
Proposing Regulatory-Driven Automated Test Suites

Patrick Morrison, Casper Holmgreen, Aaron Massey, Laurie Williams
Department of Computer Science
North Carolina State University

Raleigh, NC
{pjmorris, cmholmgr, akmassey, lawilli3}@ncsu.edu

Abstract—In regulated domains such as finance and health
care, failure to comply with regulation can lead to financial,
civil and criminal penalties. While systems vary from
organization to organization, the same regulations apply for all
systems. As a result, efficiencies could be gained if the
commonalities between systems could be captured in public,
shared, test suites for regulations. We propose the use of
Behavior-Driven-Development (BDD) technology to create
these test suites. With BDD, desired system behavior with
respect to regulatory requirements can be captured as
constrained natural language ‘scenarios’. The scenarios can
then be automated through system-specific test drivers. The
goal of this research is to enable organizations to compare their
systems to regulation in a repeatable and traceable way
through the use of BDD. To evaluate our approach, we
developed seven scenarios based on the HITECH Act
Meaningful Use (MU) regulations for healthcare. We then
created system-specific code for three open-source electronic
health record systems. We found that it was possible to
create scenarios and system-specific code supporting scenario
execution on three systems, that iTrust can be shown to be non-
compliant, and that emergency access procedures are not
defined clearly enough by the regulation to determine
compliance or non-compliance.

Keywords- Behavior-Driven-Development; Healthcare IT;
Regulatory Compliance; Security; Software Engineering;
Software Testing

I. INTRODUCTION
In regulated domains such as finance and healthcare,

organizations must ensure their software systems comply
with applicable laws and regulations. Failure to comply often
carries financial, civil and even criminal penalties. While
systems vary widely among organizations, they must all
check compliance against the same regulatory requirements.

For regulations, compliance is ultimately assessed by an
external regulatory agency. A number of quality assurance
techniques have been developed to assist organizational
compliance. These approaches vary across industries, but
typically include elements such as staff training, manual and
automated monitoring, internal and external audits, and
software certification. For software system development,
compliance is a concern over the entire software lifecycle,
from requirements [1] [2] to ongoing maintenance [3].

Behavior-Driven-Development (BDD) is a software
development practice that organizes development effort
around the creation of constrained natural language, termed

‘scenarios’, that describes user interactions with the proposed
system and the system’s responses in terms of the vocabulary
used by system stakeholders [4]. These scenarios are then
automated through the creation of system-specific test driver
code that binds each scenario to the system. Each scenario,
combined with the system-specific test driver code, serves as
a test of the system’s behavior. The collection of scenarios
forms a test suite for the system. Proponents of BDD hold
that by keeping the scenarios free of technical details, system
users, subject matter experts and developers can share a
common language for describing the expected behavior of a
system. Frameworks that support this style of development
include FIT [5], FitNesse1, JBehave2 and Cucumber [4].

The typical use case for BDD is in custom software
system development. The scenarios and the system-specific
test driver code are both associated with a single custom
software system [6][7].

The goal of this research is to enable organizations to
compare their systems to regulation in a repeatable and
traceable way through the use of Behavior Driven
Development. Tests suites built from scenarios can help to
confirm that important issues have been addressed. Such test
suites could become a shared asset for use by all systems
subject to these regulations and standards. Each system, then,
need only create their own system-specific test driver code to
automate their compliance checks. System owners and
auditors can gain confidence in the compliance of a system
by running the compliance test suite(s) on their systems,
obtaining indications of how their systems will respond to
external audits through use of the test suite. At an industry
level, a test suite for a regulation provides a target for
implementers and a basis for comparison among systems.

To illustrate our approach, we created a compliance test
suite consisting of seven scenarios based on the United
States Health Information Technology for Economic and
Clinical Health Act (HITECH) meaningful use (MU)
regulations for security. To evaluate the test suite’s
reusability and generalizability, we implemented system-
specific test driver code for three open source EHR systems;
iTrust3, OpenEMR4 and Tolven5.

The contributions of this paper are:

1 http://fitnesse.org/
2 http://jbehave.org/
3 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
4 http://www.oemr.org/
5 http://home.tolven.org/

• A proposal for using BDD technology to implement
reusable test suites for regulatory-related system
behavior.

• An example implementation of this proposal in the
form of a BDD scenario test suite for security-related
HITECH regulations

• Reporting on the use of this test suite for three EHRs

The remainder of the paper is organized as follows;
Section 2 provides background for HITECH, EHRs, BDD,
and test suites and reviews related work in testing EHRs for
compliance and in the application of scenarios to checking
requirements satisfaction. Section 3 presents related work.
Section 4 describes our research methodology. Section 5
presents our application of the methodology. Section 6
presents our evaluation. Section 7 presents discussion and
conclusions, section 8 is a discussion of limitations, and
section 9 reviews and summarizes the paper.

II. BACKGROUND
In the United States, healthcare organizations must

comply with the HITECH and Health Insurance Portability
and Accountability Act (HIPAA) Acts, among others.
HITECH regulations stipulate that failure to protect personal
health information can lead to fines of up to $50,000 per
violation and imprisonment for up to one year. The seven
security scenarios we chose from HITECH parallel the
published HIPAA Security Rule technical safeguards.
Compliance with US regulations for medical record privacy
is measured by observations of systems and organizational
behavior by a US government agency, the Office of Civil
Rights (OCR) [8].

