
Tracking Requirements Evolution by Using Issue Tickets:
A Case Study of a Document Management and Approval System

Shinobu Saito
Research and Development

Headquarters

NTT DATA CORPORATION

Tokyo, Japan

saitousnb@nttdata.co.jp

Yukako Iimura
Software Innovation Center

NTT CORPORATION
Tokyo, Japan

iimura.yukako@lab.ntt.co.
jp

Kenji Takahashi

NTT Innovation Institute, Inc.
San Mateo, CA, USA

kt@ntti3.com

Aaron K. Massey,
Annie I. Antón

Georgia Institute of
Technology

Atlanta, GA, USA

{akmassey,
aianton}@cc.gatech.edu

ABSTRACT

Requirements evolve throughout the software life-cycle. When

requirements change, requirements engineers must determine

what software artifacts could be affected. The history of and

rationale for requirements evolution provides engineers some

information about artifact dependencies for impact analysis. In

this paper, we discuss a case study of requirements evolution for a

large-scale system governed by Japanese laws and regulations.

We track requirements evolution using issue tickets created in

response to stakeholder requests. We provide rules to identify

requirements evolution events (e.g. refine, decompose, and

replace) from combinations of operations (e.g. add, change, and

delete) specified in the issue tickets. We propose a Requirements

Evolution Chart (REC) to visually represent requirements

evolution as a series of events over time, and implement tool

support to generate a REC from a series of issue tickets using our

rules to identify requirements evolution events. We found that the

REC supports impact analysis and compliance efforts.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications

General Terms

Management, Measurement, Documentation, Legal Aspects.

Keywords

Requirements Evolution; Issue Tickets; Impact Analysis; Large

Information Systems; System Compliance

1. INTRODUCTION
Requirements evolution is a fundamental challenge in software

engineering because requirements evolve throughout the software

lifecycle, increasing the costs of software development [5].

Managing requirements evolution is particularly challenging in

large and complex systems deployed in legally regulated

environments because requirements engineers are responsible for

ensuring that the evolving requirements respond to stakeholders’

change requests while also complying with laws and regulations.

The history of and the rationale for requirements changes provides

requirements engineers important context to understand

dependencies between software artifacts. This context is

particularly valuable to requirements engineers brought onto the

software development team after the original requirements

artifacts were written. Engineers new to a project must still

consider the impact that changes impose on specific requirements

artifacts. Understanding requirements evolution also helps

engineers assess the impact of potential requirements changes on

specific software artifacts.

Issue tracking is commonly used to manage requirements changes.

Many open source and commercial products use issue tracking

tools for this purpose [9, 15, 17]. Whenever a stakeholder requests

a change to the requirements, a requirements engineer creates an

issue ticket. The requirements engineer then updates the relevant

requirements artifacts to address the change request. In our study,

this update specifies one or more operations (e.g., add, change,

and delete) for the affected artifacts. For each issue ticket, the

requirements engineer also records a rationale for the change.

After the stakeholder reviews and authorizes the actions taken, the

issue ticket is closed and time-stamped. Collectively, issue tickets

contain valuable information for understanding the history of and

the rationale for requirements evolution.

In theory, issue tracking can completely record all changes to

requirements. In practice, we have not found this to be case. It is

unusual for requirements engineers to accurately record all

changes that take place during requirements analysis.

Requirements engineers may fail to record issue tickets accurately

because they are too busy or because they have too many other

tasks. These “unrecorded” issue tickets are stored only in the

memory of the stakeholders. Identifying unrecorded changes in a

series of issue tickets is challenging, even for the requirements

engineers who created the issue tickets. Just reading through all

the issue tickets for a large system may take a non-trivial amount

of time. Even experienced requirements engineers may fail to

identify unrecorded requirements evolution events in a set of issue

tickets. As a result, the impact of these changes on the software

system may be overlooked or underestimated.

Our case study examines the commercial development of a large-

scale document management and approval system governed by

Japanese laws and regulations that uses issue tracking to manage

requirements changes. The project is managed and operated by

one of the NTT [14] Group companies. The system supports

government approval processes in accordance with Japanese laws

and regulations. Due to the proprietary nature of the system, we

refer to this system as the DMAS (Document Management and

Approval System) throughout the remainder of the paper. There

are over 100 requirements artifacts that correspond to each of 70

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICSE'14, May 31 – June 7, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2768-8/14/05... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
ACM 978-1-4503-2768-8/14/05
http://dx.doi.org/10.1145/2591062.2591194

245

business processes supported by the DMAS, for a total of

approximately 7,000 requirements artifacts.

For this study, we examine requirements evolution using the issue

tickets created by requirements engineers in response to change

requests. We create rules to identify the requirement evolution

events (e.g., refine, decompose, and replace) from combinations

of operations specified in the issue tickets (e.g., add, change, and

delete). We also propose a Requirements Evolution Chart (REC)

based on the mapping of issue ticket operations to requirements

evolution events. The REC provides a visual representation of

requirements evolution events over time.

In this paper, we seek to answer the following research question

by means of practical evaluation within the case study:

Does the REC enable requirements engineers to identify

requirements evolution events (e.g., refine, decompose, and

replace) that were previously overlooked?

The remainder of this paper is organized as follows: Section 2

provides an overview of the DMAS. Section 3 describes related

work with an emphasis on requirements evolution. Section 4

defines our set of requirements evolution events and presents our

seven rules for mapping issue ticket operations to requirements

evolution events. Section 4 also defines the REC. Section 5

describes a REC generation tool based on a software

implementation of the mapping rules presented in section 4.

Section 6 presents our analysis procedures and results from our

case study. Section 7 describes the limitations of the case study.

Section 8 discusses the implications of our findings. Section 9

summarizes the paper and presents our plans for future work.

