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Abstract—Software engineers build software systems in increas-
ingly regulated environments, and must therefore ensure that
software requirements accurately represent obligations described
in laws and regulations. Prior research has shown that graduate-
level software engineering students are not able to reliably deter-
mine whether software requirements meet or exceed their legal
obligations and that professional software engineers are unable
to accurately classify cross-references in legal texts. However,
no research has determined whether software engineers are
able to identify and classify important ambiguities in laws and
regulations. Ambiguities in legal texts can make the difference
between requirements compliance and non-compliance. Herein,
we develop a ambiguity taxonomy based on software engineering,
legal, and linguistic understandings of ambiguity. We examine
how 17 technologists and policy analysts in a graduate-level
course use this taxonomy to identify ambiguity in a legal text. We
also examine the types of ambiguities they found and whether
they believe those ambiguities should prevent software engineers
from implementing software that complies with the legal text. Our
research suggests that ambiguity is prevalent in legal texts. In 50
minutes of examination, participants in our case study identified
on average 33.47 ambiguities in 104 lines of legal text using our
ambiguity taxonomy as a guideline. Our analysis suggests (a) that
participants used the taxonomy as intended: as a guide and (b)
that the taxonomy provides adequate coverage (97.5%) of the
ambiguities found in the legal text.

I. INTRODUCTION

Most people who bother with the matter at all would
admit that the English language is in a bad way, but
it is generally assumed that we cannot by conscious
action do anything about it.

– George Orwell
Orwell’s Politics and the English Language details ways

authors conceal their actual meaning behind vague or am-
biguous language. He believed much of this was due to
sloppiness, and that writers could actually do something
about it, but for readers of ambiguous language, rewriting
is not an option. More importantly, ambiguity sometimes
accurately conveys an authors intent. Legal texts are sometimes
intentionally ambiguous [1]. Requirements engineers have
long recognized that natural language is often ambiguous [2].
Resolving ambiguities in source documents for requirements
remains an area of active research. In particular, researchers
have not focused on identifying ambiguities in legal texts that
govern software systems, which is critical because ambiguities
in legal texts can neither be ignored nor easily removed. Many

approaches to resolving ambiguity in software requirements
rely on disambiguation or removal of the ambiguity. These
may simply not be an option for software engineers addressing
ambiguity in a legal text. This paper explores ambiguity in
a legal text from the U.S. healthcare domain and whether
software engineers can actually do something about it.

Our prior research focused on compliance with the Health
Insurance Portability and Accountability Act (HIPAA)1 [3], [4].
Non-compliance with HIPAA can result in significant fines.
The U.S. Department of Health and Human Services (HHS)
fined WellPoint $1.7 million2, a Massachusetts healthcare
provider $1.5 million3, and Cignet Health $4.3 million4 for
non-compliance with HIPAA. In 2009, Congress amended
HIPAA with the HITECH Act, which was passed as a part
of the American Recovery and Reinvestment Act5. HITECH
outlines a set of objectives that incentivize Electronic Health
Record (EHR) systems development by providing payments
to healthcare providers using EHRs with certain “meaningful
uses,” which are further detailed by the U.S. Department of
Health and Human Services (HHS), the federal agency charged
with regulating healthcare in the United States [5].

The first step for engineers building HITECH-regulated
systems is examining the text of the regulation and extract-
ing requirements from it. Unfortunately, extracting software
requirements from regulations is extremely challenging [1], [6],
[7]. Even reading and understanding these documents may be
beyond the capability of professional engineers [8]. Identifying
ambiguous statements and understanding why those statements
are ambiguous are critical skills for requirements engineers
reading legal texts. Even outside of the legal domain, too much
unrecognized ambiguity is considered one of the five most
important reasons for failure in requirements analysis [9]. To
our knowledge, this paper is the first to examine identification
and classification of ambiguities in a legal text for the purpose
of software requirements analysis.

Many types of ambiguities exist, and each type must be

1Pub. L. No. 104–191, 110 Stat. 1936 (1996)
2http://www.hhs.gov/ocr/privacy/hipaa/enforcement/examples/

wellpoint-agreement.html
3http://www.hhs.gov/ocr/privacy/hipaa/enforcement/examples/

meei-agreement.html
4https://www.huntonprivacyblog.com/2011/02/articles/

hhs-fines-cignet-health-4-3-million-for-violation-of-hipaa-privacy-rule/
5Pub. L. No. 111–5, 123 Stat. 115 (2009)



disambiguated differently by requirements engineers. Herein,
we define an ambiguity taxonomy consisting of six broad
ambiguity types based on definitions used in requirements
engineering, law, and linguistics. Lexical ambiguity refers to
a word or phrase with multiple valid meanings. Syntactic
ambiguity refers to a sequence of words with multiple valid
grammatical interpretations regardless of context. Semantic am-
biguity refers to a sentence with more than one interpretation in
its provided context. Vagueness refers to a statement that admits
borderline cases or relative interpretation. Incompleteness is a
grammatically correct sentence that provides too little detail
to convey a specific or needed meaning. Referential ambiguity
refers to a grammatically correct sentence with a reference
that confuses the reader based on the context provided. Each
of these types of ambiguity are described in more detail in
Section III-A. Some types of ambiguity require additional
analysis or disambiguation before implementation can begin.
In Section II, we compare and contrast the approaches that
prior researchers have taken to different types of ambiguity.

Ambiguities complicate reading, understanding, and examin-
ing legal texts for software requirements. Herein, we conduct
a case study to determine how prevalent ambiguity is in
legal texts. Our findings suggest that ambiguity is prevalent
in legal text. In 50 minutes of examination, participants
in our case study identified on average 33.47 ambiguities
in 104 non-blank lines of legal text6 using our ambiguity
taxonomy as a guideline. Participants did not, however, achieve
a strong level of agreement on the exact number and type
of ambiguity, regardless of whether we measured agreement
over all participants or just over the two groups we examined
(technologists and policy analysts).