BDD6 is a software development practice that organizes
development effort around the creation of scenarios of
desired system behavior in collaboration with stakeholders
[4]. These scenarios are then used to guide and then verify
the results of the development process. Depending on the
project, these scenarios may be associated with one or more
requirements, or, for some teams, the scenarios themselves
may serve as the requirements document. BDD begins with
developers meeting with customers and other stakeholders to
create a structured natural language requirements document,
including scenarios of each requirement being developed
during the next iteration. Over time, the collected scenarios
accrete to serve as a regression test suite as well as a
specification of system behavior to be implemented. These
documents also serve as a critical part of the acceptance test
infrastructure for the project. A number of teams use the
produced documents directly as both requirements
specification and acceptance tests [9]. Confirmation that the
behavior described by a scenario is achieved by a system is
accomplished through the development and execution of
system-specific test driver code that links the scenario text to
the concrete system functions. The key to BDD is that the
scenario documents serve as a critical part of the acceptance
test infrastructure for the project. When the scenarios are

6 http://behaviour-driven.org/

matched with the system-specific test driver code they can be
automatically executed to verify system behavior.

Several BDD frameworks have been developed. We
discuss two of the most common, the Framework for
Integrated Tests (FIT) and Cucumber.

 FIT [5] was, developed to enhance collaboration in
software development and to help stakeholders learn what
their software should do and what it does do7. FIT uses a
tabular notation, stored as HTML, to describe a scenario. FIT
fixtures are programming language code that connects the
tabular descriptions to the system under test; each fixture
must be built in conjunction with the tabular design and with
the system code being tested.

Cucumber [4] is a framework for building suites of
automated acceptance tests, based on the ideas of BDD. The
framework is accessed through the use of ‘feature files’ and
‘step files’. Feature file is Cucumber’s term for a plain text
file containing structured natural language descriptions of
scenarios. Software developers and client stakeholders read
feature files, and both groups are welcome to write them,
though typically only developers write the files. Step files
contain code that translates feature file vocabulary in to
actions run against the system under test. Typically, only
software developers read and write the code in the step files.

Although the details differ, FIT and Cucumber are based
on similar concepts. We now describe a small example
using both FIT and Cucumber, to highlight how these tools
work. For both examples, we set a goal of testing
authentication for an open source EHR, iTrust. The non-
functional requirement is phrased ‘The system shall enable
multiple simultaneous users, each with his/her own exclusive
authentication.’8 We embellish this definition by providing a
scenario describing steps taken during authentication 9 ,
illustrating the definition’s application in the system’s
context. The first step in the scenario is ‘A user enters their
MID [user identification] and their password to gain role-
based entry into the iTrust Medical Records system’.

Both FIT and Cucumber support persistent text-based
semi-formal instance and type scenarios [10] that describe
system-user interactions and that record and report on the
system’s behavior in response to the scripted actions.
Cucumber scenarios, Tab. 1, are plain text, and their viewing
and authoring can be accomplished through any text editor.
Cucumber’s use of natural language text aligns well with the
common use of natural language text for scenario description
[9]. FIT requires that text be embedded in HTML tables, Tab
2., which has the benefit of built-in linking to relevant
information, while incurring the cost of an enforced structure
and HTML authoring for the production and editing of
scenarios.

7 http://fit.c2.com
8 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=requirements
9 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=requirements:uc3

TABLE I. CUCUMBER FEATURE EXAMPLE

Feature: Authentication

 Scenario Outline: Verify Authentication

 When I enter <username> and <password>
 Then I <should_not> be able to log in

 Examples:
 | username | password | should_not |
 | casper | pass12 | should |
 | casper | wrong | should not |

TABLE II. FIT TABLE EXAMPLE

A user with correct credentials should be able to
log in.

Authentication.Fixtures.Login

Username Password Result

casper pass12 Success

casper wrong Failure

III. RELATED WORK

A. Legislation and Software
A growing body of research examines how to link

regulations and software requirements [11][1][12]. Within
that, there has been some focus on how to measure the
performance of running systems [1][13] against a
requirements baseline. These approaches depend on the
development of sophisticated monitoring layers by software
experts. Our approach treats the test suite as the monitoring
system, based on commonly available BDD technology, and
each scenario is written in terms of the applicable regulation
rather than a requirements specification.

In the United States, the U.S. Congress passes bills,
which must then be signed into law by the President. For
complex domains, laws often contain instructions for an
Executive branch agency to create regulations that meet the
standards outlined by the law. Often, even the regulations are
too far removed from the problem domain for organizations
to comply without additional guidance from legal counsel.
Given the significant consequences of not addressing
regulatory compliance issues, attention has been paid by the
requirements engineering community to eliciting
requirements from legislation [12], [14]. The legislative
process produces laws and regulations that may serve as
sources for requirements elicitation [14].

