed duration. Figures 6 and 9 show both of these
effects.

In Figure 6, we have plotted the estimated source frame
duration, normalized to the true intrinsic duration, for bursts
of varying luminosity, but of equal intrinsic duration (dashed
lines). The turnover observed in Figure 5 can now be seen
as a steepening of the estimated source frame duration as a
function of redshift. In all cases, the underestimation of the
source frame duration can approach as much as 80% near the
detection threshold of the instrument.

The consequences that this systematic error has on the
estimates of Eiso can be seen in Figure 7, where the ratio of
the pulse’s estimate to true Eiso can reach as much as 90% or
more, as the pulse nears the detector’s sensitivity threshold. The
Eiso measurements presented here were k-corrected to a standard
energy range of 10–10, 000 KeV, hence this error in our estimate
of Eiso is largely due to the understimate of the duration over
which the burst’s observed flux is integrated.

In Figure 8, we quantify the severity of the duration bias
as a function of the observed S/N by simulating 4000 single
peak GRBs at z = 1 of equal intrinsic duration, but varying
luminosity. The estimated observer frame duration normalized
to the intrinsic duration is plotted versus the pulse’s observed
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Figure 7. Burst’s estimate Eiso normalized to the burst’s true Eiso for a set of
simulated bursts of varying luminosity. The systematic error that the duration
bias introduces propagates into our estimate of the burst’s energetics.
(A color version of this figure is available in the online journal.)
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Figure 8. Resulting fast rise exponential decay (FRED) pulse shape generated
by the model by integrating the bolometric GRB spectrum at each time bin.
(A color version of this figure is available in the online journal.)

S/N, with a color coding displaying the peak photon flux of
the observed signal. Again, the bias in the duration estimate is
largest for intrinsically weak bursts with low S/N as seen in the
detector. Although the bias is far less severe for the highest S/N
bursts, the offset between the estimated duration and the true
duration is still evident and due to the redshifting of Epk,src. The
divergence between the true observer frame duration and the
estimated duration at low S/Ns reflects the similar breaks seen
in Figures 5 and 6. More importantly, this divergence occurs at
roughly the same S/N, in this case S/N ∼ 25, for all of the
bursts in this simulation.

4. COMPARISON OF ALTERNATIVE
DURATION ESTIMATORS

The durations discussed above were estimated using our
modified Bayesian block algorithm described in Section 3. To
test whether the observed bias discussed above also affects
the traditional fluence based T90 duration, we have plotted in
Figure 9 the duration as measured by T90, TKP, and TSwift for a
pulse of identical source frame properties at z = 0 of varying
luminosity. As with similar plots presented in this paper, each
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Figure 2: Figures adopted from Kocevski & Petrosian (2013). The left panel shows how the observed durations can
diverge from the intrinsic durations for bursts at larger redshifts. The right panel demonstrates that bursts with lower
signal-to-noise ratios can suffer from significant impact of the “tip-of-the-iceberg” effect, with up to ⇠ 90% of the
intrinsic pulse structure buried under the noise.

In our proposed project, we plan to generalize the studies conducted in Kocevski & Petrosian (2013). We will
perform a population study including GRBs with different pulse shapes, along with many other GRB characteristics,
such as fluxes, spectral properties, and burst incident angles relative to the detector plane. Moreover, we will focus
on the Swift/BAT GRBs and adopt the instrumental response of the BAT. The goal of this project is to quantify the
instrumental effects and systematic uncertainties in the burst durations for GRBs detected by the BAT.
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Figure 3: Simulated light curves for the same bursts at different redshifts. This example uses the pulse shape from
GRB060814, and shows the observed burst duration T90 can change as the burst becomes fainter and a larger fraction
of the burst is buried under the background noise. The T90 determined by the standard pipeline “battblocks” is also
labeled in each plot.

Figure 4: Similar to Fig. 3, but using the pulse shape from GRB130427A. Due to the extraordinary brightness of
this burst, the flux is scaled down from the original one by a factor of ⇠ 10 to better demonstrate the instrumental
effects as the burst is moved to larger redshifts.