The remainder of this paper is organized as follows. Sec-
tion II introduces related work and background information.
Section III describes our case study methodology. Section IV
details the results of our case study. In Section V, we discuss
the implications of this work. Section VI presents potential
threats to the validity of this work. Finally, in Section VII, we
summarize our work and provide directions for future work in
this area.

II. RELATED WORK

The majority of software requirements specifications are
written in natural language, which is inherently ambiguous and
imprecise [9]. However, software engineers do not yet have a
single, comprehensive, accepted definition for ambiguity [10].
Ambiguity has been defined as a statement with more than
one interpretation [11]. The IEEE Recommended Practice for
Software Requirements Specifications states that a requirements
specification is unambiguous only when each requirement
has a single interpretation [12]. Lawyers, on the other hand,
depend on ambiguity to ensure that laws and regulations are not
dependent on transient standards [10]. For example, lawyers
might require “reasonable” encryption practices rather than

6We had 16 lines of legal text in our tutorial and 121 total lines in our
survey. Seventeen of the lines in our survey were blank.

specifying a particular encryption algorithm or standard that
might be outdated in a few years. Linguists have created
detailed ambiguity classifications. In this section, we present re-
lated work on ambiguity in requirements engineering, focusing
on legal requirements, and in linguistics.

A. Ambiguity in Requirements Engineering

Common sense suggests that an unambiguous statement
would have only a single, clear interpretation. But how should
we classify statements that have no interpretations? Vague or
incomplete statements may not have a valid interpretation. For
a requirements engineer, a statement that depends heavily on
domain knowledge may also, at first, appear uninterpretable.
Herein, we consider vague or incomplete statements to be
ambiguous because they are not unambiguous. That is, we
consider them to be ambiguous because they do not have a
single, clear interpretation.

Requirements engineers may tolerate requirements with
multiple interpretations early in the development of a new
set of software requirements [13]. In addition, some statements
may be innocuous because only one possible interpretation
would be reasonable, and these statements are unlikely to lead
to misunderstandings [11], [14]. Requirements with statements
having more than one reasonable interpretation are nocuous and
likely to lead to misunderstandings if not clarified [11], [14].
Legal domain knowledge would be required to differentiate
between innocuous and nocuous requirements in this study.
Since we do not assume our case study participants have
the necessary background, we do not consider the difference
between nocuous and innocuous to be meaningful. Chantree et
al. make an additional distinction between acknowledged am-
biguities, which are known to engineers, and unacknowledged
ambiguities, which are unknown to engineers [11]. Our case
study focuses only on identifying (i.e. acknowledging) ambi-
guity in legal texts. We consider unacknowledged ambiguity
to be outside the scope of our work.

Many software engineering approaches to ambiguity involve
the development of tools or techniques for recognizing or
eliminating ambiguity in software requirements. For example,
Gordon and Breaux use refinements to resolve potential
conflicts between regulations from multiple jurisdictions [15].
Researchers have used natural language processing to detect
and resolve ambiguity in software requirements [16]–[18]. Van
Bussel developed a machine learning approach to detecting
ambiguity in requirements specifications [19]. Popescu et al.
developed a semi-automated process for reducing ambiguity
in software requirements using object-oriented modeling [20].
None of these approaches focused exclusively on identifying
and classifying ambiguity in legal texts to which software
systems must comply.

Antón et al. examine conflicts between policy documents
and software requirements [21]. Although conflicts between
policy documents, legal texts, and software requirements may
not necessarily be a form of ambiguity, these conflicts inspired
our work in two primary ways. First, Antón et al. state that
alignment between policies and software requirements must



be flawless to avoid conflicts [21]. Even potential conflict
should be addressed [21]. These assertions support the use
of a broad definition of ambiguity. Second, although linguists
view vagueness or generality as having a single, albeit broad,
meaning [22] that is sometimes used to force readers to come
to their own understanding or interpretation [23], Antón et al.
explicitly state that incompleteness is a form of engineering
ambiguity that must be addressed for policy compliance.

B. Ambiguity in Linguistics

Empson’s book on literary criticism identifies seven types
of ambiguity [23]. This book led to our ambiguity taxonomy
for the purposes of evaluation or criticism. Many authors use
language simply to provoke a reaction in the reader, and some
authors use Empson’s ambiguity types for that purpose. We
chose not to map Empson’s concepts of discovery, incoherence,
and division [23] to our taxonomy because their primary utility
is for literary criticism or interpretation.

Berry et al. identified linguistic types of ambiguities [10],
which they classify according to six broad types, some of
which have sub-types. For example, pragmatic ambiguity
includes referential ambiguity and deictic ambiguity. Their
classification is similar to other classifications of linguistic
ambiguity [22]. Berry et al. also examine legal ambiguity [10].
They describe the legal principles used to interpret ambiguity
when encountered rather than defining ambiguity. Consider the
following legal principle:

AMBIGUUM FACTUM CONTRA VENDITOREM INTER-
PRETANDUM EST: An ambiguous contract is to be
interpreted against the seller.

This principle does not define ambiguity, rather it provides
a mechanism for resolving it in contract law. This principle
supports intentionally ambiguous language in legal writing by
providing an context in which it can be disambiguated. Unfor-
tunately, requirements engineers do not have the appropriate
domain knowledge to interpret this language clearly, and they
cannot simply ignore it or remove it. Thus, they must learn to
recognize it and seek help from a legal domain expert.

Linguists and philosophers often classify ambiguity in a
finer granularity than we do herein. For example, Sennet’s
syntactic classification ambiguity includes the subtypes phrasal,
quantifier and operator scope, and pronouns [22]. Similarly,
lexical ambiguity could be classified as either homonymy or
polysemy [10]. Linguists and philosophers continue to debate
the nature of ambiguity and correct usage of natural lan-
guage [24]. In particular, classifying types of ambiguity is itself
often ambiguous [25]. Even seemingly simple grammatical
corrections can quickly balloon into fundamental arguments.
Attempting to define what constitutes an arbitrator for “correct”
usage in English is extremely challenging [26]. A discussion
of the nuance involved in interpreting or correcting language
use is outside the scope of this investigation.