B. EHR Software Certicfication
Three sources of guidance in the EHR domain are the

Certification Commission for Health Information
Technology (CCHIT) 10 , the Office of the National
Coordinator for Health Information Technology
(ONCHIT)11, and the National Institute of Standards and

10 http://www.cchit.org/
11 http://healthit.hhs.gov/

Technology (NIST)12. CCHIT is an organization providing
certification of EHR systems according to a set of internally
developed criteria and test scripts. CCHIT makes these
criteria and test scripts available on the web 13 . The
certification process applies these scripts in a controlled
environment. Each step is read from the script and keyed
manually in to the candidate system. Each step has an
‘Expected Result’ column indicating the expected result of
the step. A blank ‘Actual Result’ column allows manual
entry of the step results. Comparison of the actual and
expected results leads to a pass/fail decision, which is also
recorded in the script. This process requires significant
manual effort to execute each time, and further effort to
review the results. The scripts exercise a wide range of
functionality, however they do not necessarily cover all
aspects of EHR security [15]. The HITECH act established
the ONCHIT, which is charged with the development of
nationwide Health IT infrastructure, including standards
definition and the establishment of certification criteria and
certification of bureaus that certify EHRs. CCHIT is the first
of such bureaus, but a number of others have begun
operations. NIST develops and publishes standards across a
wide range of industries and topic areas, including a suite of
test procedures targeting the regulations and guidelines
established by the ONCHIT and HITECH14. The NIST-
developed test procedures form the basis of our BDD
scenarios, as there are explicit, documented links made
between the NIST procedures and the regulations they are
designed to check. This does not, in principle, limit the
creation of scenarios to the presence of preexisting test
procedures; however, the development of test procedures for
a given regulation is a significant research challenge that also
requires legal guidance [14]. This is beyond the scope of the
present work. Narrowing the focus of the scripts to the
content of the regulation allows clear traceability between
the intent of the regulation and the actions taken to confirm
the implementation of this intent.

C. Test Suites
Test suites are collections of test cases organized around

some unifying purpose. Validation test suites check a piece
of software’s relationship to a set of requirements.
Conformance test suites check a piece of software’s
relationship to a set of requirements embodied in some
standard. To date we have found no formal definition of
either phrase, and they appear to be used interchangeably in
practice.

In the telecomm domain, a set of test suites for various
network interoperability standards was built based upon
TTCN-3, a telecomm industry standard for test
specification.15 In the domain of programming languages,
validation suites consisting of executable acceptance tests
establish conformance for a given language implementation

12 http://www.nist.gov
13 https://www.cchit.org/cchit-certified
14 http://healthcare.nist.gov/use_testing/index.html
15 http://www.ttcn-3.org

to its specification. For example, Plum Hall16 builds compiler
validation test suites for C and C++. RubySpec is an open-
source executable specification for the Ruby programming
language. Java’s Technology Compatibility Kit 3 serves a
similar function for the Java language. Although licensing
agreements vary, proper execution of a validation suite
provides vendors, customers, and users confidence in the
software’s compliance with the official specification.

Morgan Stanley built a BDD test framework for
validating financial time series data [15], although the test
suite was applied to a single application rather than the
multiple applications we propose..

D. BDD concepts
Grigori Melnik empirically evaluated ‘Executable

Acceptance Test-Driven Development’[7], finding that the
practice enhances communications within software
development teams, that executable acceptance tests can
specify functional requirements in a consistent, verifiable
and usable way, and that executable acceptance tests provide
sufficient evidence of requirements traceability in regulated
environments. He also found that tooling (FIT) for
developing these tests suites negatively impacted their
maintainability and scalability.

An industrial experience report [17] on Automated Test
Driven Development (ATDD) describes a scheme of
developing ’acceptance test case specifications’ (’ATC-
Specs’) that are natural language descriptions of system
behavior. In a case study they found ’the biggest advantage
of using ATDD was that the customers understood the
eventual behavior of the system better via the ATC-Specs
than via the more formal SRS (Software Requirements
Specification)’. They further commented ’Customers often
do not ’think in’ system use cases but ’think in’ user
interfaces where they enter data, press ’commit’ and get the
results displayed’ [17].

E. BDD Frameworks
A position paper [9] described development using FIT,

and proposed an equivalence hypothesis about the
relationship between acceptance tests and requirements: ‘As
formality increases, tests and requirements become
indistinguishable. At the limit, tests and requirements are
identical’. Based on this hypothesis, they argue that a
suitable set of FIT tests can act as a requirements
specification, a practice they maintain, and one that they
claim other teams maintain. In practice, there is evidence that
in some environments FIT-based scenarios are adequate to
document requirements [9].

Over time, a number of academic studies have evaluated
various aspects of FITs attributes and use. A 2009 review of
these studies [17] found that, contrary to intent, FIT tests
were typically authored and used only by developers rather
than as a communications tool between stakeholders. The
stakeholders preferred plain text to the browser-based HTML
tables used by FIT. Developers did find the tests helpful in
guiding development and in reducing time to discover and

16 http://www.plumhall.com/

resolve errors, especially when the tests were used to verify
proper behavior after changes [17].

One academic study conducted a series of experiments
focused on measuring the utility of FIT in assisting
requirements understanding [13]. A set of requirements was
presented to students. The control group received no FIT
tests, while the treatment group received FIT tests along with
the requirements. In the words of the study, “When Fit tables
are present, the chances of correctly understanding a
requirement are in most cases (95%) at least two times
higher than without them, and on average 4 times higher”
[18].