2. DMAS OVERVIEW
The system for this study is a very large (tens of millions of

SLOC) document management and approval system (DMAS)

governed by Japanese laws and regulations. The DMAS supports

document approvals similar to those needed for building or

construction permits or drug approvals in the United States. The

DMAS supports 13 high-level business process groups (BPGs),

each of which is responsible for a different part of the approval

process for different types of submissions. In total, there are over

70 business processes allocated to these 13 BPGs. Examples of

business process activities include document filings, approvals,

rejections, reviews, and appeals. On average, the DMAS supports

over 1,000 daily users and nearly 500,000 documents are

submitted each year, with each submission triggering a complex

review and approval process. Developmental delays as little as

one day might cost approximately $150,000 to $250,000.

Although the DMAS is a unique system, it is similar to other large

information systems that must comply with evolving laws and

regulations.

One of the characteristics of this system that makes tracking

requirements evolution so challenging is the crosscutting nature of

the business activities that occur in each of the 13 BPGs. Some

types of submissions trigger processing (e.g., reviews or

approvals) in multiple BPGs, whereas others may only require

processing in one BPG. In addition, each of the 50 individual

requirements engineers assigned to this project is responsible for

at most three of the 70 business processes. Any type of

submission that triggers processing in more than two business

processes requires coordination with at least one (and possibly

several) additional requirements engineer to accurately assess the

impact of these requirements changes. Furthermore, manually

searching the entire set of artifacts to detect those affected may

take as long as two or three days even for experienced

requirements engineers.

The DMAS is a six-year development effort with two years

devoted to requirements definition, two years to architectural

design, and three years to implementation and testing. Note that

there is some overlap between the last year of the requirements

definition phase and the first year of the architectural design phase.

This project was prompted by the necessity of compliance with

new laws and regulations. The need to reengineer the DMAS for

legal compliance also afforded an opportunity for a general BPR

(Business Process Reengineering) effort to consolidate a large set

of databases and migrate the legacy mainframe system to a new

client-server based system.

2.1 Requirements Artifacts
The DMAS business process is represented by a collection of

business flows. Figure 1 shows an example business flow,

including the relationship between the use cases and the decision

table. Thus, we now define three types of requirements artifacts:

A use case describes a sequence of events performed by actors

using natural language (e.g., input and output, pre- and post-

conditions, normal and exceptional scenarios).

A decision table represents conditions at the end of a given use

case that must exist for determining a plausible next use case in

the business flow sequence.

A business flow consists of use cases and decision tables.

The business flow in Figure 1 comprises six use cases (Use Cases

#1 - 6), and one decision table (Decision 1).

2.2 Requirements Engineering Team
The DMAS requirements engineering team consists of

approximately 50 requirements engineers, one project manager,

and five middle managers. Each middle manager manages 10

requirements engineers on average. Each requirements engineer is

in charge of 2-3 business processes on average. Thus, there is a

many-to-many relationship between requirements engineers and

business processes, which complicates requirements evolution

management.

Once requirements artifacts are approved by the customer(s), the

design and implementation will be contracted to another team.

The planned maximum size for the implementation and testing

Figure 1. Requirements artifacts for a business flow.

246

team is approximately 1,000 software engineers. Most original

members of the requirements engineering team will be contracted

out after the requirements definition phase.

2.3 Stakeholder Review Meetings
The initial input to the entire overall system development effort

was a set of requirements extracted from the legacy system’s

specification and managed using an Excel spreadsheet. This

original specification was incomplete, and we conducted

stakeholder review meetings to ensure requirements coverage for

the new system.

A separate requirements analysis effort was conducted for each

business process. The stakeholders for each business process

included members of the NTT team and approximately five

members of the customers’ IT staff and end users familiar with

the legacy system the DMAS will replace. A few days prior to

each requirements analysis meeting, an NTT middle manager

proposes an agenda, which must be approved by a customer

representative. Using the agenda as a basis, the customer

representative selects stakeholders with appropriate or relevant

experience with the aspects of the system relevant to the agenda

for participation in each meeting. Two requirements review

meetings were held each week. Requirements artifacts (e.g.

business flows, use cases, and decision tables) were updated after

each review meeting on the basis of discussions held and

suggestions made during the meetings.

Because the updates are not made during the actual review

meetings, each meeting began with stakeholders reviewing,

correcting, and approving the minutes from the previous meeting

and any issue tickets created by the engineers as a response to the

previous meeting. This typically took approximately 30 minutes.

During each meeting, the attendees actively reference and review

all the requirements artifacts.

The stakeholders see the requirements artifacts for the first time

when they arrive at the meeting. There is no a priori review. Each

meeting lasts about two hours. There is no break during the

meeting because they were conducted using Fagan-style [3]

software inspections, which are normally limited to two hours.

2.4 Issue Tickets
During a meeting, stakeholders often request new requirements,

which are then recorded on new issue tickets by the requirements

engineers. These tickets reflect the new issues raised as well as the

change requests made by the stakeholders during the meeting.

Table 1 shows an Issue Ticket Template. Each issue ticket

includes a ticket ID, a change request, rationale, update action

(e.g., updated artifacts, artifact types, operation types), issue date,

and close date. The operation types are Add, Change, and Delete.

The artifact types are UC and DT, which are abbreviations for

“Use Case” and “Decision Table”.

After each stakeholder review meeting, requirements engineers

document change requests by creating issue tickets, and determine

whether the issue can or will be addressed by the requirements

engineering team. The team then distributes the meeting minutes

and issue tickets to the stakeholders, as well as details about the

issues upon which agreement was reached. As previously

mentioned, these minutes and issues tickets must then be

approved at the beginning of the next review meeting.

The responsible middle manager in the requirements engineering

team must carefully manage any new requirements surfaced

during the meetings. For example, stakeholders discussing part of

the system they have not previously examined bring a new

perspective and tend to generate more requirements changes than

stakeholders who have previously examined that part of the

system. Due to the size of this system, the middle managers must

actively manage and monitor requirements evolution to ensure

that there are no conflicts between new or changed requirements

and existing, unchanged requirements. In particular, they must be

aware of regulatory requirements and ensure the system remains

compliant. The middle managers must also attempt to minimize

superfluous or “bells and whistles” requirements.