III. CASE STUDY METHODOLOGY

Our case study methodology is based upon the
Goal/Question/Metric (GQM) model [27]–[29]. The GQM

model starts with a set of goals. Each goal is addressed by at
least one question, with each measured by at least one metric.
Following this paradigm focuses the case study on the research
questions and minimizes extraneous test participant tasks. Our
research goal formulated using the GQM template is:

Analyze empirical observations for the purpose
of characterizing ambiguity identification and
classification with respect to legal texts from the
viewpoint of students in a graduate-level Privacy
course in the context of § 170.302 in the HITECH
Act.

Given this research goal, we formulate the following ques-
tions:
Q1: Does the taxonomy provide adequate coverage of the

ambiguities found in § 170.302?
Q2: Do participants agree on the number and types of

ambiguities they identify in § 170.302?
Q3: Do participants agree on the number and types of

intentional ambiguities they identify in § 170.302?
Q4: Do participants agree on whether software engineers

should be able to build software that complies with each
paragraph of § 170.302?

Q5: Does an identified ambiguity affect whether participants
believe that software engineers should be able to build
software that complies with each paragraph of § 170.302?

The remainder of this Section is organized as follows: We
first discuss important terminology, providing definitions for
each ambiguity type in our taxonomy. Subsection III-B details
our participant selection criteria and all materials used for
this study. We introduce measures to evaluate each of these
questions in Subsection III-C.

A. Terminology
Case study participants were asked to identify ambiguity in

the HITECH Act, 45 CFR Subtitle A, § 170.302. We provided
participants with a taxonomy that defines six separate types
of ambiguity. Table I outlines these ambiguity types. Note
that they are not mutually exclusive: a single sentence from a
legal text may exhibit more than one ambiguity type. Although
this ambiguity taxonomy is designed to be broadly applicable,
it is not guaranteed to be comprehensive. Sentences may be
ambiguous in ways that do not fall into one of these six types.
To introduce our ambiguity taxonomy, we employ example
ambiguities identified by our study participants rather than the
examples used in our study tutorial, shown in Table I.

Lexical ambiguity occurs when a word or phrase has
multiple valid meanings. Consider § 170.302(d): “Enable a user
to electronically record, modify, and retrieve a patient’s active
medication list as well as medication history for longitudinal
care.” A medication history for longitudinal care could mean
either a complete medication history in a particular arrangement
or an abbreviated medication history used only for a particular
purpose. A requirements engineer must disambiguate this prior
to implementation. Another example: “Melissa walked to the
bank.” This could mean that Melissa walked to a financial
institution or she walked to the edge of a river.



TABLE I
CASE STUDY AMBIGUITY TAXONOMY

Ambiguity Type Definition Example
Lexical A word or phrase with multiple valid meanings Melissa walked to the bank.

Syntactic A sequence of words with multiple valid grammatical interpretations regardless
of context

Quickly read and discuss this tutorial.

Semantic A sentence with more than one interpretation in its provided context Fred and Ethel are married.

Vagueness A statement that admits borderline cases or relative interpretation Fred is tall.

Incompleteness A grammatically correct sentence that provides too little detail to convey a
specific or needed meaning

Combine flour, eggs, and salt to make fresh
pasta.

Referential A grammatically correct sentence with a reference that confuses the reader based
on the context

The boy told his father about the damage. He
was very upset.

Syntactic ambiguity occurs when a sequence of words has
multiple valid grammatical parsings. Consider § 170.302(f):
“Enable a user to electronically record, modify, and retrieve
a patient’s vital signs. . . ” Here, “electronically” may refer
to all the verbs “record, modify, and retrieve” or only to
“record.” It seems unlikely that the U.S. government wants
EHR vendors to “electronically modify a patient’s vital signs.”
But, electronic recording or retrieving seem like reasonable re-
quirements. Again, a requirements engineer must disambiguate
prior to implementation. Also: “Quickly read and discuss this
paragraph.”

Semantic ambiguity occurs when a sentence has more
than one interpretation based entirely on the surrounding
context. Each word in the sentence has a distinct meaning
and the sentence has a single parse tree, but the correct
interpretation of the sentence requires more context. Consider
§ 170.302(j): “Enable a user to electronically compare two
or more medication lists.” Comparing two lists is reasonably
clear if a context for the comparison is provided. These lists
could be compared for length, cost, drug interaction, or any
number of other factors. In addition, these lists could belong
to the same patient or different patients, depending on the
comparison’s purpose. Other examples: “Fred and Ethel are
married.” and “Fred kissed his wife, and so did Bob.” Further
context is needed to determine if Fred and Ethel are married
to each other or separately. Nor do we know if Fred has cause
to be annoyed.

Vagueness occurs when a term or statement admits border-
line cases or relative interpretation. Consider § 170.302(h)(3):
“Electronically attribute, associate, or link a laboratory test
result to a laboratory order or patient record.” What constitutes
attributing, associating, or linking? Must these records always
be displayed together or would simply having an identifier
and allowing a physician to find one given the other suffice?
Similarly, consider: “Fred is tall.” If Fred was a North American
male and 5’2" tall, then the claim is not true. If Fred was 7’0"
tall, then the claim is supported. Somewhere in between lie
heights that reasonable people might disagree as to constituting
“tall.”

Incompleteness occurs when a statement fails to provide
enough information to have a single clear interpretation.
Consider § 170.302(a)(2): “Provide certain users with the

ability to adjust notifications provided for drug-drug and drug-
allergy interaction checks.” This sentence omits information
that would allow requirements engineers to identify which
users should have this ability or what options they would have
to adjust notifications. Incompleteness must be resolved for the
requirements to be implemented. Similarly, “Combine flour,
eggs, and salt to make fresh pasta.” omits some necessary
information such as quantity of materials and techniques to be
employed.

