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1. Introduction

We consider the two-dimensional dissipative surface quasi-geostrophic (SQG) equa-
tion, arising in geophysics, meteorology, and oceanography. It is given by⎧⎪⎪⎨⎪⎪⎩

∂tθ + Λκθ + u· ∇θ = 0,
u = (−R2θ,R1θ),
θ(x, 0) = θ0(x),

(1.1)

where the scalar quantity θ is the potential temperature, u is the velocity of the fluid, 
Rj is the j-th Riesz transform, and Λκ := (−Δ)κ/2 for 0 < κ ≤ 2. When κ = 1, SQG 
is structurally similar to the 3D Navier–Stokes equations and contains a mechanism for 
vortex stretching. In this case, it is derived from the more general 3D quasigeostrophic 
equation and describes the evolution of temperature on the 2D boundary of a rapidly 
rotating half-space with small Rossby and Ekman numbers (see [55]).

The investigation of (1.1) can be divided into three cases: supercritical (κ < 1), criti-
cal (κ = 1), and subcritical (κ > 1), while the case of no diffusion is called the inviscid
case. The analytical and numerical study of the inviscid SQG equation was initiated by 
Constantin, Majda, and Tabak in [15] and global existence of weak solutions, in all cases, 
was first established in [56], subsequently sparking great interest within the mathemati-
cal community. It is known that the subcritical SQG is globally well-posed [18] (see [50]
for related results on a generalized SQG equation) and in fact, has a global attractor 
[37]. In the supercritical case, only local well-posedness for large initial data, global well-
posedness for small data, and eventual regularity and conditional regularity results are 
known (see for instance [2,10,11,19,21,22,24,25,35,36,52,56,59,61]). In the critical (κ = 1) 
case, local existence as well as global existence for small data in L∞ was first proven in 
[13] while the problem of global regularity for arbitrary smooth data was solved, first in 
[9] and [42] independently, using different techniques, and subsequently by yet another 
technique in [17] (see also [1,40,41,16]). Under additional regularity assumptions, the 
framework of [9] has been extended to include the supercritical (κ < 1) case and other 
hydrodynamic equations in [19,20], (see [14,23,51] for cases where these difficulties are 
resolved and global regularity is recovered), while the techniques of [17] were applied to 
study long term dynamics for the critical SQG in [16].

This article focuses on the supercritical SQG. In particular, we establish that the 
solutions to the initial value problem (1.1), with initial value θ0 belonging to the critical 
Besov space B1+2/p−κ

p,q (R2), immediately becomes Gevrey regular (see (2.3)) for at least 
a short time, and will remain Gevrey regular provided that the homogeneous Besov 
norm (see (4.11) and (4.12)) of the initial data is sufficiently small. The study of Gevrey 
regularity of solutions was inspired by the seminal work of Foias–Temam in [27], who 
introduced the technique of Gevrey norms to establish analyticity in both space and time 
of solutions to the Navier–Stokes equations in two and three dimensions. The technique of 
Gevrey norms has since become a standard tool in studying analyticity and higher-order 
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regularity for a large class of dissipative equations and in various functional spaces, as well 
as small length scales in classical turbulence theory (cf. [3,5,7,8,26,29,32,34,33,40,43–46,
48,49,53,54]). Our result therefore properly extends that of [6] for supercritical SQG to 
Lp-based Besov spaces and moreover, strengthens that of [25], where it was shown that 
the solutions obtained in [11], are actually classical solutions. As a consequence of working 
with Gevrey norms, we obtain decay of higher-order derivatives of the corresponding 
solutions (Corollary 3.3) in Besov spaces.

The notations and conventions used throughout the paper are introduced in Section 4, 
while the statements of our main theorems are located in Section 3. We establish our 
commutator estimate in Section 5 and Gevrey regularity of solutions to SQG in Section 6. 
The proof of our multiplier theorem is classical and elementary; it can be found in 
Appendix A.