3. RELATED WORK

3.1 Software Evolution
Lehman [12] proposed three different software types: S-type, P-

type, and E-type. S-type software addresses problems stated

formally and completely. P-type software is for “problem-

solving”; it finds solutions for addressing imprecise problems of

the real world. Because the real world changes and the problems

also change, P-type software is likely to evolve continuously. E-

type software is embedded in the real world and becomes part of

it; it must evolve to remain satisfactory to stakeholders. Herein,

we focus on requirements evolution exclusively within the context

of P-type software. Specifically, we are interested in ways to

manage high-level requirements as they change in response to

change requests from stakeholders, and in ways to trace

requirements as they evolve in order to identify the subsequent

impact of changing requirements.

Lehman and Ramil [13] primarily focus on “program evolution”.

For example, they observed and analyzed the trends of size

growth in program modules by using release and revision dates. In

contrast, we focus on requirements evolution using issue tickets

during the early stages of software development.

3.2 Traceability and Impact Analysis
Settimi et al. [16] trace requirements to UML artifacts, source

codes, and test cases for supporting software evolution. Their

Information Retrieval method aids in understanding the change

impact scope. However, their approach requires textually rich

artifacts for improving the impact analysis accuracy. Because our

approach relies on a limited set of operation types in issue tickets,

it is not dependent upon the richness of textual description in the

artifacts used.

Von Knethen [11] uses a fine-grained trace model to evaluate

impact analysis in system requirements changes. This trace model

determines documentation entity types (e.g., use case and

functional requirement) and relationships (e.g., dependency,

refinement) to be traced. The trace model also includes constraints

on these relationships. They presented a set of process

descriptions that determine how to establish traceability and how

to analyze the impact of changes. These processes are semi-

automated with tool support. The trace model is tailored for

Table 1. Issue ticket template.

 Update action

Ticket

ID

Change

Request
Rationale

Updated

artifact

Artifact

type

Operation

type

Issue

date

Close

date

T1 foo bar A UC Delete 2013/4/1 2013/4/8

C UC Add

D UC Add

E DT Change

… … … … … … … …

247

embedded control systems and smaller product applications that

use UML models. In contrast, our work focuses on large, complex

information systems, and our artifacts are not limited to UML

models.

3.3 Managing Requirements Evolution
Requirements evolution is inevitable in any software development

effort. Within the context of systems that must comply with laws

and regulations, managing these changes while maintaining

traceability is critical because of the need to ensure due diligence

while adhering to the expected standard of care.

Jones [10] introduced the term “requirements creep” to discuss the

inevitable evolution of requirements. Several emerging

technologies (e.g., prototypes, requirements inspections, and

change-control boards) were proposed as ways to clarify early

requirements and minimize the disruptive effects and costs of

changing requirements later. Similarly, we leverage the history of

and rationale for requirements evolution early on to allow for

efficient impact analysis when stakeholders submit requirements

change requests.

Carter et al. [1] proposed a tool-supported method to manage

requirements creep. Their evolutionary prototyping model helps

engineers prompt stakeholders to submit and clarify requests. In

contrast, our approach relies only on the history and the rationale

associated with requirements evolution as expressed in issue

tickets. Our approach supports both stakeholders and engineers

during weekly meetings by clarifying the impact of changes on

requirements artifacts.

Harker et al. [5] noted the importance of considering requirements

change classifications in order to manage requirements evolution.

Specifically, they distinguished between stable and changing

requirements (mutable, emergent, consequential, adaptive, and

migration) to assess their impact scope. In the case study reported

herein, most of the changing requirements were mutable and

emergent requirements. The mutable requirements originated

from laws and regulations, whereas the emergent requirements

originated with customers attending the review meeting.

Wnuk [18] proposed a technique used to visualize a large number

of requirements. Their technique, called Feature Transition Charts

(FTC), enables visualization of the scope dynamics within and

across multiple projects (e.g., product line projects). The

technique provides a comprehensive overview of the timing and

magnitude of feature transitions among multiple projects. The

scope of each project is maintained in a feature list. In order to

find feature transitions, they search feature identifiers in the

feature lists of the projects for exactly matching names. In

contrast, we focus on an issue tickets list for a single large

software system.

When stakeholders request new requirements, requirements

engineers make structural changes to the corresponding artifacts.

Cleland-Huang et al. [7] defined seven evolutionary events of

change: Create, Inactivate, Modify, Merge, Refine, Decompose,

and Replace. In the next section, we discuss our adoption of these

seven evolutionary events.

4. EVOLUTION TRACKING TECHNIQUE

4.1 Evolutionary Events
As mentioned above, we used Cleland-Huang’s seven events [7]

to record the kind of requirements evolution that takes place.

Figure 2 shows the events resulting from requirements evolution.

Requirements artifacts are represented by the capital letters A, B,

and C. The symbol 

represents a structural

change from the artifacts on

the left hand side to those on

the right hand side.

Brief descriptions of the

seven evolutionary events

follow. “Create” produces a

new artifact. “Inactivate”

means an artifact is marked

as deleted. “Modify”

changes the value of an

attribute in a given artifact.

“Merge” combines two or

more artifacts into a new

artifact. “Refine” adds a new

additional artifact to, for

example, fine-tune an

existing original artifact.

“Decompose” takes an existing artifact and separates it into two or

more artifacts. “Replace” substitutes one artifact with another.

4.2 Guidance for Recording Issue Tickets
Requirements engineers must record issue tickets according to a

set of guidelines to ensure consistency. The guidelines are as

follows:

 Changes affecting one artifact:

If a single change request affects only a single artifact (e.g.

UC, DT), it shall be recorded in one issue ticket.

 Changes affecting more than one artifact:

 A single change affecting more than one artifact:

If a single change request affects more than one artifact, it

shall be recorded in one issue ticket. Additional change

requests affecting the same set of artifacts shall also be

recorded in this issue ticket.

 More than one change affecting more than one artifact:

If change requests, each of which affect multiple artifacts, do

not affect exactly the same set of artifacts, they shall be

recorded in separate issue tickets.