Referential ambiguity occurs when a word or phrase in a
sentence cannot be said to have a clear reference. Consider
§ 170.302(n): “For each meaningful use objective with a
percentage-based measure, electronically record the numerator
and denominator. . . ” The meaningful use objectives that use a
percentage-based measure are not referenced directly, which
leaves the requirements engineer to determine which objectives
must comply with this legal obligation. Other examples include
pronouns and their antecedents. “The boy told his father about
the damage. He was very upset.” The pronoun ‘he’ could refer
to either the boy or the father. Also: “There are many reasons
why lawyers lie. Some are better than others.”

We created our ambiguity taxonomy based on those ambi-
guity types that are relevant for regulatory compliance. It is
not intended to be comprehensive with respect to all types of
ambiguity. A word, phrase, sentence, or paragraph with more
than one meaning may not fit in our taxonomy. For this case
study, participants were instructed to classify such sentence as
an Other ambiguity.

Because we chose a section of legal text from the HITECH
Act primarily for its important implications for software
development, this study was not designed to guarantee that
all types of ambiguities appear in the legal text. For example,
there may be no referential ambiguity in the legal text. It is
also possible that a paragraph from this legal text has a single
interpretation with a single, clear meaning. In our taxonomy,
such statements are called Unambiguous statements.

Requirements engineers can use our ambiguity taxonomy
as a guide when evaluating legal text for ambiguity. Each
statement could be evaluated for each of the six ambiguity
types in sequence from the beginning to the end of the text.
If no ambiguity can be found in those six categories, then
the requirements engineer could consider the statement to



be unambiguous. Each discovered ambiguity could then be
examined for intent. Requirements engineers may be able
to disambiguate an intentional ambiguity. For example, the
legal phrase “reasonable security practices” is vague, but
it could be clarified by a specific government or industry
security standard. Unresolved intentional ambiguities and all
unintentional ambiguities must be disambiguated by a legal
expert.

B. Study Participants and Materials

We selected participants for our case study from a population
of all students enrolled in a graduate-level class at the Georgia
Institute of Technology, entitled Privacy Technology, Policy,
and Law. This course was held during the 2014 spring semester
and jointly listed by the College of Computing (CoC) and the
Scheller College of Business (CoB). Eighteen students elected
to participate.

Our case study materials consisted of a tutorial and a survey.
We conducted the tutorial in the class session prior to the survey.
During the tutorial, we briefly described the motivation for this
research, explained the ambiguity taxonomy, and defined each
ambiguity type using illustrative examples for each ambiguity
type. After a short question and answer period about the
ambiguity types, we presented a worked example of a legal
text similar to what the students would be asked to analyze in
the survey. The example legal text consisted of a paragraph
from the HIPAA7. This example provided participants with an
experience as similar as possible to that of the survey itself and
allowed us to demonstrate each of the types of annotations that
might be required of the participants during the survey. During
the tutorial, we did not tell the participants which section of
legal text would be covered in the survey.

We chose to conduct the tutorial and the survey in consecu-
tive class sessions to allow participants more time to understand
our ambiguity taxonomy. At the beginning of the class session
during which we conducted the survey, we briefly recapped the
tutorial and described two examples for each ambiguity type
in our taxonomy. We provided study participants 50 minutes
to complete the study. The first question asked the participant
to self-identify as one of the following roles:

1) I am a technologist, and I am more interested in creating,
building, or engineering software systems than I am in
legal compliance or business analysis.

2) I am a business analyst, and I am more interested in
creating a business based on technologies than I am in
building technologies.

3) I am a legal analyst, and I am more interested in
regulatory compliance than I am in building technologies
or in business analytics.

We selected the HITECH Act, 45 CFR Subtitle A, § 170.302,
which contains 23 paragraphs, as the legal text for this study.
This section specifies the certification criteria for EHRs under
Meaningful Use Stage 1. Compliance with this regulation

7The exact paragraph used in the tutorial was 45 CFR Subtitle A,
§ 164.312(a).

is a required qualification for the HITECH incentives that
depend upon the use of a certified EHR. Non-compliance
with this regulation would result in both regulatory penalties
and loss of marketplace reputation. For each paragraph,
participants identified ambiguities using a response block.
The response block allowed participants to identify ambiguity
type(s) identified, the line number on which it was identified,
and whether the participant believed it to be intentional (i.e.
an ambiguity the author meant to include) or unintentional (i.e.
an ambiguity that was accidentally included). The distinction
between intentional and unintentional ambiguities is one of
the ways that requirements engineers can determine when they
must consult a legal expert to resolve the ambiguity.

We created line numbers to simplify the annotation of am-
biguities in the legal text. When a paragraph within § 170.302
contained a cross reference to another section of legal text
within HITECH, we provided the referenced legal text without
line numbers both to provide participants additional context
to disambiguate the target legal text and to indicate that cross
referenced legal texts were simply provided for context. The
response block contained space for each of the six ambiguity
types, a space labeled ‘Other’ for ambiguities that did not
fall into one of our six types, and a space labeled ‘None’ for
participants to indicate that the paragraph was unambiguous.
If participants identified an ambiguity in the legal text, they
wrote the respective line numbers in the appropriate space. If
participants believed that the ambiguity was intentional, they
also circled the line numbers after writing them. Finally, for
each paragraph, participants were asked to agree or disagree
with the following statement: “Software engineers should be
able to build software that complies with this legal text.” We
call paragraphs for which participants agree with this statement
“implementable,” and we call those for which participants
disagree “unimplementable.” We use responses to this question
to determine whether identified ambiguities in § 170.302 affect
participants’ beliefs about building compliant software.

C. Study Analysis
In addition to the standard mean and variance statistics,

we employ two specialized measures for describing group
participant agreement. The intraclass correlation coefficient
(ICC) measures the variability of a set of responses with
quantitative values across N participants [30]. Because we
gave the same survey to each participant and performed
calculations directly upon responses without first averaging,
we employ ICC with the oneway effects model and with a
single measure of interest as recommended by McGraw and
Wong [30]. In cases where the responses were categorical
instead of quantitative, we employ Fleiss’ kappa [31]. Both
measures compute inter-rater reliability for a fixed number
of participants and range from inverse-correlated (-1.0) to
un-correlated (0.0) to perfectly correlation (1.0). To perform
the statistical computations, we used the R Project8 with the
Interrater Reliability (IRR) package,9 which supports both ICC

8http://www.r-project.org/
9http://cran.r-project.org/web/packages/irr/



and Fleiss’ kappa. We analyzed the collected data to answer
the questions identified above in Section III as follows:
Q1 Measures: An affirmative answer to this question requires

(1) high coverage of identified ambiguities by the taxon-
omy and (2) minimal use of the “Other” type.