2. Overview

In this section, we provide a brief overview of the results and techniques. In order to 
do this, we need to first define Gevrey classes. Let 0 < α ≤ 1 and γ > 0. We denote the 
Gevrey operator by the linear multiplier operator TGγ

= F−1GγF , where F denotes the 
Fourier transform and

Gγ(ξ) := exp(γ‖ξ‖α). (2.1)

In the definition above, ‖·‖ denotes the two-dimensional Euclidean norm in R2. For 
convenience, we write the multiplier operator, TGγ

f , simply as

Gγf or f̃ . (2.2)

We say that a function f is Gevrey regular if

‖Gγf‖Ḃs
p,q

< ∞, (2.3)

for some s ∈ R, γ > 0, and 1 ≤ p, q ≤ ∞. Here Ḃs
p,q denotes the homogeneous Lp-based 

Besov spaces with regularity index s and summability index q (see for instance [4] or 
Section 4 below for definition). Note that when p = q = 2, one recovers the usual 
definition of Gevrey classes (cf. [27,48]) in the space-periodic setting, for instance.

An important property of Gevrey regular functions is that estimates on higher-order 
derivatives follow immediately. In particular, it is elementary to show that functions in 
Gevrey classes for which the estimate (2.3) holds, automatically satisfy for any k > 0
the following inequality:

‖Dkf‖Ḃs
p,q

≤ Ck kk/α

k/α
‖Gγf‖Ḃs

p,q
, (2.4)
(γα)
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for some absolute constant C > 0. Indeed, this is one of the main reasons for working 
with Gevrey norms. In particular, the Gevrey class corresponding to α = 1 is called the 
analytic Gevrey class, as the finiteness of the corresponding Gevrey norm implies that 
the functions are (real-)analytic with (uniform) analyticity radius γ, while the Gevrey 
classes corresponding to α > 1 are comprised of entire functions. When α < 1, the 
corresponding functions are no longer analytic, although in view of (2.4), these functions 
are C∞; the corresponding classes of such functions are the so-called sub-analytic Gevrey 
classes.

One of the main points in this article is how the product in the nonlinear term in (1.1)
is estimated in Lp Besov space-based Gevrey norms. In the case of (L2-based) Sobolev 
spaces and in analytic Gevrey classes, i.e., α = 1, this can be done via the Plancherel 
theorem as follows (cf. [27]):

‖Gγ(uv)‖2
L2 ≤

∫ (∫
eγ‖ξ‖|û(ξ − η)||v̂(η)| dη

)2

dξ

≤
∫ (∫

eγ‖ξ−η‖|û(ξ − η)|eγ‖η‖|v̂(η)| dη
)2

dξ = ‖UV ‖2
L2 ,

where, (FU)(ξ) = eγ‖ξ‖|û(ξ)|, (FV )(ξ) = eγ‖ξ‖|v̂(ξ)| and to obtain the last line, we 
have used triangle inequality ‖ξ‖ ≤ ‖ξ − η‖ + ‖η‖. One may now proceed to estimate 
‖UV ‖L2 using the usual Sobolev inequalities after one makes the crucial observation that 
‖U‖Hs = ‖Gγu‖Hs , which is again due to the Plancherel theorem. This readily yields, 
for instance in two space dimensions, an estimate of the form

‖Gγ(uv)‖L2 ≤ C‖Gγ(u)‖H1/2‖Gγ(v)‖H1/2 .