B) Immediate Objective:
We have developed a code that is capable of generating GRB light curves in count rate by accounting for the

instrumental response of BAT, and simulating its complex trigger algorithm to determine whether the burst is de-
tectable (Lien et al. 2014). The code is capable of simulating GRBs with different input physical properties such
as the luminosity, redshift, spectrum, and spectral evolution. In addition, the code also takes into account different
input parameters related to various instrumental effects, including the burst incident angle relative to the detector
plane and the number of active detectors.

We propose to utilize this code to perform systematic studies of the instrumental effects on the burst durations for
GRBs detected by BAT. Our primary goal is to perform a population study to quantify the systematic uncertainties
of the burst durations in the BAT GRB sample, and to study how these uncertainties affect the the burst-duration
distribution. Ultimately, we would like to provide the systematic uncertainties of the burst durations for the BAT-
detected GRBs, which will likely depend on some GRB properties, such as the GRB flux, signal-to-noise ratio, the
complexity of the pulse shape (e.g., number of pulses), and GRB spectrum (e.g., photon index or hardness ratio).

Figure 3 and 4 show examples of simulated light curves at different redshifts using the code we developed, with
the light curve shapes from GRB060814 and GRB130427A, respectively. The detectability of the burst in each
scenario is also determined by our “trigger-simulator” code. The burst durations are estimated from the standard
pipeline, “battblocks1”, which determines the burst durations via the Bayesian Block method. We will use battblocks
to determine burst durations in this proposed study. Fig. 3 shows that as the burst is moved to higher redshifts,
some fractions of the burst gradually sink under the background noise and are thus missed by the T90 estimated by
battblocks. Moreover, this burst can still be detectable at z ⇠ 6.5 via the “image trigger” algorithm of BAT2 even

1https://heasarc.gsfc.nasa.gov/ftools/caldb/help/battblocks.html
2The BAT adopts two different trigger algorithms: the “rate trigger” based on changes in photon-count rate, and ”image trigger” based on

searches in the image created with longer exposure time (& minute; detail descriptions can be found in Lien et al. 2014).
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when the burst structure become un-recognizable by the standard pipeline. Fig. 4 presents similar “tip-of-the-icberg”
effect as the burst becomes fainter, and shows that a intrinsically long burst can become a short burst observationally.

Specifically, we plan to study the instrumental effects and systematic uncertainties of the burst durations through
the following two approaches:
(1) Observational approach: exploring the potential confusion in the distribution of the GRB burst durations

We will first use the sample of the BATSE-detected GRBs, to see whether it is possible to reproduce the double-
peaked distribution using the BAT energy band, instrumental response, and backgrounds. Particularly, we will
perform the studies in two different methods: (1) Using the pulse shapes and fluxes in the energy ranges that overlaps
with the BAT (⇠ 15 to 350 keV). (2) Retaining the pulse shape in the whole BATSE energy range (⇠ 10 keV to ⇠
20 MeV; Goldstein et al. 2013), but scaling the flux to the BAT energy range based on the burst spectrum. We will
then explore how much distortion in the burst-duration distribution that would be introduced by each of these two
methods. We will also perform the same studies on Fermi/GBM and other instruments for which data are available.

(2) Theoretical approach: providing quantifiable systematic uncertainties of the burst durations

Because all the observed bursts will suffer from different degrees of instrumental and observational biases in their
burst-duration measurements, we propose to study the systematic uncertainty of the burst durations via a theoretical
approach. We will create two different kinds of libraries of intrinsic GRB light curves: (a) A library of purely
theoretical light curves. Many studies have suggested possible functional forms to described a single-pulse light
curve (e.g., Norris et al. 2005; Hakkila & Preece 2014). We will try one or more of these functional forms, and
create a random sample of light curves with different number of pulses by adding up the single-pulse function with
different amplitudes and different time separations between pulses. (b) A library of observational-based pulses. Due
to the complexity of the GRB pulse shapes, it is possible that the theoretical functions might not correctly capture or
mimic all of the pulse shapes. Therefore, we will also create an alternative library from the observed GRBs. We will
select a sample of bright (i.e., high signal-to-noise ratio) GRBs with low redshifts (potentially with z . 1), in order
to create a sample of GRBs that suffer less from the “tip-of-the-iceberg” effect.