Figure 3 portrays a meta-model that represents the relationship

between information about an issue ticket and evolutionary events.

As described in Subsection 2.4, one issue ticket includes one or

more update actions. An update action contains information about

Figure 3. Meta-model of issue tickets and requirements

evolution events.

Figure 2. Evolutionary events.

Issue ticket

Change Request

Ticket ID

Rationale

Update actions grouped by artifact type

Artifact type

Updated artifact

Operation type

Evolutionary event

Create

Inactivate

Modify

Refine

Merge

Decompose

Replace

Issue date

Close date

Add Change Delete

0..*

0..*

0..*

0..1

0..1

0..1

0..1

1..*

1

1..*

1

0..*

248

artifact type, updated artifact, and operation type. In our approach,

a set of update actions grouped by artifact type in an issue ticket is

mapped to one of the evolutionary events. For example, when an

issue ticket records two sets of update actions grouped by two

artifact types (e.g. use case and decision table), each set of update

actions can be mapped separately to requirements evolution

events.

4.3 Mapping Rules
We define seven rules that map a combination of operations in an

issue ticket to an evolutionary event. Table 2 is a comprehensive

list of the seven mapping rules. It shows the mapping relations

between evolutionary events and combinations of operations

recorded in the issue ticket. Names of the evolutionary event

appear in the leftmost column. The operation types (Add, Change,

and Delete) appear in the three rightmost columns. The number of

artifacts updated (“One”, “One or more”, and “Two or more”) is

noted in relevant cells. We can recognize requirements evolution

using the issue tickets from these rules as described below:

4.3.1 Create and Inactivate Events
When an issue ticket contains information that one artifact was

added or deleted, we recognize that the artifact was newly created,

inactivated, respectively. Figure 4 portrays the identification of

Create and Inactivate events from its corresponding issue tickets.

An issue ticket for which an Add operation is recorded is mapped

to a Create event. In the same way, an issue ticket in which only a

Delete operation is recorded is mapped to an Inactivate event. The

mapping rules for Create and Inactivate events are formally

represented as below:

(No. of Add operations ≥ 1) & (No. of Change operations = 0) &

(No. of Delete operations = 0)  Create event

(No. of Add operations = 0) & (No. of Change operations = 0) &

(No. of Delete operations ≥ 1)  Inactivate event

4.3.2 Modify Event
When an issue ticket contains information that one artifact was

changed, we recognize that the value of the attribute in the artifact

was modified. An issue ticket in which only a Change operation is

recorded is mapped to a Modify event. Figure 5 depicts the

identification of a Modify event from its the corresponding issue

ticket. In this figure, the issue ticket contains information that the

use case was changed. Thus, the Modify event (i.e., scenario in

the use case changed) is identified from this combination of

operations in the issue ticket. The mapping rule for a Modify

event is formally represented as below:

 (No. of Add operations ≥ 0) & (No. of Change operations ≥ 1) &

(No. of Delete operations = 0)  Modify event

4.3.3 Merge Event
In an issue ticket where two or more artifacts were deleted and

exactly one artifact was added, we recognize that the deleted

artifacts were merged into a newly added artifact. Figure 6 shows

a Merge event and its corresponding issue ticket. In this figure,

the issue ticket indicates that two use cases were deleted and new

use case was added (i.e., two use cases were merged into one use

case). The Merge event is identified from this combination of

operations in the issue ticket. The mapping rule for a Merge event

is formally represented as below:

(No. of Add operations = 1) & (No. of Change operations = 0) &

(No. of Delete operations ≥ 2)  Merge event

4.3.4 Refine Event
An issue ticket containing one changed artifact with one or more

added artifacts is recognized as a Refine event. Figure 7 shows a

Refine event and its corresponding issue ticket. In this issue ticket,

the existing use case was changed and new use case was added.

Figure 5. Modify event and the corresponding issue ticket.

Figure 6. Merge event and the corresponding issue ticket.

Figure 4. Create and Inactivate events and the corresponding

issue tickets.

Table 2. Seven mapping rules.

Evolutionary

event

Combination of operations

Add Change Delete

1. Create One or more

2. Inactivate One or more

3. Modify One or more

4. Merge One Two or more

5. Refine One or more One

6. Decompose Two or more One

7. Replace One One

Evolutionary Event

Name Order Processing System XX

Normal Scenario

User action System action

1. Input the new

order

2. Check the order

information

3. Display the check

result

Modify

Name Order Processing System XX

Normal Scenario

User action System action

1. Input the new

order

2. Check the order

information

3. Display the check

result

4. Record the check

result

Update action

… Updated artifact Artifact type Operation type …

… Order Processing UC Change …

Issue Ticket

Mapping

Evolutionary Event

Merge
Name

Order

Processing
System XX

Normal Scenario

User action System action

1. Input the

new orders

2. Check the order

information

-
3. Display the

check result

4. Select the

results

5. Record the

check result

Update action

… Updated artifact Artifact type Operation type …

Order Checking UC Delete

… Result Recording UC Delete …

… Order Processing UC Add …

Issue Ticket

Mapping

Name Order Checking System XX

Normal Scenario

User action System action

1. Input the new

orders

2. Check the order

information

3. Display the check

result list

Name Result Recording System XX

Normal Scenario

User action System action

1. Select the

results

2. Record the check

results

MergeName Order Processing System XX

Normal Scenario

User action System action

1. Input the new

order

2. Check the order

information

3. Display the check

result

Create

Update action

…
Updated

artifact

Artifact

type

Operation

type
…

…
Order

Processing
UC Add …

Mapping

Update action

…
Updated

artifact

Artifact

type

Operation

type
…

…
Order

Processing
UC Delete …

Inactivate

Mapping

Evolutionary Event

Issue Ticket

249

The Refine event is identified from this combination of the

operations in the issue ticket. The mapping rule for a Refine event

is formally represented as below:

(No. of Add operations ≥ 1) & (No. of Change operations = 1) &

(No. of Delete operations = 0)  Refine event

4.3.5 Decompose Event
An issue ticket containing a deleted artifact with two or more

newly added artifacts is recognized as a Decompose event; the

newly added artifacts actually decompose the deleted artifact.