Consequently, the product of two functions in Gevrey classes has been estimated as a 
product of two Gevrey norms in adequate functional spaces. This has been generalized 
in [47] for analytic Gevrey classes, to the Lp space setting, where it is shown that for 
1 < p, q, r < ∞:

‖Gγ(uv)‖Lp ≤ ‖Gγu‖Lq‖Gγv‖Lr ,
1
p

= 1
q

+ 1
r
. (2.5)

Although the Plancherel theorem is no longer available, the approach taken in [47] is to 
first rewrite the product in Gevrey space as a bilinear multiplier operator (see (3.4) for 
a definition) and then slightly modify the definition of the Gevrey norm to an equivalent 
one in which the Euclidean norm, ‖ξ‖, in the symbol is replaced by the 	1 norm, i.e., 
|ξ|�1 := |ξ1| + |ξ2|. Then, taking advantage of the special form of this symbol for analytic 
Gevrey class (namely eγ|ξ|�1 ), it is shown in [47] that this operator can be decomposed as 
a finite sum of tensor products of the Hilbert transform and the identity operator. The 
inequality (2.5) then immediately follows from the Hölder inequality and the classical 
Lp-boundedness of the one-dimensional Hilbert transform.
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In our setting, the dissipation operator is Λκ, where κ < 1, and consequently, the 
solution of the linear equation lies only in a sub-analytic Gevrey classes and is not, 
in general, analytic. We are therefore forced to work with sub-analytic Gevrey norms 
where the above technique of [47] does not seem to apply since the bilinear multiplier 
operator no longer appears to admit such a decomposition involving one-dimensional 
Calderón–Zygmund operators. Nevertheless, it can be checked that at each scale the 
symbol m in our case satisfies the inequality

∣∣∣∂β1
ξ ∂β2

η m(ξ, η)
∣∣∣ �β ‖ξ‖−|β1|‖η‖−|β2|.

This condition is weaker than the Coifman–Meyer condition on the symbol which guar-
antees Lp boundedness. Indeed, such is not the case in general (cf. [31]). Yet, by taking 
advantage of additional localization and decay properties of our symbol (see Theo-
rem 3.7), we are able to show that a product estimate of the type (2.5) holds in Lp-based 
Besov spaces (see Theorem 3.4).

Another difficulty that arises in the supercritical regime, which is not present in the 
subcritical case or in the case of the Navier–Stokes equations, is the fact that the dis-
sipation operator is of a lower order than the derivative present in the nonlinear term. 
For instance, in case of the Navier–Stokes equations one has ‖∇etΔ‖Lp→Lp = O(t−1/2), 
which is therefore integrable over the interval (0, T ). This is no longer the case for the 
supercritical SQG. This obliges one to exploit cancellation properties of the equation 
via commutator estimates in the functional class that one is working in as was done in 
[10,52], for instance. This was in particular done for Sobolev-based Gevrey classes in [6]
by employing the Littlewood–Paley decomposition, Bony paraproduct formula, and the 
Plancherel theorem. When one tries to generalize that technique to the Lp-based setting, 
the setting of bilinear multiplier operators becomes natural. We show through elementary 
harmonic analysis techniques that one can establish the commutator estimate given in 
Theorem 3.5 in Besov space-based Gevrey classes. Finally, with such estimates in hand, 
we prove the main result, Theorem 3.1, following the semigroup approach pioneered for 
the Navier–Stokes equations in [28,30,39,58]. In particular, we show that solutions, θ, of 
(1.1), whose initial values satisfy θ0 ∈ Bσ

p,q with σ ≥ 1 + 2/p − κ, are Gevrey regular up 
to some time T > 0. Additionally, the time T can be taken to be T = ∞ if the initial 
data is adequately small in the critical homogeneous Besov space, Ḃ1+2/p−κ

p,q .

3. Main results

We will now state our main results more precisely.

Theorem 3.1. Let 2 ≤ p < ∞ and 1 ≤ q ≤ ∞ and define

σc := 1 + 2/p− κ.
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Assume that θ0 ∈ Bσ
p,q(R2) for some σ ≥ σc and let α < κ. Then there exists T > 0 and 

a unique solution θ of (1.1) such that θ ∈ C([0, T ); Bσ
p,q(R2)) and additionally, θ satisfies 

the estimate

sup
0<t<T

‖Gγθ(·, t)‖Ḃσ
p,q

� ‖θ0‖Ḃσ
p,q

, where γ := λtα/κ.