The structured natural language statements contained in
Cucumber feature files are as follows [4]: Given some initial
context, When an event occurs Then verify some outcome.
Given specifies a set of preconditions, allowing both
documentation and confirmation of necessary conditions for
a successful test. When describes the actor, objects, and an
action. Then describes the expected results of the action
taken. Two other terms are used; Scenario collects a related
set of Given/When/Then statements, and Feature collects
multiple related scenarios that describe a single system
feature. When Cucumber runs, it parses the feature files
according to this grammar, and connects statements from the
feature files to the system-specific test driver code in the step
file(s) that implement each statement.

To date, Cucumber has not been the subject of academic
studies. However, a number of aspects of its design
commend it to our purposes; The separation of the structured
natural language feature files from the system-specific test
driver code contained in the step files allows each system to
have a set of step files that implement the shared tests
described in the feature files. The plain text nature of the
feature files allows them to be read and written by any text
editor, minimizing needed tool support.

IV. BDD FOR REGUATORY TEST SUITES
The goal of this research is to enable organizations to

compare their systems to regulation in a repeatable and
traceable way through the use of BDD. To achieve this,
we must, at a minimum Identify Regulations, Develop
Scenarios and Automate Scenarios. The tasks listed above
form the outline of our methodology. We now discuss them
in greater detail.

Step One: Identify Regulations
Select all or part of a regulatory text. Within the selected

text, identify each regulation with which a system must
comply. Regulations can be identified in the regulatory text
by phrases of the form ‘An <actor> [must|must not] or shall
perform some action’, and by the heading ‘Implementation
specifications’. This parallels requirements extraction. In
general, identifying requirements in regulatory texts is a
difficult problem that requires not only engineering
expertise but legal advice [13].

Step Two: Develop Scenarios

Regulations are typically phrased in declarative language,
identifying required behavior, constraints, and limits, but
lacking description of how to identify whether the expected
behavior has been accomplished. A scenario, a step-by-step
test procedure, must be associated with each tested
regulation to validate its achievement. The scenario takes
the form of a detailed set of instructions readable by a
person. CCHIT and NIST are two sources of test
procedures that test various aspects of health care systems,
but custom scenario development may be also done.

For traceability, each scenario should be clearly named,
and each scenario should contain a reference to the specific
section of regulation that is being exercised by the
structured natural language scenario.

Step Three: Automate Scenarios
Once a scenario for checking regulatory conformance is

available, code for adapting it to a system must be written,
including appropriate roles, sequences of steps and
verification conditions. The code is split in our approach in
to a structured natural language component that describes a
scenario independent of a given system, and system-specific
driver code that is used to execute on a given system.

For traceability, code should be clearly named, and
should contain references to related scenarios and
regulations. The scenario name and regulation reference
should be displayed when the scripts are executed.

Completing these steps for all or part of a regulatory text

establishes a baseline for the development of the acceptance
test suite, and provides a suite of tests that can be compared
against other means of testing.

V. EVALUATION
We now describe the use of this three-step process on

three electronic health record systems.

Step One: Identify Regulations
Our research group has focused on EHR system security

[15][19][20]. One of the most studied regulations in this
area concerns HIPAA technical safeguards [12][11][20].
No test procedures for these have been published, but there
are an analogous set developed by the NIST for testing the
HITECH act meaningful use provisions [21]. MU covers a
wide range of EHR functionality requirements, and the
NIST has developed test procedures for each of them. The
language of HITECH sections 170.302(o)-(u) [22] closely
matches the language of HIPAA 164.302(a)-(g), to the point
of verbatim language in some sections. Rather than attempt
to claim that these regulations are directly comparable here,
we choose to mention the correspondence, and to base our
test suite on the test procedures associated directly with the
HITECH regulations in CFR 170.302. The development of

custom test procedures, and the linkage of related pieces of
regulation are both open and active research areas.

Step Two: Develop Scenarios
Our choice of HITECH 170.302(o)-(q)[22] regulations

leads directly to the selection of the NIST test procedures
170.302(o)-(q)[21] for translation to executable scenarios.
We now illustrate process with an excerpt from one of our
seven scenarios, Authentication.

The text of HITECH meaningful use regulation
170.302(t) is “Authentication. Verify that a person or entity
seeking access to electronic health information is the one
claimed and is authorized to access such information.”

The text of the associated NIST ‘Required Test

Procedure’, 170.302(t), is as follows:

1. TE170.302.t – 1.01: Using the Vendor-identified EHR function(s),

the Tester shall create a new user account and assign permissions
to this new account

2. TE170.302.t – 1.02: Using the new user account, the Tester shall
login to the EHR using the new account

3. TE170.302.t – 1.03: The Tester shall perform an action authorized
by the assigned permissions.

4. TE170.302.t – 1.04: The Tester shall verify that the authorized
action was performed

5. TE170.302.t – 1.05: The Tester shall perform an action not
authorized by the assigned permissions

6. TE170.302.t – 1.06: The Tester shall verify that the unauthorized
action was not performed

7. TE170.302.t – 1.07: The Tester shall log out of the EHR
8. TE170.302.t – 1.08: The Tester shall delete (e.g., deactivate or

disable) the new account
9. TE170.302.t – 1.09: The Tester shall attempt to login to the EHR

using the deleted account
10. TE170.302.t – 1.10: The Tester shall verify that the login attempt

failed
11. TE170.302.t – 1.11: Using the NIST-supplied Inspection Test

Guide, the Tester shall verify that:
a. an account has been created
b. can sign-in to the account
c. can authorize the assigned permissions can delete (e.g.,

deactivate or disable) the account the log-in attempt has
failed

The procedure provides a relatively concrete set of steps

that have been approved to check the regulation.