Figure 8 shows a Decompose event and its corresponding issue

ticket. In this figure, the issue ticket contains information that

artifact the existing use case was deleted and two use cases were

added (i.e., one use case was divided into two use cases). The

Decompose event is identified from this combination of the

operations in the issue ticket. The mapping rule for a Decompose

event is formally represented as below:

(No. of Add operations ≥ 2) & (No. of Change operations = 0) &

(No. of Delete operations =1)  Decompose event

4.3.6 Replace Event
An issue ticket in which one artifact was deleted and one artifact

was added is recognized as a Replace event. Figure 9 shows a

Replace event and its corresponding issue ticket. In this issue

ticket, the use case was deleted and new use case was added. The

Replace event is identified from this combination of the

operations in the issue ticket. The mapping rule for a Replace

event is formally represented as below:

(No. of Add operations = 1) & (No. of Change operations = 0) &

(No. of Delete operations = 1)  Replace event

4.4 REC: Requirements Evolution Chart
We now introduce a Requirements Evolution Chart (REC) to

visualize a time series of events of requirements evolution. Figure

10 shows a sample REC with corresponding issue tickets. The

REC includes four evolutionary events: Decompose, Merge,

Refine, and Inactivate. The corresponding four issue tickets

appear on the right side; the four columns (Ticket ID, Updated

artifact, Artifact type, and Operation type) are taken from the

issue ticket template. The ticket IDs of the issue tickets are T1, T2,

T3, and T4. In this figure, artifacts A, B, and C are found in the

initial condition. The dotted lines are labeled time-series links;

Figure 9. Replace event and the corresponding issue ticket.

Figure 8. Decompose event and the corresponding issue ticket.

Figure 7. Refine event and the corresponding issue ticket.

Figure 10. REC and corresponding issue tickets.

Evolutionary Event

Name Order Processing System XX

Normal Scenario

User action System action

1. Input the new

order

2. Check the order

information

3. Display the check

result

Replace

Name
Order Checking

and Recording
System XX

Normal Scenario

User action System action

1. Input the new

order

2. Check the order

information

3. Display the check

result

4. Record the check

result

Update action

… Updated artifact Artifact type Operation type …

… Order Processing UC Delete …

Order Checking

and Recording
UC Add

Issue Ticket

Mapping

Evolutionary Event

DecomposeName
Order

Processing
System XX

Normal Scenario

User action System action

1. Input the

new order

2. Check the order

information

3. Display the

check result

4. Record the

check result

Update action

… Updated artifact Artifact type Operation type …

Order Processing UC Delete

… Order Checking UC Add …

… Result Recording UC Add …

Issue Ticket

Mapping

Name Order Checking System XX

Normal Scenario

User action System action

1. Input the new

orders

2. Check the order

information

3. Display the check

result list

Name Result Recording System XX

Normal Scenario

User action System action

1. Select the

results

2. Record the check

results

Decompose

Evolutionary Event

Refine
Name Order Processing System XX

Normal Scenario

User action System action

1. Input the new

order

2. Check the order

information

3. Display the check

result

4. Record the check

result

Update action

… Updated artifact Artifact type Operation type …

… Order Processing UC Change …

… Result Recording UC Add …

Issue Ticket

Mapping

Name Order Processing System XX

Normal Scenario

User action System action

1. Input the new

orders

2. Check the order

information

3. Display the check

result list

Name Result Recording System XX

Normal Scenario

User action System action

1. Select the results 2. Record the check

results

Refine

A

B

D

E

D

Decompose

Merge G

Refine

Inactivate

Initial T1 T2

Decompose

Merge

Refine

T3 T4

F

Ticket ID

Evolutionary Link

Time-series Link

Updated Artifact

Evolutionary Event Type

Update action

Ticket

ID

Updated

Artifact

Artifact

type

Operation

type

T1 A UC Delete

D UC Add

E UC Add

T2 B UC Delete

E UC Delete

F UC Add

T3 D UC Change

G UC Add

T4 F UC Delete

C

250

each represents a sequence of the issue tickets. The initial

condition is the starting point and it leads directly to the first issue

ticket (T1). From there, the second time-series link starts at T1

and ends at T2, which is the ticket ID of the second issue ticket. In

this way, both ends of each link represent consecutive ticket IDs

of two issue tickets. The solid lines are labeled evolutionary links;

each represents a change transition of an artifact in the

requirements evolution. In this way, these links and labels visually

represent a time series of requirements evolution events. On the

other hand, as shown in Figure 10, artifact C is not connected to

any evolutionary links. The reason is that any issue tickets for

artifact C are not recorded, as shown in the issue tickets listed in

the figure.

The REC seeks to help requirements engineers understand

requirements evolution. Issue tickets are mapped to evolutionary

events in the REC. They also contain information about change

requests made by stakeholders and the rationale for the update

actions to artifacts for addressing a change request.

5. SOFTWARE IMPLEMENTATION
We implemented a REC generation tool to demonstrate the ability

to track and visualize requirements evolution using issue tickets.

Figure 11 provides an overview of the tool. The tracking function

automatically applies the mapping rules described in section 4.4 to

identify evolutionary events using issue tickets. The visualization

function generates the REC image based upon the results of the

rule mapping. The REC tool uses an open source software

package, GraphViz [4], to generate the visualizations.

The tool takes as its input a comma-separated values (CSV) file

that includes issue tickets data. The upper side of Figure 12 shows

a screen image of the file; as shown, it holds information for four

issue tickets. The ticket IDs are numbered from t1 to t4. The

“Artifact type” column shows two types: UC and DT, which are

abbreviations for “Use Case” and “Decision Table.” By applying

the mapping rules, the function for tracking requirements

evolution creates a DOT file that describes the graph. From the

created DOT file, GraphViz generates an image of the REC. The

lower half of Figure 12 shows an output image of the REC

generated from the issue tickets file shown in the top half of the

figure. It contains five artifacts (i.e., UC_# 1 to 3 and DT_# 1 to

2) in the initial condition. From these four issue tickets, the tool

was able to track five evolutionary events (e.g., Refine,

Decompose, Merge, Modify, and Replace) and visualize the

requirements evolution history, using the sequence of changes

described by the issue tickets.