Moreover, if σ = σc and ‖θ0‖Ḃσ
p,q

≤ C for an adequate constant C > 0, then T = ∞.

Remark 3.2. It will be clear from the proof that in fact, the Gevrey norm of θ satisfies 
an additional regularity property, namely,

sup
0<t<T

tβ/κ‖Gγθ(·, t)‖Ḃσ+β
p,q

� ‖θ0‖Ḃσ
p,q

� ‖θ0‖Bσ
p,q

, for some β > 0.

It immediately follows from Theorem 3.1, (2.4), and Stirling’s approximation that 
the solutions of (1.1) with initial data belonging to B1+2/p−κ

p,q (R2) automatically satisfy 
certain higher-order decay estimates.

Corollary 3.3. Let k > 1 + 2/p − κ. Then the solution θ in Theorem 3.1 satisfies

‖Dkθ(t)‖
Ḃ

1+2/p−κ
p,q

� Ck (k!)1/α

tk/κ
‖θ0‖Ḃ1+2/p−κ

p,q
, (3.1)

for all 0 < t < T , where C := C(q, α, β, κ).

The crucial estimate for the product of two functions in Gevrey spaces, which may 
also have independent interest, is stated in the following theorem. This is a suitable 
generalization to non-analytic Gevrey classes of Lemma 24.8 in [47], which applies to 
analytic Gevrey classes.

Theorem 3.4. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Suppose s, t ∈ R satisfy the following

(i) s, t < 2/p,
(ii) s + t > 0.

Then there exists C > 0 such that

‖Gγ(fg)‖
Ḃ

s+t−2/p
p,q (R2) ≤ C‖Gγf‖Ḃs

p,q(R2)‖Gγg‖Ḃt
p,q(R2). (3.2)

It is well-documented (cf. [38,52] for instance) that in the presence of supercritical 
dissipation, product estimates are insufficient to control the nonlinearity in (1.1), and 
that commutators must be used instead to ensure that one remains in a perturbative 
regime. The proof of Theorem 3.1 will make use of the following commutator estimate 
for Gevrey regular functions, which is an extension of that found by Biswas (cf. [6]) for 
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homogeneous Sobolev spaces, to homogeneous Besov spaces. Recall that the commutator 
bracket [A, B] is defined as

[A,B] := AB −BA. (3.3)

Theorem 3.5. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Let γ, δ > 0 such that δ < 1. Suppose 
s, t ∈ R satisfy the following

(i) 2/p < s < 1 + 2/p,
(ii) t < 2/p,
(iii) s + t > 2/p.

Then, denoting by �j the dyadic Littlewood–Paley operator, we have

‖[Gγ�j , f ]g‖Lp(R2) � 2−(s+t−2/p)jCj‖Gγf‖Ḃs
p,q(R2)‖Gγg‖Ḃt

p,q(R2),

where

Cj = Cj(α, δ, γ) := cj

(
γ(α−δ)/α2(α−δ)j + 1

)
,

for some 0 ≤ δ < α such that s < 1 + 2/p − δ and with (cj)j∈Z such that ‖(cj)‖�q(Z) ≤ C

for some absolute constant C > 0.

When one formally sets γ = 0, p = 2, and δ < α, Theorem 3.5 extends the commutator 
estimate of Miura (cf. [52]) to homogeneous Besov spaces.

Corollary 3.6. Suppose that p, q satisfy the conditions of Theorem 3.5 with δ = 0. Then 
there exists (cj)j∈Z ∈ 	q such that

‖[�j , f ]g‖Lp(R2) � 2−(s+t−2/p)jcj‖f‖Ḃs
p,q(R2)‖g‖Ḃt

p,q(R2).

This corollary can be proved by closely following the proof of Theorem 3.5 and so we 
omit the details.