Step Three: Automate Scenarios
In order to translate the relatively concrete steps laid out

by the test procedure in to code that can be executed on each
of our EHR systems, we chose the BDD tool Cucumber.
We chose Cucumber over FIT primarily because Cucumber
is less restrictive in the form of input it accepts, while FIT
requires all input to be formatted as HTML tables. We
think this is important because it allows flexibility in both
the phrasing of the scenarios and in the tooling required to
read and change the feature files that contain scenarios.

We now illustrate our automation implementation by
showing steps 1.01-1.03 of the NIST 170.302(t) procedure,
including excerpts from the Cucumber feature file (Figure
1), and supporting step files for iTrust (Figure 2) and Tolven
(Figure 3). Complete listings of all files are available from
the project’s BitBucket site17.

a) Automating NIST 170.302(t), step 1.01

The first step of the test procedure, 1.01, calls for the
creation of a new user account and the assignment of
permissions to the account. Since the new account is
needed more than once over the course of the test procedure,
we perform the account creation at the beginning of the
feature file. We do so through the use of Cucumber’s
‘Background’ element, which performs common setup
required by each ‘Scenario’ in a feature file.

Our Gherkin text for this, ‘Using the Vendor-identified
EHR function(s), the Tester shall create a new user account
and assign permissions to this new account’, is associated
with the first ‘do’..’end’ blocks in the system-specific test
driver code shown in Figures 2 and 3. These functions log in
a user that can create other user accounts, calls a user
creation account routine with an example user, and logs out
the original user for iTrust and Tolven, respectively.

Our translation of the language of the test procedure
requires comment on four points. First, note that the NIST
test procedure refers to a Tester, and that the feature file
does not; we have written the feature file from the
perspective that the feature file itself can be treated as ‘The
Tester’. Secondly, where the test procedure calls for
‘Vendor-identified EHR function(s)’, we relied upon our
own investigation of each system’s documentation. While
we believe this to be suitable in our circumstances, more
thorough interaction with a vendor may be appropriate to
assure that the vendor’s intent is reflected by the choices
made for the step files. Thirdly, note that the
implementations for each step vary between iTrust and
Tolven; while the feature file is constant, there are system-

17 http://bitbucket.org/icasperzen/hipaa_cuke

specific details that the step files abstract away. Fourthly,
we used different roles for each system because roles are
treated differently from system to system. For example, in
iTrust patients have appropriate permissions differences
suitable for testing, but in Tolven they do not. We created a
patient for iTrust, and a Health Care Professional (HCP) for
Tolven. We found an alternate role in Tolven that exhibited
the behavior to be tested by the scenario.

b) Automating NIST 170.302(t), step 1.02
The second step of the test procedure, 1.02, calls for the

new user to log in to the system. The iTrust and Tolven step
files both delegate logging in to a system-specific test driver
routine, ‘login’, not shown. The iTrust step also includes a
password reset, something required of new iTrust users on
their first login.

c) Automating NIST 170.302(t), step 1.03
The third step of the test procedure, 1.03, calls for the

new user to perform an authorized action. The iTrust and
Tolven step files each implement this by navigating to a link
available to the logged in user in the role the user is in.

Each step of each scenario called for an assessment of the
test procedure and of how to execute the test procedure on
the system, followed by experimentation to discover the
users, roles, objects and actions provided by each system,
and the technical means by which to automate the required
actions.

VI. EVALUATION
We evaluate our test suite by measuring and reporting on

our implementation and execution of the methodology tasks
against seven regulations on three EHR systems and
reporting the degree to which we were able to automate the
test procedures. We also place our initial test suite in
context against the complete list of NIST test procedures
and their relationship to the HIPAA regulations.

Feature: Authentication

NIST Â§170.302(t) Authentication

Background:
 * Using the Vendor-identified EHR function(s), the Tester shall create a new user
account and assign permissions to this new account

Scenario: Verify authorization

DTR170.302.t 1: Verify authorization evaluates the capability to verify that a person
or entity seeking access to electronic health information is the one claimed and is
authorized

* Using the new user account, the Tester shall login to the EHR using the new account
* The Tester shall perform an action authorized by the assigned permissions.
* The Tester shall verify that the authorized action was performed

Figure 1: Cucumber feature file excerpt, Authentication

The goal of the test suite is to establish the link between

regulations and the behavior of the tested system.
Practically, this means ensuring each aspect of the
regulation is represented by one or more scenarios, that a
given system implements the function required by the
scenario, that there is step code to implement every aspect
of each scenario, and that the system under test responds
correctly when tested. We use a coding scheme ‘SFIP’,
described below, to indicate these attributes for a single
scenario on a single system. The presence of the letter
indicates the presence of the attribute, and the absence of the
letter indicates the absence of the attribute.

When evaluating the link between the regulation(s) and
scenarios, we need to consider whether a scenario correctly
represents a segment of the regulation, whether the collected
scenarios represent the selected regulation(s), and what
portion the selected regulation represents of the complete
regulation. The latter measures are aggregates, while the
first measure considers the link between one segment of
regulation and one scenario.
• ‘S’ indicates that we were able to define a scenario

that correctly represents its segment of the

regulation. Absence indicates that we could not
define a behavioral example for the regulation. It is
beyond the scope of this work to fully address the
relationship between regulation and scenarios. We
make the simplifying assumption that the NIST test
procedures correctly reflect their like-numbered
HITECH regulations. Developing a scheme for
mapping regulatory requirements and scenarios is an
open problem, an area of active research and a
candidate for future work.