This tool can support changes affecting different artifact types in

one issue ticket. As shown in Figure 12, issue ticket t4 includes

update actions regarding two artifact types, UC and DT. In the UC

part, artifact UC_5 was deleted and artifact UC_8 was added. The

tool recognizes this combination of operations as a Replace event

by executing the mapping rule for a Replace event. Moreover,

artifact DT_1 was changed in the DT part. The tool also

recognizes this operation as a Modify event by executing the

mapping rule for a Modify event. As shown in Figure 12, Replace

and Modify events are visualized at the lower part of ticket t4. In

the issue tickets list of the figure, any issue tickets on artifact

DT_2 are not recorded. The REC shows that artifact DT_2 is not

connected to any evolutionary links.

6. CASE STUDY
To answer the research question given in Section 1, we used the

DMAS to conduct a case study.

6.1 Data Collection and Participants
In this case study, the requirements definition phase for one

business process continued for nine weeks: three weeks of initial

creation of requirements artifacts and six weeks of review with

stakeholders. The stakeholders started by creating 16 requirements

specifications, in which BPR and compliance needs were written

in natural language. Using these specifications as a basis, two

requirements engineers then created a set of 79 requirements

artifacts. By the time the review was completed, the total number

of artifacts had increased to 109 and a total of 61 issue tickets

were created. These tickets included 44 use case tickets, 14

decision table tickets, and 3 tickets for both use cases and decision

tables. The two requirements engineers who created the

requirements were the participants in the case study. Both were

senior-level engineers with over 10 years of experience. They

were also primarily responsible for the business process of DMAS.

6.2 Analysis Procedure
The analysis procedure contains four steps, as described by Figure

13. In the first step, we collect an issue tickets file and extract

issue tickets data (e.g. ticket ID, artifact types, updated artifacts,

Figure 11. Overview of REC generation tool.

Figure 12. Screenshot of REC and issue tickets file.

Issue Tickets File Tracking

Reqs.

Evolution
Export data

Visualizing

Reqs.

Evolution

(GraphViz)

REC

Issue tickets data

(CSV file)

DOT file

REC generation tool

251

operation types) to

generate the REC. In the

second step, the REC is

generated from the issue

tickets data. Steps 1 and

2 are conducted

automatically using the

tool described in Section

5. In step 3, the two

requirements engineers

verify that the generated

REC is accurate. During

this step, if they identify

overlooked or false

events in the REC, they

correct the corresponding

issue tickets or create

new issue tickets to resolve the discrepancy. In the final step, the

engineers are individually interviewed on the effectiveness of the

REC for identifying overlooked events.

6.3 Results

6.3.1 Identifying Overlooked/False Events
In steps 1 and 2, we collected an issue tickets file and extracted

issue tickets data. From the issue tickets data we generated the

REC using the tool. The REC includes 64 evolutionary events: 47

(=44+3) use case events and 17 (=14+3) decision table events. In

step 3, the two requirements engineers verified the generated REC

for approximately one hour.

Table 3 shows the verification results by evolutionary event. It

shows (I) the number of events generated from issue tickets, (II)

the number of overlooked events, and (III) the number of false

events. By referring to the REC, the requirements engineers

identified 48 overlooked events and three false events. Next, they

created 48 new issue tickets corresponding to the overlooked

events, and removed the three false issue tickets. As a result, they

compiled a total of 109 (=64+48-3) events. The REC enabled the

requirements engineers to recover the overlooked events. During

the case study, the number of “corrected” issue tickets increased

by 78.9% (=48/ (64-3)) – a recovery rate of roughly 80%. As

described in Section 2, it may take two or three days to search the

entire range of requirements artifacts in order to detect affected

artifacts, even if the searching is done by experienced

requirements engineers.

6.3.2 Feedback from Requirements Engineers
We asked the participants the following two questions:

 How did you identify overlooked events by using the REC?

 If overlooked or false events were not identified, what kinds

of increased project risks would occur in the future?

Each engineer was interviewed for approximately half an hour.

The interviews focused on the top three overlooked events (e.g.,

Modify, Refine, and Replace). As shown in Table 3, these events

covered approximately 80% of all overlooked events.

6.3.2.1 Overlooked Modify Event
Figure 14 shows an image of the

overlooked Modify event in the REC.

The dotted box on the right side of the

figure is not described in the REC

because the corresponding issue ticket

on the Modify event of artifact X was

overlooked and therefore not recorded.

How did they identify overlooked events?

Using the REC, the requirements engineers recognized that

artifact X was not changed. The REC prompted them to

reconsider whether artifact X had actually been changed. The

engineers recalled past events related to artifact X. This enabled

them to identify that artifact X had indeed been changed. They

then created a corresponding issue ticket recording the Modify

event of artifact X.

What kinds of increased project risks would occur in the future?

As mentioned in Section 2, the DMAS must comply with relevant

laws and regulations. Therefore, during the case study the

requirements engineering team updated a number of requirements

artifacts specifically to address revisions of laws and regulations.

However, most of the original team members were contracted out

after the requirements definition phase in the project (see

Subsection 2.2). Therefore, if the laws and regulations are revised

again in the future, the new team members will have to detect

artifacts affected by the new revisions using only information

provided by the issue tickets recorded by the original

requirements engineers. For example, consider the overlooked

Modify event of artifact X (shown in Figure 14) that occurred due

to a revision in regulation A. If this regulation were revised again

and a corresponding issue ticket was not recorded, identifying that

artifact X had been changed previously as a result of regulation A

challenging and time-consuming. If the issue ticket remains

unrecorded, the risk of non-compliance will increase.