In order to prove Theorems 3.5 and 3.4, we apply the Bony paraproduct decomposition 
and view the resulting terms of both the commutator, [Gγ�j , f ]g, and the product, 
Gγ(fg), as bilinear multiplier operators, Tm(f, g), which are written as

Tm(f, g) :=
∫ ∫

eix·(ξ+η)m(ξ, η)f̂(ξ)ĝ(η) dξdη, (3.4)

and show that for their corresponding symbols, m, the following estimate is satisfied for 
each multi-index β: ∣∣∣∂β1

ξ ∂β2
η m(ξ, η)

∣∣∣ �β ‖ξ‖−|β1|‖η‖−|β2|. (3.5)
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In other words, we show that m is of Marcinkiewicz type. Note that condition (3.5) is 
weaker than that of Coifman–Meyer (cf. [12]). In general, such multipliers need not map 
Lp×Lq into Lr for any 1 < p, q < ∞ and 1/r = 1/p +1/q (cf. [31]). In our case however, 
the special structure of our symbol and the fact that we work with Besov spaces, provides 
additional localizations which greatly simplify the situation.

Theorem 3.7. Suppose m : Rd ×R
d → R satisfies (3.5) for finitely many, but sufficiently 

large number of multi-indices |β| ≥ 0 with β = β1 + β2. Assume moreover that for 
each fixed ξ ∈ R

d \ {0}, m(ξ, η) is a smooth function of η, with support contained in 
[2j0−1 � ‖η‖ � 2j0+1] for some j0 ∈ N. Then for all 1 < p < ∞, 1 ≤ q ≤ ∞ such that 
1/r = 1/p + 1/q, the associated bilinear multiplier operator Tm : Lp(Rd) × Lq(Rd) →
Lr(Rd) satisfies

‖Tm(f, g)‖Lr � ‖f‖Lp‖g‖Lq .

Remark 3.8. Note that the same conclusion holds with the roles of ξ, η and p, q reversed 
together in the above hypotheses. Also, the required number of derivatives, |β|, can be 
determined from the proof of the theorem.

A prototypical example of a bilinear operator satisfying (3.5) is T (f, g) = Hf · Hg, 
where H is the Hilbert transform. Indeed, boundedness would then follow from Hölder’s 
inequality. The role then of the smooth localization in η in Theorem 3.7 is that it es-
sentially allows us to treat the bilinear multiplier as a product of linear ones, effectively 
reducing the situation to the simpler case of Hf · Hg. Thus, Besov spaces provide an 
appropriate setting with which to work with bilinear Marcinkiewicz multipliers.

The proof of Theorem 3.7 relies on classical harmonic analysis techniques and we 
provide its proof in Appendix A. The theorem itself may be of independent interest, 
particularly in PDE applications. The proofs of Theorems 3.1 and 3.5 will be given in 
Sections 6 and 5, respectively.

Remark 3.9. The notation Tm will be used to denote either a linear multiplier operator, 
Tmf = F−1(mFf), where F denotes the Fourier transform, or a bilinear multiplier 
operator Tm(f, g), defined as in (3.4). However, it will be quite clear from the context 
which type of operator Tm is denoting.

4. Notation and preliminaries

4.1. Littlewood–Paley decomposition and related inequalities

Let ψ0 be a radial bump function such that ψ0(ξ) = 1 when [‖ξ‖ ≤ 1/2] ⊂ R
d, and

0 ≤ ψ0 ≤ 1 and sptψ0 = [‖ξ‖ ≤ 1].
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Define φ0(ξ) := ψ0(ξ/2) − ψ0(ξ). Observe that

0 ≤ ϕ0 ≤ 1 and sptφ0 = [2−1 ≤ ‖ξ‖ ≤ 2]