Q2 Measures: We counted the number of ambiguities each
participant identified per paragraph and the number and
type of each ambiguity found. Since this measure is
quantitative, we measured agreement with ICC.

Q3 Measures: We employed the same statistics as with Q2
with responses restricted to intentional ambiguities. That
is, we counted the number of intentional ambiguities each
participant identified per paragraph and the number and
type of each intentional ambiguity found. Because this
measure is quantitative, we measured agreement with ICC.

Q4 Measures: We tabulated participant responses to our
question of whether software engineers should be able to
build compliant software for each legal paragraph. Because
this data is categorical, agreement was measured with
Fleiss’ Kappa.

Q5 Measures: For paragraphs participants believe to be unim-
plementable, we calculated the percentage containing
identified ambiguities.

IV. CASE STUDY RESULTS

Eighteen students volunteered for our case study. Of these
eighteen participants, one provided complete responses to only
five of the 23 paragraphs, and we excluded those results. We
accepted responses from the remaining seventeen participants,
including one participant who identified 55 ambiguities in the
first eleven paragraphs and none in the remaining twelve. Some
participants failed to provide a response for all parts of the
response block for some questions. In each case, we removed
those responses from our analysis where appropriate.

As previously mentioned, we asked participants to self-
identify as either a: (1) technologist, (2) business analyst, or
(3) legal analyst. Because only one participant self-identified
as a legal analyst, we combined groups (2) and (3) to produce
a new group that we refer to as policy analysts. This resulted
in a roughly equal division of our seventeen participants with
nine in the technologist group and eight in the policy analyst
group.

We now discuss the results of our case study for each research
question discussed in Section III.
Q1: Does the taxonomy provide adequate coverage of the

ambiguities found in § 170.302?
Answer: Yes, on average, the participants identified 33.47

ambiguities for the paragraphs in § 170.302, including
ambiguities from each type in the taxonomy. The least
frequently identified ambiguity type is Semantic with an
average of 1.59. The most frequently identified type was
Vagueness with an average of 9.82. The ‘Other’ type had
an average of 0.82.

Both technologists and policy analysts identified ambiguities
from every type in the taxonomy. Figure 1 shows the total

ambiguities identified by participants for each paragraph in
§ 170.302.10 It also shows the relative totals for each ambiguity
type. Note that paragraph § 170.302(a), in which participants
found the most ambiguities, also includes the preamble text
that appears at the beginning of § 170.302 and prior to the
paragraph.

Table II shows the ambiguities (mean and standard devia-
tion) identified in each paragraph by (1) all participants, (2)
technologists, or (3) policy analysts. Intentional ambiguities
were relatively rare compared to unintentional ambiguities.
Some paragraphs are also appear to be less ambiguous than
others. For example, in Table II, paragraphs (b), (j), (o), (r),
and (w) each had less than one ambiguity on average for all
participants, whereas paragraphs (a), (c), (h), (f), and (n) all
had over two ambiguities on average.

The taxonomy ambiguity types overlap and the decision to
select one or more types is inherently subjective. Participants
used all six ambiguity types more frequently than the “Other”
type. Subsection III-A provides examples of each ambiguity
type as identified by the participants. Our analysis suggests (a)
that participants used the taxonomy as intended: as a guide
and (b) that the taxonomy provides adequate coverage (97.5%)
of the ambiguities found in §170.302.

In our prior work, we sought to compare participants’ under-
standing of the law to a consensus expert opinion on the law [7].
This comparison worked well as an evaluation technique
because rules exist for interpreting laws and regulations. Thus,
a correct interpretation can be differentiated from an incorrect
interpretation. Unfortunately, conducting a similar comparison
to assess the “correctness” of ambiguities as identified and
classified by participants in this work is not possible and would
be misleading if conducted. Ambiguity is subjective [26]. No
absolute authority exists to interpret ambiguity [26], so there
is no way to evaluate objective correctness.

Because no correct interpretation of ambiguity exists, any
comparison to a consensus expert opinion would misleadingly
imply that a correct interpretation exists. In the absence of
an objectively correct assessment, expertise is subjective. If a
reader finds a statement ambiguous, how can an “expert” prove
it is clear? Similarly, if a reader fails to interpret a statement
as ambiguous, how can an “expert” prove it to be so?

Analogies to other forms of communication may help
illuminate the nature of ambiguity. Comedians do not get
to blame their audience for not laughing at their jokes. There
is no such thing as an objectively humorous statement. Writers
do not get to blame their readers for not understanding their
point. Clear communication is the burden of the sender, not the
recipient. Thus, in the only sense possible, when participants
determine a statement was ambiguous to them, it is ambiguous.
Q2: Do participants agree on the number and types of

ambiguities they identified in § 170.302?
Answer: We evaluated agreement using intraclass correlation

finding only slight to fair agreement between all partici-

10One participant found a total of 55 ambiguities through paragraph
§ 170.302(k) and none in the remainder of the legal text.