6.3.2.2 Overlooked Refine Event
Figure 15 shows an overlooked Refine

event in the REC. Once again, the dotted

boxes on the right side set of the figure

are not described in the REC because

the corresponding issue ticket on the

refine event (X  X + Y) was not

recorded.

How did the engineers identify

overlooked events?

By referring to the REC, requirements engineers recognized that

artifact Y was not described in the REC although they created it as

a part of their requirements analysis. The REC allowed them to

recognize that they did not record the issue ticket for artifact Y.

This enabled them to identify that artifact X was changed and

artifact Y was newly added. They corrected the error in the

corresponding issue ticket by recording the refine event for

artifacts X and Y.

What kinds of increased project risks would occur in the future?

In the DMAS project, stakeholders requested a number of

requirements to support system compliance. In addressing these

requirements, the regulatory nature of the existing artifact was

Figure 13. Analysis Procedure.

Figure 14. Overlooked

Modify event.

Table 3. Verification Results.

 (I)

Generated

event

Identified event

(II)

Overlooked
(III) False

1. Create 10 5 2

2. Inactivate 1 3 1

3. Modify 29 21 0

4. Merge 0 0 0

5. Refine 8 9 0

6. Decompose 2 1 0

7. Replace 14 9 0

Total 64 48 3

Figure 15. Overlooked

Refine event.

Step 1: Collect issue tickets

Step 2: Generate REC

Issue tickets data

REC

Step 3: Verify REC

Overlooked/false events

Legend

Issue tickets file

Input/output

Step

Automated

by the tool

Step 4: Interview participants

Obtain feedback on REC

[X]X

[Modify]

[X]

[Y]

X

[Refine]

[Refine]

252

emphasized. As shown in Figure 15, it was often the case that the

new artifact Y was created from the existing artifact X. In this

situation, the description of artifact Y might be significantly

similar to that of artifact X. For example, let us assume that

artifact X was related to regulation B. If artifact X needs to be

changed due to a regulatory change, requirements engineers

should consider whether artifact Y also needs to be changed due

to the revision. However, if the corresponding issue ticket of the

Refine event is not recorded, determining that artifact Y was

previously created from artifact X will be challenging and time-

consuming. The requirements engineers may not be able to detect

that artifact Y might have also been affected by the change

required for artifact X. Once again, risk of system non-compliance

will be increased if the issue tickets are not accurate.

6.3.2.3 Overlooked Replace Event
Figure 16 shows an image of an

overlooked Replace event in the REC.

The dotted box on the right side set of the

image is not described in the REC

because the corresponding issue ticket on

the Replace event (X  Y) was not

recorded.

How did they identify overlooked events?

By referring to the REC, requirements engineers recognized that

artifact X was not changed. They also recognized that artifact Y

was not described in the REC although they it was created during

their requirements analysis. The REC prompted them to recognize

that they did not accurately record issue ticket on artifact X and Y.

This enabled them to identify that artifact X was replaced by

artifact Y. They corrected the corresponding issue ticket to record

the Replace event of artifacts X and Y.

What kinds of increased project risks would occur in the future?

Some of the laws and regulations to which the DMAS must

comply have been in effect for over 10 years. They have been

revised periodically since going into effect. Often, the name of the

relevant artifact was changed as a result of revisions in the laws

and regulations. For example, let us assume that artifact X was

previously changed by a revision of regulation C, and an issue

ticket regarding the event (i.e., a Modify event of artifact X) was

recorded. If the regulation is revised in the future, requirements

engineers must be able to know that artifact X was previously

changed using only the issue tickets. If an issue ticket for the

replace event (X  Y) was not recorded, identifying artifact Y as

affected by the change to regulation C will be challenging and

time-consuming. Errors in the issue tickets will result in

increased risk of system non-compliance.

7. CASE STUDY LIMITATIONS
When designing any case study, care should be taken to mitigate

threats to validity [19]. We make no causal inferences as a result

of our study, so internal validity is not a concern.

External validity is the ability of a case study’s findings to

generalize to broader populations. A possible threat to external

validity is the fact that we only analyzed one project: the DMAS.

However, the system is substantially similar to other document

approval systems, such as those that manage building or

construction permits or drug approvals in the United States. In

addition, the requirements engineering team created requirements

artifacts that are not domain specific (e.g., business flow, use case

and decision table). These types of software artifacts are used

widely by other systems. Issue tickets are also used widely by

other systems. We believe these facts reinforce the external

validity of our case.

Construct validity addresses the degree to which a case study is in

accordance with the theoretical concepts used. Three ways to

reinforce construct validity are: using multiple sources of reliable

evidence, establishing a chain of evidence, and having key

informants review draft case study reports. By collecting issue

tickets from 13 review meetings over a total of six weeks with two

different types of stakeholders (Information Technology

department staff members and end users), we used multiple

sources for our study. To establish a chain of evidence, we

carefully maintained a record of all issue tickets created and the

relationship between issue tickets and corresponding requirements

artifacts. Finally, other members of NTT reviewed our draft case

study report [14].

Reliability is the ability to repeat a study and observe similar

results. To reinforce our study’s reliability, we developed the REC

generation tool. This tool enabled us to conduct steps 1 and 2 of

the case study automatically. By using the tool, other researchers

and case study participants will be able to rigorously follow the

steps of the case study.

8. DISCUSSION

8.1 Acquiring Implicit Knowledge
In the case study, a number of changes were not accurately

recorded in the issue tickets. After the requirements definition

phase, even when requirements engineers examined the contents

of the issue tickets list written in natural language, they rarely

noticed that there were “unrecorded” changes. To address this, we

generated the REC, which displays the contents of the recorded

issue tickets graphically. This representation helped requirements

engineers identify which artifacts were not accurately recorded in

the issue tickets. As a result, they were able to identify overlooked

events and create the corresponding issue tickets with an

approximately 80% increase from the time of the completion of

the requirements definition phase. By providing the graphical

representation of existing explicit knowledge (i.e., recorded issue

tickets), the REC supported requirements engineers in their

acquisition of implicit knowledge (i.e., unrecorded issue tickets).