Now for each j ∈ Z, define ψj := (ψ0)2−j and ϕj := (ϕ0)2−j , where we use the notation

fλ(x) := f(λx), (4.1)

for any λ ≥ 0 (the notation fλ should not be confused with the Gevrey operator Gγ

in (2.1); the usage will be clear from context). In view of the above definitions, clearly 
ϕ0 := ψ1 − ψ0 and ψj+1 = ψj + ϕj , so that

sptψj = [‖ξ‖ ≤ 2j−1] and sptϕj = [2j−1 ≤ ‖ξ‖ ≤ 2j+1]. (4.2)

Moreover, we have ∑
j∈Z

ϕj(ξ) = 1, for ξ ∈ R
d \ {0}.

One can then define

�kf : = ϕ̌k ∗ f,

�̆kf : =
∑

|k−�|≤2

��f,

Skf : =
∑

�≤k−3

��f.

We call the operators �k Littlewood–Paley blocks. For convenience, we will sometimes 
use the shorthand fk := �kf .

For functions which are spectrally supported in a compact set, one has the Bernstein 
inequalities (cf. [4]), which we will invoke copiously throughout the article. We state it 
here in terms of Littlewood–Paley blocks. Note that we will use the following convention 
throughout the paper.

Notation. A � B to denote the relation A ≤ cB for some absolute constant c > 0. In 
our estimates, the constant c may change line to line, but will nevertheless remain an 
absolute constant.

Lemma 4.1 (Bernstein inequalities). Let 1 ≤ p ≤ q ≤ ∞ and f ∈ S ′(Rd). Then

2js‖�jf‖Lq � ‖Λs�jf‖Lq � 2js+d(1/p−1/q)‖�jf‖Lp , (4.3)

for each j ∈ Z and s ∈ R.
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Since we will be working with Lp norms, we will also require the generalized Bernstein 
inequalities, which was proved in [11] and [60].

Lemma 4.2 (Generalized Bernstein inequalities). Let 2 ≤ p < ∞ and f ∈ S ′(Rd). Then

2
2sj
p ‖�jf‖Lp � ‖Λs|�jf |p/2‖

2
p

L2 � 2
2sj
p ‖�jf‖Lp , (4.4)

for each j ∈ Z and s ∈ [0, 1].

In order to apply these inequalities, we will first need the following positivity lemma, 
which was initially proved in [21], and generalized by Ju in [37] (see also [17,16]).

Lemma 4.3 (Positivity lemma). Let 2 ≤ p < ∞, f, Λsf ∈ Lp(R2). Then∫
Λsf |f |p−2f dx ≥ 2

p

∫
(Λ s

2 |f | p2 )2 dx. (4.5)

We will also make use of the following heat kernel estimate, which was proved in [52]
for L2. We extend it to Lp.

Lemma 4.4. Let 2 ≤ p < ∞. Then there exist constants c1, c2 > 0 such that

e−c1t2κj‖�ju‖Lp ≤ ‖e−tΛκ�ju‖Lp ≤ e−c2t2κj‖�ju‖Lp , (4.6)

holds for all t > 0.

Proof. Let uj := e−tΛκ�ju. Then uj satisfies the initial value problem{
∂tuj + Λκuj = 0
uj(x, 0) = �ju(x).

(4.7)

Multiplying (4.7) by uj |uj |p−2 and integrating gives

1
p

d

dt
‖uj‖pLp +

∫
(Λκuj)uj |uj |p−2 dx = 0.

By applying Lemmas 4.2 and 4.3, then dividing by ‖uj‖p−1
Lp we obtain

d

dt
‖uj‖Lp + c12κj‖uj‖Lp ≤ 0.