TABLE II
AMBIGUITIES IDENTIFIED IN EACH PARAGRAPH OF THE HITECH ACT, 45 CFR SUBTITLE A, § 170.302

Paragraphs (a) - (l) (mean, std dev)
Type Intent (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

U 2.7, 1.8 0.9, 0.7 2.3, 0.5 1.1, 0.7 1.2, 0.8 2.0, 1.1 1.0, 0.9 1.6, 1.2 0.9, 0.9 0.8, 0.9 1.3, 1.4 1.2, 1.0
Tech I 0.6, 0.5 0.1, 0.3 0.1, 0.3 0.0, 0.0 0.0, 0.0 0.1, 0.3 0.1, 0.3 0.7, 0.7 0.1, 0.3 0.1, 0.3 0.2, 0.4 0.1, 0.3

C 3.2, 1.7 1.0, 0.8 2.4, 0.5 1.1, 0.7 1.2, 0.8 2.1, 1.1 1.1, 0.9 2.2, 0.8 1.0, 0.8 0.9, 0.9 1.6, 1.3 1.3, 1.1
U 3.5, 3.5 0.9, 0.6 1.6, 1.5 1.5, 1.0 1.3, 0.8 2.6, 2.0 1.4, 1.9 2.5, 2.7 1.9, 1.8 0.9, 0.8 1.3, 1.6 0.9, 0.9

Policy I 0.5, 0.7 0.0, 0.0 0.0, 0.0 0.3, 0.4 0.3, 0.4 0.1, 0.3 0.0, 0.0 0.8, 0.8 0.0, 0.0 0.1, 0.3 0.1, 0.3 0.0, 0.0
C 4.0, 3.3 0.9, 0.6 1.6, 1.5 1.8, 1.1 1.5, 1.0 2.8, 2.0 1.4, 1.9 3.3, 2.4 1.9, 1.8 1.0, 0.9 1.4, 1.6 0.9, 0.9
U 3.1, 2.8 0.9, 0.7 2.0, 1.1 1.3, 0.9 1.2, 0.8 2.3, 1.6 1.2, 1.5 2.0, 2.1 1.4, 1.5 0.8, 0.9 1.3, 1.5 1.1, 1.0

Combined I 0.5, 0.6 0.1, 0.2 0.1, 0.2 0.1, 0.3 0.1, 0.3 0.1, 0.3 0.1, 0.2 0.7, 0.7 0.1, 0.2 0.1, 0.3 0.2, 0.4 0.1, 0.2
C 3.6, 2.6 0.9, 0.7 2.1, 1.2 1.4, 1.0 1.4, 0.9 2.4, 1.6 1.2, 1.5 2.7, 1.8 1.4, 1.4 0.9, 0.9 1.5, 1.5 1.1, 1.0

Paragraphs (m) - (w) (mean, std dev)
(m) (n) (o) (p) (q) (r) (s) (t) (u) (v) (w)

U 1.3, 0.8 2.2, 1.2 0.6, 0.7 0.7, 1.1 1.0, 0.9 0.4, 0.5 1.0, 0.8 0.2, 0.4 1.3, 0.8 1.0, 0.8 0.7, 0.9
Tech I 0.1, 0.3 0.3, 0.7 0.3, 0.5 1.0, 1.1 0.3, 0.5 0.1, 0.3 0.4, 0.7 0.2, 0.4 0.8, 0.4 0.3, 0.7 0.0, 0.0

C 1.4, 0.8 2.6, 1.3 0.9, 1.0 1.7, 0.9 1.3, 0.9 0.6, 0.7 1.4, 1.2 0.4, 0.5 2.1, 0.6 1.3, 0.7 0.7, 0.9
U 1.0, 1.2 1.5, 1.2 0.5, 0.5 0.6, 0.7 0.6, 0.7 0.8, 0.8 1.0, 1.3 0.8, 1.4 0.9, 0.9 0.4, 0.7 0.5, 0.9

Policy I 0.3, 0.4 0.0, 0.0 0.4, 0.7 0.5, 0.7 0.3, 0.4 0.0, 0.0 0.4, 0.5 0.1, 0.3 0.4, 0.5 0.3, 0.4 0.0, 0.0
C 1.3, 1.3 1.5, 1.2 0.9, 0.9 1.1, 1.1 0.9, 0.6 0.8, 0.8 1.4, 1.2 0.9, 1.4 1.3, 1.0 0.6, 0.7 0.5, 0.9
U 1.2, 1.0 1.9, 1.3 0.5, 0.6 0.6, 0.9 0.8, 0.9 0.6, 0.7 1.0, 1.1 0.5, 1.0 1.1, 0.9 0.7, 0.8 0.6, 0.9

Combined I 0.2, 0.4 0.2, 0.5 0.4, 0.6 0.8, 0.9 0.3, 0.5 0.1, 0.2 0.4, 0.6 0.2, 0.4 0.6, 0.5 0.3, 0.6 0.0, 0.0
C 1.4, 1.1 2.1, 1.3 0.9, 1.0 1.4, 1.0 1.1, 0.8 0.6, 0.8 1.4, 1.2 0.6, 1.0 1.7, 0.9 1.0, 0.8 0.6, 0.9
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Fig. 1. Ambiguities identified in each paragraph of the HITECH Act, 45 CFR
Subtitle A, § 170.302

pants on the number and types of ambiguities identified
for each paragraph in § 170.302.

When examining our results according to ambiguity type,
the participants demonstrate fair agreement (ICC: 0.316,
p < 0.0001). This indicates that participants successfully
identified different ambiguity types according to our taxonomy
classifications. Although there is clearly room for improve-
ment, we believe these results are encouraging given the
training, time, and conditions we were able to provide our
participants. If we examine participant agreement regarding
whether or not each paragraph was unambiguous, we find
that participants demonstrate slight agreement (FK: 0.0446,
p = 0.00288). Participants unanimously agreed that paragraph
§ 170.302(h) was ambiguous and every participant except one
rated § 170.302(a) as ambiguous. For the other 21 paragraphs,
participants exhibited little agreement.

Figure 2 shows which ambiguity types participants identified

most. Each type (labeled on the x-axis) has two bars. The
bar on the left (with hash marks) represents the number of
ambiguities identified by technologists, and the one on the
right (without hash marks) represents the number identified
by policy analysts. Each bar is divided into two parts. The
lower part (with a lighter shade) represents the proportion
of the total that are unintentional ambiguities identified, and
the upper part (with a darker shade) represents intentional
ambiguities. For example, both technologists and policy makers
identified roughly the same number of Syntactic ambiguities.
In contrast, technologists and policy analysts differ in their
identification of Incompleteness. Technologists identified over
100 Incompletenesses, with about a quarter of those being
intentional, whereas policy analysts only identified about 50
Incompletenesses, most of which were unintentional.