• ‘F’ indicates whether the system provides the
function required by the scenario. Absence
indicates that the system does not support the
function called for by the scenario.

• ‘I’ indicates whether the step code implements the
steps called for by the scenario. Absence indicates
that step code was not defined or completed, either
because a scenario was not defined or because the
system did not provide the necessary feature.

• ‘P’ indicates whether the system passes the scenario
as executed. Absence may be because the test failed,
or because one of the preceding definitions –
scenario, function, step code, has not been made.

Given /^Using the Vendor\-identified EHR
function\(s\), the Tester shall create a
new user account and assign permissions to
this new account$/ do
 @user = default_hcp
 login(driver,@user)
 @new_user =

 create_new_patient(driver,ITrust
 ::User.new(first_name:'Ted',

 last_name:'Nugent',
 email:'ted@nugent.com'))
 driver.find_element(link:'Logout')
 .click
end

Given /^Using the new user account, the
Tester shall login to the EHR using the
new account$/ do
 reset_password(
 driver,@new_user,
 'password')
 @user = @new_user
 login(driver,@user)
end

Given /^The Tester shall perform an action
authorized by the assigned permissions\.$/
do
 driver.find_element(
 link:'My Demographics')
 .click
end

Given /^The Tester shall verify that the
authorized action was performed$/ do
 driver.title.should
 == 'iTrust - Edit Patient'
end

Figure 2: iTrust step file excerpt, Authentication

Given /^Using the Vendor\-identified EHR
function\(s\), the Tester shall create a
new user account and assign permissions to
this new account$/ do
 login("admin","sysadmin")
 create_new_staff
 add_testaccount_to_chr
 logout
end

Given /^Using the new user account, the
Tester shall login to the EHR using the
new account$/ do
 login("testaccount","twk27kox")
end

Given /^The Tester shall perform an action
authorized by the assigned permissions\.$/
do
 driver.get(base_url + "/Tolven")
 driver.find_element(:link,
 "Appointments").click
end

Given /^The Tester shall verify that the
authorized action was performed$/ do
 driver.title.should
 match /Appointments/
end

Figure 3: Tolven step file excerpt, Authentication

 We have tabulated our results for each task and each
system in Table III. Each row represents one of the
scenarios implemented for the test suite, including the
section of the regulation that is addressed, the test procedure
used, the name of the feature file in which the scenario is
implemented, and a score for each EHR system. Systems
receive one point each for presence of the functionality
tested in the scenario, step code for executing the scenario,
connection between the feature file and the step files, and
successful execution of the step code testing the
functionality.

We built scenarios for encryption, and system-specific
test driver code, but did not configure encryption in our
environments. Tolven and OpenEMR support encryption of
data documents for transmission, but it can be switched on
or off by the using organization, so the EHR can be
compliant, but the organization may not be. In both these
cases, the unencrypted data stored in the relational database
must be protected by proper database server administration.
iTrust does not support encryption of data documents for
transmission.

We built scenarios and system-specific test driver code
for Emergency Access, but did not obtain documentation on
specific Emergency Access features in the tested systems
and so we cannot comment on how emergency access
functionality bears on systems being potentially compliant.
iTrust and Tolven did not provide specific Emergency
Access functionality. OpenEMR’s ‘SFP’ reflects present
functionality, step definition and execution, and a need to
finish connecting the step files to the feature files.

We now address the attributes of repeatability and
traceability. Cucumber displays the text of each scenario as
it executes each step. Successfully executed steps are
printed in green, unsuccessful steps are printed in red. This
makes it possible to quickly check for the status of a given
test. The output of Cucumber test runs can be saved to text
files, allowing for machine comparison of test runs against
previous successful executions. We believe this supports
repeatability. The annotation of each scenario with a
section reference for its related test procedure and

regulation, together with the display of the section
references on every test run, offers the ability to trace from a
failing test back to the regulation to which it is related. The
annotations also allow the test suite text files to be searched
by regulation and test procedure section references in order
to assess what the test suite covers, another aspect of
traceability.

Because it does not support encryption, iTrust can be
recognized as non-compliant. Because emergency access
procedures are not defined concretely enough to build
scenarios, OpenEMR and Tolven cannot be definitively
recognized as compliant. One possible approach for such
cases would be to define system-specific scenarios
representing how the system implements the feature called
for by the regulation.

Where all elements were present, the scenarios and step
files created provide a repeatable, traceable link between the
regulation text and the behavior of the individual system.
Where some elements are missing, it is possible to identify
what is missing and why.

VII. DISCUSSION AND CONCLUSIONS
We were able to define scenarios for clearly defined

regulatory texts. We were not able to define scenarios for
‘emergency access procedures’ where regulatory concepts
were introduced but not defined. When scenarios could be
defined and systems supported the relevant functions called
for in the scenarios, we were able to build system-specific
step files to execute the scenarios. BDD’s concept appears
to be a useful one. BDD can be used to describe system
behavior in scenarios that both users and developers can
use. Those scenarios can then be tied to test system
behavior.