Similarly, by Hölder’s inequality we obtain

d ‖uj‖Lp + c22κj‖uj‖Lp ≥ 0.

dt
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An application of Gronwall’s inequality gives

e−c22κjt‖uj(0)‖Lp ≤ ‖uj(t)‖Lp ≤ e−c12κjt‖uj(0)‖Lp , (4.8)

which completes the proof. �
4.2. Besov spaces

Let s ∈ R and 1 ≤ p, q ≤ ∞. The inhomogeneous Besov space Bs
p,q is the space defined 

by

Bs
p,q := {f ∈ S ′(Rd) : ‖f‖Bs

p,q
< ∞}, (4.9)

where, S ′ denotes the space of tempered distributions, and one can define the norm by

‖f‖Bs
p,q

:= ‖ψ̌0 ∗ f‖Lp +

⎛⎝∑
j≥0

2jsq‖�jf‖qLp

⎞⎠1/q

, (4.10)

provided that q < ∞. The homogeneous Besov space Ḃs
p,q is the space defined by

Ḃs
p,q := {f ∈ Z ′(Rd) : ‖f‖Ḃs

p,q
< ∞}, (4.11)

where Z ′(Rd) denotes the dual space of Z(Rd) := {f ∈ S(Rd) : ∂β f̂(0) = 0, ∀β ∈ N
d}, 

and for q < ∞, the (semi)norm is given by

‖f‖Ḃs
p,q

:=

⎛⎝∑
j∈Z

2jsq‖�jf‖qLp

⎞⎠1/q

. (4.12)

One then makes the usual modification for q = ∞. For more details, see [4] or [57].

5. Product and commutator estimates

In this section, we establish estimates for the product

Gγ�j(fg), (5.1)

and for the commutator

[Gγ�j , f ]g := Gγ�j(fg) − fGγ�jg, (5.2)
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where Gγ := eγΛα and 0 < α < κ ≤ 1, where κ is the order of dissipation in (1.1). For 
convenience, we will use the notation

f̃ := Gγf. (5.3)

To prove Theorems 3.5 and 3.4, we will require the Faà di Bruno formula, whose 
statement we recall from [4] for convenience. Note that by N and N∗ we mean the set of 
positive integers with zero and the set N \ {0}, respectively.

Lemma 5.1 (Faà di Bruno formula). Let u : R
d → R

m and F : R
m → R be smooth 

functions. For each multi-index α ∈ N
d with |α| > 0 we have

∂α(F ◦ u) =
∑
μ,ν

Cμ,ν∂
μF

∏
1≤|β|≤|α|
1≤j≤m

(∂βuj)νβj , (5.4)

where the coefficients Cμ,ν are nonnegative integers, and the sum is taken over those μ
and ν such that 1 ≤ |μ|, |ν| ≤ |α|, νβj

∈ N
∗,

∑
1≤|β|≤|α|

νβj
= μj , for 1 ≤ j ≤ m, and

∑
1≤|β|≤|α|
1≤j≤m

βνβj
= α. (5.5)

We will repeatedly apply this formula to functions of the form

(F ◦ u)(ξ, η) = eγRα,σ(ξ,η),

where

Rα,σ(ξ, η) : = ‖ξ + ση‖α − ‖ξ‖α − ‖η‖α

or

Rα,σ(ξ, η) : = ‖ξσ + η‖α − ‖ξ‖α − ‖η‖α,

where σ ∈ [0, 1]. For convenience, we provide that application here. By Lemma 5.1 we 
have

∂β(F ◦ u)(ξ, η) =
∑
μ,ν

Cμ,νγ
|μ|eγRα,σ(ξ,η)

∏
1≤|b|≤|β|

(∂bRα,σ(ξ, η))νb (5.6)

for all β ∈ N
2, where ν = (ν1, ν2), 1 ≤ |μ| ≤ |β| and∑

νb = μ and
∑

bνb = β. (5.7)

1≤|b|≤|β| 1≤|b|≤|β|
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Thus, in order to apply Theorem 3.7, we will require Rα,σ to satisfy certain derivative 
estimates.