The largest disagreement between technologists and policy
analysts occurred in the Lexical and Incompleteness ambiguity
types. Policy analysts found on average 4.4 times more lexical
ambiguity than technologists, and technologists found 1.8
times more incompletenesses than policy analysts. This may
be indicative of their respective professional training and
background. Lexical ambiguities are more commonly associated
with grammar, writing, and linguistics, whereas Incompleteness
comes primarily from software engineering. Table III details
additional examples of both agreement and disagreement. Note
that the number of Vaguenesses identified differs greatly,
which may also be a result of training because Vagueness
and Incompleteness are similar, overlapping ambiguity types.
Technologists are trained to identify Incompleteness and
Vagueness in formal specifications, which may carry over into
identifying those ambiguity types in § 170.302.
Q3: Do participants agree on the number and types of

intentional ambiguities they identified in § 170.302?
Answer: We evaluated agreement using intraclass correlation

and found a slight level of agreement between participants



TABLE III
AMBIGUITIES IDENTIFIED BY TYPE

Type Intent Lexical Syntactic Semantic Vagueness Incompleteness Referential Other
U 1.0, 1.9 2.9, 3.5 1.4, 2.2 5.6, 3.1 8.2, 5.5 7.3, 4.6 1.0, 1.2

Tech I 0.0, 0.0 0.0, 0.0 0.0, 0.0 3.0, 2.8 3.2, 5.7 0.0, 0.0 0.0, 0.0
C 1.0, 1.9 2.9, 3.5 1.4, 2.2 8.6, 3.1 11.4, 10.3 7.3, 4.6 1.0, 1.2
U 3.9, 5.0 3.3, 3.3 1.6, 3.0 7.8, 8.0 6.1, 2.7 5.4, 4.7 0.6, 1.0

Policy I 0.5, 1.0 0.0, 0.0 0.1, 0.3 3.5, 4.2 0.1, 0.3 0.4, 1.0 0.0, 0.0
C 4.4, 5.0 3.3, 3.3 1.8, 2.9 11.3, 9.0 6.3, 2.7 5.8, 4.4 0.6, 1.0
U 2.4, 4.0 3.1, 3.4 1.5, 2.6 6.6, 6.0 7.2, 4.5 6.4, 4.8 0.8, 1.1

Combined I 0.2, 0.7 0.0, 0.0 0.1, 0.2 3.2, 3.5 1.8, 4.5 0.2, 0.7 0.0, 0.0
C 2.6, 4.1 3.1, 3.4 1.6, 2.6 9.8, 6.7 9.0, 8.2 6.6, 4.6 0.8, 1.1
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Fig. 2. Ambiguities Identified by Type

on the number and types of intentional ambiguities
identified for each paragraph in § 170.302.

Participants agreed less on the number and type of intentional
ambiguities than they did on the number and type of total
ambiguities. Participants exhibited slight agreement on inten-
tional ambiguities, whether measured by number (ICC: 0.141,
p < 0.0001) or type (ICC: 0.201, p < 0.0001). The set of
intentional Incompletenesses identified by the participants drove
this difference. Table III shows that technologists identified an
average of 3.2 intentional Incompletenesses compared to a 0.1
average for policy analysts. If we remove all incompletenesses
from the calculation, the level of agreement for the number of
identified ambiguities is roughly the same as before (ICC 0.134,
p < 0.0001) and the level of agreement for the ambiguity type
increases (ICC: 0.39, p < 0.0001).

Regardless of the agreement level, the fact that participants
of both groups were able to identify intentional ambiguities at
all is important because intentional ambiguity is a fundamental
part of legal texts [1]. Intentional ambiguity holds important
implications for software requirements that must comply with

laws and regulations [1], [3], [6], [7], [10], [32]. Consider
§ 170.302(p), which reads as follows:

(p) Emergency access. Permit authorized users (who

are authorized for emergency situations) to access

electronic health information during an emergency.

This paragraph describes the “break the glass” scenario in
which physicians otherwise unable to access certain health
records would be allowed access. The definition of an “emer-
gency situation” or what it means to be “authorized for
emergency situations” is not provided. Thirteen participants
flagged this as an intentional ambiguity. This recognition
is important because intentional ambiguities must first be
identified before they may be disambiguated. Moreover, they
must be periodically reevaluated regarding ambiguity and the
author’s intent.

Q4: Do participants agree on whether software engineers
should be able to build software that complies with each
paragraph in § 170.302?

Answer: We evaluated agreement using Fleiss’ kappa and
did not find agreement between participants on whether
paragraphs from § 170.302 were implementable.

Participant agreement was not statistically significant for
the group as a whole (FK: 0.0052, p = 0.788) or for the
technologists as a group (0.0455, p = 0.116). The policy
analysts disagreed slightly on the legal text’s implementability
(FK: −0.124, p = 0.0111). This is consistent with other
findings for similar tasks involving the evaluation of legal
texts for software engineering purposes. Prior research notes
that determining whether software requirements have met or
exceeded their legal obligations is challenging [7]. Maxwell
found identification and classification of legal cross references
to be similarly challenging for professional engineers [6].

Q5: Does an identified ambiguity affect whether participants
believe that software engineers should be able to build
software that complies with each paragraph in § 170.302?

Answer: Yes, 89% of unimplementable paragraphs contained
an unintended ambiguity, whereas only 48% of imple-
mentable paragraphs contained an ambiguity.

Of the 83 paragraphs found to be unimplementable by the
participants, 74 contained unintentional ambiguities. Of the
216 paragraphs found to be implementable, 104 contained
unintentional ambiguities. We expected that those paragraphs
that Participants identified as implementable would only rarely



contain unintentional ambiguities, but our results indicate
that 48% of the implementable paragraphs were deemed to
contain unintended ambiguities. Prior research has shown
for a similar task (identifying legally implementation-ready
requirements) that individuals working alone tend to be too
liberal (i.e. accept as implementation-ready requirements that
need further refinement) and groups working together tend to
be too conservative (i.e. reject requirements that have actually
met their legal obligations) [7], [33].