8.2 Knowledge Transformation
When requirements engineers leave a project, their expertise and

knowledge is sorely missed. This is particularly challenging when

the rationale for changes in the requirements is extensive or subtle.

In these cases, the REC can serve as a training aid when

assimilating new project members. The REC enables

understanding of requirements evolution and the history of

software artifacts throughout the software project. The REC is a

knowledge transfer tool because it documents the provenance of

requirements for the newer project members. Generally, in large-

scale system development projects, it takes a lot of time for new

project members to understand the overall structure of

requirements artifacts and the related history of and rationale for

the requirements. The REC is a new tool for project members

seeking to understand the relationship between evolutionary

events and issue tickets and the rationale for these changes.

8.3 Effectiveness of Impact Analysis
When stakeholders request new requirements, requirements

engineers usually rely on full-text searches of the artifact

repository to identify the affected artifacts. For example, when a

regulation is changed, they try to identify the affected artifacts

using keyword searches of terms relevant to the regulation.

Figure 16. Overlooked

Replace event.

YX

[Replace]

253

However, if the original artifact that complied with the regulation

has evolved (e.g., through a Decompose, Merge, or Replace

event), derivative artifacts that are generated from the original

artifact during requirements evolution must also maintain

compliance. However, those requirements may not be identifiable

simply by searching for keywords from the regulation. Without

historical requirements evolution information, engineers may not

be able to identify the scope of the derivative artifacts when

searching the latest set of artifacts. The REC provides

requirements engineers with another way to identify the historical

evolution and rationale for changes in system requirements.

8.4 Using the REC at Scale
Visual representations of software systems must scale to be useful.

Large software systems may have thousands or tens of thousands

of software artifacts. The DMAS has on the order of 8,000 issue

tickets in total at a rough estimate, but because the system is

decomposed into 70 business processes, each of which has a

manageable amount of issue tickets, we were able to use the REC

effectively. The REC described herein may not scale to systems

that cannot be easily modularized.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an approach to track

requirements evolution using issue tickets. We first defined the

issue ticket template, which contains specific operations to

requirements artifacts for addressing change requests from

stakeholders. We then provided seven rules that describe

identification of requirements evolution events based on

combinations of operations in the issue tickets. By applying these

rules we can recognize requirements evolution events using a

series of issue tickets. We also defined our Requirements

Evolution Chart (REC), which is a graphical representation of

requirements evolution, and briefly described an REC generation

tool. We evaluated the effectiveness of our approach and tool by

conducting a case study within the context of a large-scale

document management and approval system development project.

Our study offers two important insights. First, our tracking

technique can enable requirements engineers to identify

overlooked requirements evolution events. Second, our approach

helps requirements engineers conduct impact analysis in the

context of system compliance. In future work, we plan to conduct

an economic analysis to measure the effectiveness of tracking the

requirements evolution using the REC.

10. ACKNOWLEDGMENTS
The authors are grateful to T. Maeyama, R. Matsumoto, S. Oyama,

M. Fukunaga, T. Shinya, and T. Kusano of NTT DATA for their

assistance in the case study.

11. REFERENCES
[1] R.A. Carter, A.I. Antón, A. Dagnino, L. Williams, “Evolving

Beyond Requirements Creep: A Risk-Based Evolutionary

Prototyping Model”, 5th IEEE Intl. Requirements

Engineering Conf., 2001, pp. 94-101.

[2] A. Cockburn, Agile Software Development, Addison Wesley,

2001.

[3] M.E. Fagan,”Advances in Software Inspections”, July 1986,

IEEE Transactions on Software Engineering, Vol. SE-12, No.

7, pp.744-751.

[4] Graphviz, http://www.graphviz.org/

[5] S.D.P. Harker, K.D. Eason, J.E. Dobson, “The Change and

Evolution of Requirements as a Challenge to the Practice of

Software Engineering”, IEEE Intl. Symposium on

Requirements Engineering, 1993, pp. 266-272.

[6] J. Highsmith and A. Cockburn, Agile Software

Development: the Business of Innovation, IEEE Computer,

Vol. 34, No. 9, Sep. 2001, pp. 120-122.

[7] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-

Based Traceability for Managing Evolutionary Change”,

IEEE Transactions on Software Engineering, vol. 29, no. 9,

2003, pp. 796-810.

[8] ISO 5806:1984, Information processing -- Specification of

single-hit decision tables, ISO, 1998.

[9] JIRA, http://www.atlassian.com/en/software/jira

[10] C. Jones, “Strategies for Managing Requirements Creep”,

IEEE Computer, 29(6), 1996, pp. 92-94.

[11] A. Von Knethen, “A Trace Model for System Requirements

Changes on Embedded Systems”, 4th Intl. Workshop on

Principles of Software Evolution, 2001, pp. 17-26.

[12] M. M. Lehman, “Programs, Life Cycles, and Laws of

Software Evolution”. IEEE, vol 68, no 9, 1980.

[13] M. M. Lehman, J. F. Ramil, “Evolution in Software and

Related Areas”, 4th Intl. Workshop on Principles of Software

Evolution, 2001, pp.1-16.

[14] NTT, http://www.ntt.co.jp/index_e.html/

[15] Redmine, http://www.redmine.org/

[16] R. Settimi, J. Clelena-Huang, and O. Ben Khadra,

“Supporting Software Evoution through Dynamically

Retrieving Traces to UML Artifacts”, 7th Intl. Workshop on

Principles of Software Evolution, 2004, pp. 49- 54.

[17] The Trac Project, http://trac.edgewall.org/

[18] K. Wnuk, B. Regnell, and L. Karlsson, “Feature transition

charts for visualization of cross-project scope evolution in

large-scale requirements engineering for product lines”,

Requirements Engineering Visualization (REV), 2009, 4th

Intl. Workshop, pp. 11–20.

[19] R.K. Yin, Case Study Research: Design and Methods, in

Applied Social Research Methods Series, Vol. 5, 2003, 3rd

ed.

254