For each GRB pulse shape in the libraries, we will systematically adjust the burst flux and spectrum. We will
quantify the uncertainty of the burst duration, and how the uncertainty depends on different GRB properties (e.g.,
fluxes, number of pulses, photon index, and/or hardness ratio).

We will apply the systematic uncertainties of the burst durations to the real BAT-detected GRBs. This will
provide further information of the intrinsic GRB durations, and help determine the possibility that a short GRB is
truly short.

4. Report on Previous Swift and Related Programs
As mentioned before, we developed a code that generates GRB light curves in count rate by taking into account
accurate instrumental response, and simulates the complex BAT-trigger algorithm (Lien et al. 2014). We have used
this code to perform studies of the cosmic GRB rate and luminosity distribution for the long bursts (Lien et al. 2014;
Graff et al. 2015). Our proposals for using this trigger simulator code to study high redshift GRBs and short bursts,
was accepted in the Swift GI cycle 9 and 10 program, respectively. Fig. 3 and 4 are made by codes written by the
summer intern, Kevin Chen, who was supported by the Swift GI cycle 9 grant. Furthermore, this trigger simulator
is revised for public use via support from the Swift GI cycle 9 grant, and is available on the public webpage3.

6. Applicant’s Most Relevant Publications
See those that are bold-faced in the References.
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R. D. 2014, ApJ, 783, 88 Kocevski, D., & Petrosian, V., 2013, ApJ, 765, 116; Lien, A. et al. 2014, ApJ, 783, 24; MacFadyen A, & Woosley
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8. Cost Overview
We request a total amount of $40K for this proposal. Among the requested funds, $33K will be used to support partial
salary for a graduate student who participates in this project. The graduate student will use the trigger simulator and
BAT data analysis pipelines to conduct the simulations. Additionally, the student will participate in the analysis to
quantify the instrumental effects and systematic uncertainties of the burst durations. The PI and other Co-Is are fully
funded by their institutions, and agreed to dedicate their time to this project.

The rest of the budget will cover travel to facilitate the on-going collaboration between different institutes ($3K),
present the results at a national conference ($2K), and publication costs ($2K). Table 1 presents a summary of the
requested budget. Overhead costs are included in our estimates.

Table 1: Summary of Budget Allocation

Amount of money required Purpose of the budget requirement
33,000 Partial salary for a graduate student (⇠0.55 FTE including overhead)
5,000 Travel between institutes and to a national conference
2,000 Publication charges
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EXPLORING THE CONNECTION OF SWIFT LONG GRB POPULATIONS TO THE STAR
FORMATION RATE

PI: John G. Baker Co-I Amy Lien
1. Abstract
Long GRBs may provide a strong probe of star formation history in the early universe. However it remains difficult
to draw inferences about the intrinsic population from observed GRB rates. This is partly due to the Swift ’s complex
trigger algorithm. We have recently developed a machine learning approach to quickly approximate the output of a
full simulation of Swift ’s response to simulated data and demonstrate that this enables Bayesian study of the GRB
rate as a function of redshift. Our recent results provide evidence for differences between the observed star formation
rate and the long GRB rate. These differences may be realted to an assocation long GRBs and low-metalicity envi-
ronments which are less common at low redshift. We extend our studies to explore of the relationship between star
formation rate, metalicity and the long GRB rate by performing Bayesian model selection comparisons to compare
population models updating our data set with more recent Swift data.

2. Description of the Proposed Program
A) Scientific Rationale:
Gamma-ray Bursts (GRBs) are among the most energetic astrophysical phenomena. Their extraordinary luminosi-
ties make them rare objects that can be seen beyond redshift z ⇠ 6. To date, the highest spectroscopically-confirmed
redshift of a detected GRB is z ⇠ 8.2 for GRB 090423 (Tanvir et al 2009, Salvaterra et al. 2009), while a photometri-
cally measured redshift suggests that GRB 090429B occurred at z ⇠ 9.4 (Cucchiara et al. 2011). Both observational
evidence and theoretical studies suggest that GRBs are related to the death of stars (e.g., Galama et al. 1998; Heger
et al. 2003). The detection of these high redshift GRBs provide a unique probe tracing the star-formation history
in the early universe, but even at lower redshifts there remain interesting questions about the relationship between
GRBs the star formation rate (SFR).