V. DISCUSSION

Perhaps the most interesting results for this case study are
the qualitative results. When preparing the materials for this
case study, we examined § 170.302 many times to identify and
classify its ambiguities. Our participants were given 50 minutes
to accomplish the same task, yet they found several subtle
ambiguities that eluded us. For example, consider § 170.302(q):

(q) Automatic log-off. Terminate an electronic

session after a predetermined time of inactivity.

We found the phrase “predetermined time of inactivity” to
be incomplete or perhaps vague because no purpose is stated;
making it a challenge to determine how much inactivity is
allowable. It could be considered vague because “after” admits
borderline or relative cases: does it mean immediately after or at
some point after? Most participants identified the statement in
the same way, but one participant identified “time” as lexically
ambiguous. It could mean either duration or a time of day. If
interpreted as the latter, then it could be interpreted as requiring
EHRs to terminate an electronic session after closing time.

Paragraph § 170.302(o) provides another interesting example:
(o) Access control. Assign a unique name and/or

number for identifying and tracking user identity

and establish controls that permit only authorized

users to access electronic health information.

Two respondents found this paragraph to be both unambigu-
ous and also not implementable. How could an unambiguous
statement be unimplementable? This may seem unintuitive at
first, but the halting problem can be stated unambiguously and
cannot be implemented. Similarly, the absolute nature of the
phrase “permit only authorized users to access electronic health
information” could be interpreted as impossible to implement
because it is not a wholly technological problem.

VI. THREATS TO VALIDITY

Case study research is incomplete without a discussion of
concerns that may threaten results validity. Internal validity
refers to the causal inferences made based on experimental
data [34]. Herein, we do not attempt to determine causality
for any part of this research. Our goal is simply to determine
whether and how participants identify and classify ambiguity
in legal texts.

Construct validity refers to the appropriate use of evaluation
metrics and measures [34]. We specifically avoided the use
of absolute measures of ambiguity to conform with the term
as expressed in accepted IEEE standards [12]. To calculate
other statistical measures, we used accepted statistics for

agreement (ICC and Fleiss’ kappa) and scrupulously followed
recommended practices in applying them. Our case study
participants may have become fatigued and stopped responding
to the questions in our survey. To mitigate the impact of survey
fatigue, we adjusted our statistical measures to account for the
three surveys that contained unanswered questions.

Providing participants with only a single section of the
HITECH Act and the text of cross-references contained within
it is another threat to construct validity. The complete text
would have unreasonably increased participant fatigue. Note
that providing additional text could allow participants to either
disambiguate ambiguities identified in our study or discover
additional ambiguities resulting from potentially conflicting
material.

External validity refers to the ability to generalize the
findings to other domains [34]. We have mitigated threats
to external validity by selecting a section in the HITECH
Act that is representative of the style, tone, and wording of
obligations found in the rest of the act. In addition, we chose
a participant population with as many different backgrounds
as possible rather than limiting our research to stakeholders
with an engineering background. Unfortunately, two important
threats of this type remain. First, our study employs a small
population of students rather than a large population of
practitioners. Although the findings of our study align with
similar case studies that examine legal texts for engineering
purposes [6], [7], students enrolled in a graduate class may not
be representative of practicing engineers, lawyers, managers,
and policy makers. Second, we selected a legal text from a
single domain. Healthcare is a popular domain for regulatory
compliance software engineering research, but other domains,
like finance, also have extensive regulatory requirements. To
address these threats, we plan to adapt what we have learned
from this study for a broader, web-based examination of
ambiguity identification and classification for multiple legal
domains in the future.

Reliability refers to the ability of other researchers to
replicate this methodology. We assiduously detailed both our
methods and our evaluation techniques. In addition, we have
made our case study tutorial and survey materials available
online for researchers interested in replicating our results.11 We
do not believe reliability is a serious concern for this research.

VII. SUMMARY AND FUTURE WORK

The development of methods to improve and demonstrate
legal compliance with federal privacy and security regulations
in software systems is critical. Stakeholders of regulated
software systems, and in particular requirements engineers,
must be able to identify ambiguities in legal text and understand
their implications for software systems. To this end, we created
a taxonomy with six ambiguity types intended to encompass
a broad definition of ambiguity within the context of legal
texts. We conducted a case study to examine how students

11http://www.cc.gatech.edu/~akmassey/documents/
ambiguity-case-study-materials.pdf



in a graduate privacy class identify and classify ambiguity
for § 170.302 in the HITECH Act. Our research suggests
that ambiguity is prevalent in legal texts. In 50 minutes of
examination, participants in our case study identified on average
33.47 ambiguities in 104 lines of legal text using our ambiguity
taxonomy as a guide.

Participants did not exhibit strong agreement on the number
and type of ambiguities present in the legal text. This may
be due to the 50-minute time limit or to the complexity of
the task. Our analysis suggests (a) that participants used the
taxonomy as intended: as a guide and (b) that the taxonomy
provides adequate coverage (97.5%) of the ambiguities found
in §170.302. This suggests that the ambiguity taxonomy is
sufficient for analyzing this particular legal text.

Participants were willing to accept paragraphs with unin-
tentional ambiguities as implementable (i.e. as something for
which software engineers should be able to build compliant
software). Prior research has shown that software engineers are
ill-equipped to perform similar tasks [6], [7]. Further research
is needed in this area to provide better guidance and improve
decision-making in this area.

We plan to conduct additional case studies on larger
populations to better understand ambiguity in legal texts and its
implications for software engineering. In particular, we seek to
conduct a larger online case study covering healthcare, finance,
and other regulated domains. A larger study would allow us to
evaluate multiple possible aids for identifying and classifying
ambiguity in legal text. In addition, we plan to examine whether
identifying and classifying ambiguity improves software engi-
neering assessments of legal implementation readiness, which
our prior work has shown to be extremely challenging for
engineers to do with accuracy [7].
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