Two direct benefits of storing features as text files are
that no tooling beyond a text editor is required and that links
to original documents can be placed directly within the tests
themselves, supporting traceability. The absence of tooling
for reading and writing feature files supports non-technical
users.

TABLE III. EVALUATION SUMMARY

Regulation Procedure Automation

Electronic Health Record System

iTrust OpenEMR Tolven 2.1
Access Control - CFR 170.302(o) NIST 170.302.o login.feature SFIP SFIP SFIP

Emergency Access – CFR 170.302(p) NIST 170.302.p emergency_access.feature S SFP SFP

Automatic Logoff – CFR 170.302(q) NIST 170.302.q automatic_logoff.feature SFIP SFIP SFIP

Record actions – CFR 170.302(r) NIST 170.302.r audit_log.feature SFIP SFIP SFIP

Integrity – CFR 170.302(s) NIST 170.302.s integrity.feature SFIP SFIP SFIP

Authorization – CFR 170.302(t) NIST 170.302.t authentication.feature SFIP SFIP SFIP

Encryption – CFR 170.302(u) NIST 170.302.u general_encryption.feature,
transfer_encryption.feature

S SF SF

Totals: 7 7 7

The step definitions are written in a full programming
language, and can use any library written for that
programming language. The present project used
Cucumber’s original language, Ruby 18 , but many other
languages and environments are supported. For example,
the Cucumber development team has recently released a
pure Java version for JVM languages19, allowing integration
and use of that population of libraries.

The particular EHRs we evaluated are browser-based.
Their step definitions required the use of web test
framework technology; evaluating such technology is a
project in its own right. While the selected tools are
frequently used, we did not undertake a comparative
assessment of tool chains, and a different tool chain might
be more applicable to the needs of the EHR system step
definitions.

VIII. LIMITATIONS
We have automated a small number of test procedures for

a small number of EHRs. Applying these techniques to
further test procedures and to more systems may reveal
issues not covered by our efforts to date.

We were able to maintain system-independent scenario
files by pushing system-specific differences down in to the
step files for the situations where they arose in our
examples. This may not generalize to every scenario and
every system.

Our parsing of scenario files in to step definitions is
based on regular expression parsing. This is a relatively low
sophistication practice that does not yet approach the
identification of a domain language for describing and
reasoning about regulatory scenarios. It appears that there is
room here for developing a more sophisticated parsing
approach that more accurately identifies parts of speech in
the language used to describe the feature.

The specific users and patients maintained by an EHR
will vary from installation to installation, even for a given
EHR. Developing test suites that exercise system behavior
depend on using available users and patients, something that
will vary from installation to installation. We selected one
approach, but this requires per-installation customization in
a way that may introduce unwanted variability in the test
results. One approach to solving this would be to supply
patient and user creation routines in the scenario language,
and to create the users and patients necessary for the test
suite as part of the test suite definition. This does not solve
the problem of performing these tests against a production
system, as the audit logs, for example, will contain test data
as well as production data.

Automated acceptance testing of the form described here
is a form of object-oriented software development, and so it
is subject to all the challenges and limitations of a
development project; language familiarity, tool choice and

18 http://www.ruby-lang.org/en/
19 https://github.com/cucumber/cucumber-jvm

maturity, design choices and developer skill all have a
significant impact on the outcome.

Automated testing of web-based systems involves a
complicated tool chain, including the system under test, one
or more browsers, Javascript, test frameworks, scripting
languages, and libraries. The learning curves involved for
both the tool chain and systems-under-test, the difficulty of
developing a generic language for features, and the
difficulty of maintaining proper state in unattended
operation, all contribute to difficulties in developing and
maintaining the example test suite.

More fundamentally, creating a grammar that meets the
needs of non-technical readers and technical writers at the
same time may depend on organizational context to the
degree that an industry-wide language is not possible. More
work is required to assess the viability of this idea.

IX. SUMMARY AND FUTURE WORK
This project has evaluated the feasibility of using BDD

acceptance test suites to support checking of regulatory
requirements. We used Cucumber, a BDD tool, to
implement seven scenarios based on HITECH security
meaningful use compliance guidelines on three systems in
order to compare system behavior with its governing
regulations and to provide traceability between the
regulations and system behavior. Two natural next steps
would be to add the remainder of the meaningful use
regulations to the test suite, and to pursue implementations
of the test suite for other EHR systems. Publishing both the
generic feature files and system-specific step files on the
web will provide a direct measure of the perceived utility of
the suite, by enabling measurement of views, downloads
and check-ins by other parties. Given the baseline, finding
other means to evaluate its speed, simplicity and accuracy
compared with existing methods should be sought. A survey
of testing procedures and experiences among certification
bureaus, developers of EHRs and user organizations (e.g.
hospitals, doctor’s practices) should be conducted to form a
basis for this comparison. A number of objects and actions
appeared repeatedly in the system-specific driver code:
users, patients, HCP’s, navigation. It may prove valuable to
extract a vocabulary and grammar based on the nouns, verbs
and relationships in the working test suite. Such a
vocabulary could prove useful for constructing additional
scenarios and test procedures for aspects of the domain that
are not currently addressed. Another natural extension
would be to apply the idea of a BDD test suite to other
regulations and standards, as a check on its generality.