Figure 1: Using our machine-learning model for Swift detection ef-
ficiency and Bayesian techniques, we can compare measurements of
the cosmic SFR and long GRB rates. Either a one-break or two-break
model can provide an equally good fit for the GRB rate, but either
shows differnces from the SFR. A GRB rate model constrained to be
proportional to the SFR does not fit as well, strongly disfavored with
natural log Bayes factor of about 15.

While short GRBs (bursts with observational dura-
tions < 2s) are believed to be related to the merger of
compact objects such as Neutron stars, long GRBs are
expected to result from the explosion of massive stars
with a powerful central engine such as a black hole. Ad-
ditionally, observations have shown that at least some
long GRBs are found to be accompanied by Type Ic su-
pernovae (SNe) (e.g., Campana et al. 2006) and may
be associated with low-metalicity environments where
larger stars are likely to form (e.g. Kocevski et al.
2009).

GRBs at redshift z & 4 are especially important be-
cause beyond this redshift other methods of estimating
the star formation rate (SFR) become very difficult en-
gendering large uncertainties. As shown in (Yüsel et
al 2008) different methods for estimating the SFR can
yield results differing more than an order of magnitude.
The GRB rate provides an independent and more direct
probe of stellar formation at early times. Even at lower
redshift z ⇠ 1 � 2 the GRB rate may provide another
perspective on star formation in comparison with other
estimates. In particular, GRBs offer a unique way to
measure the SFR in dim galaxies, which are likely to be
missed by other methods based on galaxy observations (Trenti et al 2012). These probe may not probe identical
populations though if long GRBs form preferentially in low-metallicity environments (Graham et al 2013 and Trenti
et al 2015).
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Many studies have tried to use the cosmic GRB rate at high redshift to estimate the cosmic SFR in the early
universe (e.g., Butler et al. 2010; Ishida et al. 2011; Robertson & Ellis 2012; Tanvir et al. 2012,Wanderman &
Piran 2012). Results from these studies show that the GRB rate at high redshift (especially at z & 6) indicates a
higher SFR than previously expected (see Fig. 1 for related illustration). For example, Kistler et al (2009) conclude
that at high redshift the GRB rate does not trace the commonly adopted SFR from Hopkins & Beacom (2006).
These authors further state that the higher SFR implied by the GRB rate can be explained when including the star
formation from undetectable galaxies at the faint end of the UV luminosity function. More recently Graham and
Schady (2016) have elaborated the case that differences in the long GRB rate and the SFR may arise from the the
evolution of metalicity with redshift with differences showing up even at redshifts z < 4. We will further explore this
latter hypothesis applying our Bayesian methodology with an updates unbiased sample of long GRBs with measured
redshifts (Perley et al 2016).

Challenges in estimating the GRB rate with Swift, and the new tools we developed:

Figure 2: The detection fraction F
det

(z) as computed by the three
different MLAs used as well as the constant flux cut and an analytic
form used in (Howell 2014). The detection fraction of all data provided
for training and validation is also shown. This is calculated under the
assumption of the particular luminosity function used in this study and
may change significantly for other choices of the luminosity function
parameters.

There are significant challenges understanding of
the GRB source population from observational data.
Two reasons that it is hard to recover the such param-
eters as the intrinsic GRB rate based on the detections
from Swift are the many features of the population that
may impact the observed result and the complicated se-
lection effects involved in determining exactly which
events Swift would detect. The first issue motivates
broad Bayesian-like parameter space the potential in-
trinsic properties of the GRB population, while the lat-
ter motivate detailed simluation of the intrumental de-
tection respose.

Most previous studies have estimated the GRB rates
using a coarse approximation of the complex trigger al-
gorithm for Swift, such as assuming a flux detection
threshold. However, this is generally not a good ap-
proximation for Swift’s trigger algorithm. Unlike previ-
ously flown GRB instruments, the Burst Alert Telescope
(BAT) of Swift adopts over 500 “rate trigger” criteria,
based on photon count rates, and additional thresholds
for the “image trigger”, based on the real image gener-
ated for further confirmation and localization.

One of us recently developed the first code to simulate the complex trigger algorithm adopted by the BAT in-
cluding simulating hundreds of rate trigger criteria and mimicking the image threshold. Therefore, our program
can simulate GRBs found by both the rate trigger and image trigger. Additionally, our program can create a mock
sample of observed GRB light curves with many adjustable GRB characteristics,such as the GRB rate and lumi-
nosity function, their spectral distributions, and GRB pulse shapes. The first application of this code to explore the
features of the intrisic GRB population cosmic GRB rate and the GRB luminosity distribution via a Monte Carlo
approach (Lien et al. 2014) showed that our BAT-trigger simulator can detect simulated bursts with flux as low as
⇠ 10

�8

erg s

�1

cm

�2 for on-axis bursts, and ⇠ 10

�7

erg s

�1

cm

�2 for off-axis bursts, which agrees extremely
well with the flux of real GRBs detected by Swift. This work showed the value of the BAT-trigger simulator but
also revealed that it is too slow (typically requiring tens of seconds per GRB) for direct application in large scale
population studies.

In (Graff et al. 2016) we recently teamed up to realize a practical application of the BAT-trigger simulator build-
ing in Bayesian studies of the long GRB population. This collaboration benefits from our combined backgrounds in
both Swift GRB observations and practical Bayesian analysis approaches based on experience in gravitational-wave
analysis. First we applied machine learning techniques to realize most of the benefit of the BAT-trigger simulator
while speeding up the calculation by several orders of magnitude to achieve the speed necessary for broad Bayesian-
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based GRB population parameter studies. This involved first running the BAT-trigger simulator over a broad range
of potential GRB events which may appear with the theoritical population models. Then we applied a variety of
popular machine-learning algorithms to effectively learn the behavior of the simulator, training on a large number
(> 100000) of simulated observations and tuning the algorithms using 5-fold cross-validation testing, and judging
the results by testing on an independent sample. Several machine learning algorithms realized & 97% accuracy with
a practical option being the random forest algorithm at 97.5%, significantly improved over the 89.6% accuracy of
the optimal flux-cut approach.

Figure 3: The distribution of model predictions from the posterior
(RF) for the real set of 66 Swift GRBs (Fynbo et al 2009). 200 mod-
els with parameters chosen randomly from the posterior are shown in
light blue lines in both panels. The maximum L(~n) point is shown
in black. The upper panel shows the intrinsic model rate R

GRB

(z,~n)
and the lower panel shows expected observed rate N

exp

(z)/dz (Eq. 1.
The lower panel also shows the distribution of measured redshifts for
observed GRBs and the intrinsic rate for the maximum L(~n) point in
dashed black.

Next, we applied a rigorous Bayesian approach to
studying the redshift dependence of the GRB rate. Af-
ter marginalizing over features of the population other
than redshift dependence, we derive a likelihood func-
tion that depends principally on the expected number of
events during some time interval �t

obs

as a function of
redshift,

N
exp

(z) = �t
obs

R
GRB;dz(z,~n)Fdet

(zi)dz. (1)

Here R
GRB;dz(z,~n) is the intrinsic GRB rate derived

from the parameters ~n of some model population,
and F

det

(z) is the redshift-dependent detection frac-
tion which we compute based on our machine learn-
ing model. The log-likelihood function we derive for
the log-probability of detecting a set of GRBs with red-
shifts at {zi} given a population statistically described
by some parameters ~n is

L(~n) = �N
exp

+

X

{i}
det

log(N
exp

(zi)) (2)

where N
exp

is the integrated expected rate of observa-
tions over all redshifts.