ACKNOWLEDGMENT
The authors would like to thank the members of the

Realsearch group, the members of The Privacy Place, and
the students of CSC 591, section 01 Fall 2011 and CSC 591,
section 007, Spring 2012 for their efforts, reviews and
comments on early drafts of this work.

REFERENCES
[1] S. Ingolfo, A. Siena, and J. Mylopoulos, “Establishing

Regulatory Compliance for Software Requirements,”
in Conceptual Modeling – ER 2011, vol. 6998, M.
Jeusfeld, L. Delcambre, and T.-W. Ling, Eds.
Springer Berlin / Heidelberg, 2011, pp. 47–61.

[2] T. D. Breaux and A. I. Anton, “Analyzing Regulatory
Rules for Privacy and Security Requirements,”
Software Engineering, IEEE Transactions on, vol. 34,
no. 1, pp. 5 –20, Feb. 2008.

[3] N. Chapin, “Software maintenance in complying with
IT governance: A report from the field,” in Software
Maintenance, 2009. ICSM 2009. IEEE International
Conference on, 2009, pp. 499 –502.

[4] M. Wynne and A. Hellesoy, The Cucumber Book:
Behavior-Driven Development for Testers and
Developers. Pragmatic Press, 2012.

[5] R. Mugridge and W. Cunningham, Fit for Developing
Software: Framework for Integrated Tests (Robert C.
Martin). Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005.

[6] B. Haugset and G. K. Hanssen, “Automated
Acceptance Testing: A Literature Review and an
Industrial Case Study,” in Proceedings of the Agile
2008, Washington, DC, USA, 2008, pp. 27–38.

[7] G. I. Melnik, “Empirical analyses of executable
acceptance test driven development,” University of
Calgary, Calgary, Alta., Canada, Canada, 2007.

[8]
 “http://www.hhs.gov/ocr/privacy/hipaa/enforcemen
t/process/howocrenforces.html.” .

[9] R. C. Martin and G. Melnik, “Tests and
Requirements, Requirements and Tests: A Möbius
Strip,” Software, IEEE, vol. 25, no. 1, pp. 54–59, Feb.
2008.

[10] C. Rolland, C. B. Achour, C. Cauvet, J. Ralyté, A.
Sutcliffe, N. Maiden, M. Jarke, P. Haumer, K. Pohl,
E. Dubois, and P. Heymans, “A proposal for a
scenario classification framework,” Requir. Eng., vol.
3, no. 1, pp. 23–47, Sep. 1998.

[11] J. C. Maxwell and A. I. Antón, “The production rule
framework: developing a canonical set of software
requirements for compliance with law,” in
Proceedings of the 1st ACM International Health
Informatics Symposium, New York, NY, USA, 2010,
pp. 629–636.

[12] A. K. Massey, B. Smith, P. N. Otto, and A. I. Anton,
“Assessing the accuracy of legal implementation
readiness decisions,” in Requirements Engineering
Conference (RE), 2011 19th IEEE International,
2011, pp. 207 –216.

[13] W. N. Robinson, “Implementing Rule-Based
Monitors within a Framework for Continuous

Requirements Monitoring,” in Proceedings of the
Proceedings of the 38th Annual Hawaii International
Conference on System Sciences - Volume 07,
Washington, DC, USA, 2005, p. 188.1–.

[14] P. N. Otto and A. I. Antón, “Addressing Legal
Requirements in Requirements Engineering,”
Requirements Engineering Conference, 2007. RE
’07. 15th IEEE International, pp. 5–14, Oct. 2007.

[15] A. Austin, B. Smith, and L. Williams, “Towards
improved security criteria for certification of
electronic health record systems,” in Proceedings of
the 2010 ICSE Workshop on Software Engineering in
Health Care, New York, NY, USA, 2010, pp. 68–73.

[16] R. Salama, “A regression testing framework for
financial time-series databases: an effective
combination of fitnesse, scala, and kdb/q,” in
Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, New York,
NY, USA, 2011, pp. 149–154.

[17] F. Salger and G. Engels, “Knowledge transfer in
global software development: leveraging acceptance
test case specifications,” in Software Engineering,
2010 ACM/IEEE 32nd International Conference on,
2010, vol. 2, pp. 211 –214.

[18] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, and
P. Tonella, “Using acceptance tests as a support for
clarifying requirements: A series of experiments,” Inf.
Softw. Technol., vol. 51, no. 2, pp. 270–283, Feb.
2009.

[19] B. Smith, A. Austin, M. Brown, J. T. King, J.
Lankford, A. Meneely, and L. Williams, “Challenges
for protecting the privacy of health information:
required certification can leave common
vulnerabilities undetected,” in Proceedings of the
second annual workshop on Security and privacy in
medical and home-care systems, New York, NY,
USA, 2010, pp. 1–12.

[20] E. Helms and L. Williams, “Evaluating access control
of open source electronic health record systems,” in
Proceedings of the 3rd Workshop on Software
Engineering in Health Care, New York, NY, USA,
2011, pp. 63–70.

[21] “Approved Test Procedures Version 1.0.” NIST,
2010.

[22] 45 CFR Part 170, Health Information Technology;
Initial Set of Standards, Implementation
Specifications, and Certification Criteria for
Electronic Health Record Technology; Interim Final
Rule D. o. H. a. H. Services, 2010. .