In (Graff et al 2016) we applied the full Bayesian
analysis based on a nested sampling approach (Graff
et al 2013) to address some of the same questions ad-
dressed in (Lien et al 2014). Specically we studied the
parameters of the GRB rate in a one-break logarithmic
model for the redshift dependence while assuming a
fixed luminosity function of the form in (Wanderman
& Piran 2010). Summary results of our Bayesian analy-
sis are shown in the Fig. 3. Not surprisingly the best
fit results from (Lien et al 2014) are consistent with
the Bayesian results though the new analysis provides
a clearer picture of the full range of parameter space of statistical population models which are consistent with the
data. With the (Fynbo et al 2009) data we found little constraint on the higher redshift population z > 4 though we
found tighter constraints on the lower redshift population which points to a need for more GRB data (and redshift
information).

Since then we have further explored differences with the SFR at low redshift (see Fig. 1) that raise questions
about the relationship between GRB rates and other SFR measures in this period. Generalizing first to a two-break
model for the GRB rate, we found no support for the more complicated model, with a Bayes factor near unity (i.e.
equal odds). Then constraining that two break model to be proportional to the SFR as in (Hopkins & Beacome
2006), we quantified the differences, finding strong evidence against SFR-proportional model, with a natural log
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Bayes factor near 15 (odds ratio 3 million:1).This study focuses on exploring these differences may be related to
metallicity evolution as suggested in (Graham et al 2013, Graham et al 2013 and Trenti et al 2015).
B) Immediate Objective:

We propose a richer set of Bayesian GRB population studies using Swift data and the tools and methods developed
in (Graff et al 2016) and subsequently. The study has three principal elements.

I Incorporate more recent data in our analysis of the GRB-SFR analysis. Our previous results were based on the
Fynbo (2009) unbiased sample of Swift long GRBs with measured redshifts, but this included only a small fraction of
the Swift events to date. We plan to update this incorporate more recent data. The Perley et al (2016) sample seems
to be adequate for this purpose including nearly twice as many (110) events. Along with this we will recompute
our machine learning models incorporating a larger number of simulated high-redshift events to better constrain the
detection fraction beyond (z 5). With the new data and updated MLA models we will reexamine the questions which
we have previously studied based on the Fynbo sample.

II Model selection study of GRB models based on low-metalicity cuts. Bayesian model selection provides a
clear way to quantitatively compare population models, as we have already demonstrated with the comparison for
a general one-break GRB rate model and a model constrained to be directly proportional to the SFR rate. We will
follow (Graham et at 2016) in exploring population models based on metalicity dependence. Graham et al 2016
suggest several models based on theoretical assumptions about the evolution of the metalicity, but we will also
consider metalicity observations in constraining these models. Using Bayesian methods and the expanded Swift long
GRB data set we will compare these models with the generic one-break model to better understand if metalicity
dependence can explain the relationship between GRB and SFR rates.

III Bayesian model selection studies to explore evidence for GRB luminosity function evolution in the popula-
tion model. (Lien et al 2014) and previous studies have suggested that GRB lumiosity evolution can allow better
agreement of the GRB rate with the redshift evolution seen in other observational approaches. We will apply sim-
ilar Bayesian techniques to explore this possibility. As before we will study the Bayesian evidence for luminosity
function evolution, this time comparing several models, including one-break and two-break rate models as well
SFR-constrained models, each with and without luminosity function evolution. Since the observed flux also de-
pends on the luminosity function will will apply a generalization of our previous likelihood function incorporating
both redshift z and flux � from the data. This will require us to compute the detection fraction as a function of both
parameters F

det

(zi,�i).
3. Report on Previous Swift and Related Programs
As mentioned before, we developed a code that generates GRB light curves in count rate by taking into account
accurate instrumental response. Moreover, the code simulates the complex BAT-trigger algorithm (Lien et al. 2014).

We have used this code to perform studies of the cosmic GRB rate and luminosity distribution for the long bursts
(Lien et al. 2014; Graff et al. 2015). Our proposal to use this trigger simulator for the studies of high redshift GRBs
and short bursts, was accepted in the Swift GI cycle 9 and 10 program, respectively.
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