Proposition 5.2. Let 0 < α ≤ 1, σ ∈ [0, 1], and define Rα,σ : R2 × R
2 → R by

Rα,σ(ξ, η) := ‖ξ + ησ‖α − ‖ξ‖α − ‖η‖α (5.8)

Suppose that 	 + 3 ≤ k and 2k−1 ≤ ‖ξ‖ ≤ 2k+1 and 2�−1 ≤ ‖η‖ ≤ 2�+1. Then∣∣∣∂β1
ξ ∂β2

η Rα,σ(ξ, η)
∣∣∣ �β,α 2�α‖ξ‖−|β1|‖η‖−|β2|, (5.9)

for all multi-indices β1, β2 ∈ N
2.

If j + 3 ≤ k with 2j−1 ≤ ‖η‖ ≤ 2j+1 and 2k−1 ≤ ‖ξ‖, ‖ξ + η‖ ≤ 2k+1, then∣∣∣∂β1
ξ ∂β2

η Rα,1(ξ,−ξ − η)
∣∣∣ �β,α 2kα‖ξ‖−|β1|‖η‖−|β2|, (5.10)

for all β1, β2 ∈ N
d.

Remark 5.1. If Rα,σ is given instead by

Rα,σ(ξ, η) := ‖ξσ + η‖α − ‖ξ‖α − ‖η‖α, (5.11)

then (5.9) and (5.10) all hold with the roles of k and 	 reversed.

Proof. We prove (5.9). The inequality (5.10) can be obtained by a more straightforward 
estimation of derivatives.

Let β ∈ N
4×N

4, where β = (β1, β2) = (βξ, βη), βj = (βξ
j , β

η
j ), βξ

j , β
η
j ∈ N

2 for j = 1, 2, 
and βξ = βξ

1 + βξ
2 and βη = βη

1 + βη
2 . Firstly, from the triangle inequality

|Rα,σ(ξ, η)| � (1 − σ)‖η‖α � 2�α

This proves (5.9) for |β| = 0. For |β| �= 0, we apply the mean value theorem to write

Rα,σ(ξ, η) =
1∫

0

‖ξ + ητσ‖α−2((ξ· η)σ + ‖η‖2σ2τ) dτ − ‖η‖α.

Then observe that∣∣∂βRα(ξ, η)
∣∣

�
∑

β=β1+β2

cβ

1∫
0

(
‖ξ + ηστ‖α−2−|β1|∂β2((ξ· η)σ + ‖η‖2σ2τ)

)
dτ + Nα(β, η),
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where Nα(β, η) = 0 if |βξ
j | �= 0 for some j, and Nα(β, η) = ‖η‖α−|β| otherwise. Next 

observe that since k ≥ 	 + 3, σ, τ ∈ [0, 1], and ξ ∼ 2k, η ∼ 2�, we have

‖ξ + ηστ‖ � 2k � 2�. (5.12)

We also have

∣∣∂β2((ξ· η)σ + ‖η‖2σ2τ)
∣∣ �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2k+�, |β2| = 0
2k, |β2| = |βη

2 | = 1
2�, |β2| = |βξ

2 | = 1
1, |β2| = 2 and |βξ

2 | < 2
0, |β2| ≥ 3 or |βξ

2 | = 2.

(5.13)

Now we consider three cases. First suppose that |β1| = 0, |β2| �= 0. Using (5.12) and 
the fact that α < 1, observe that

‖ξ + ηστ‖α−2 �
{

2�(α−1)2−k, |β2| = 1 or |βη
2 | = |βξ

2 | = 1
2�(α−2), |β2| = |βη

2 | = 2.
(5.14)

Thus, combining (5.13) and (5.14) gives∣∣∂βRα,σ(ξ, η)
∣∣ � 2�α2−k|βξ

2 |2−�|βη
2 |,

which implies (5.9) since β = (0, 0, βξ
2 , β

η
2 ).

Now suppose |β1| �= 0 and |β2| = 0. Applying (5.12) then gives

‖ξ + ηστ‖α−2−|β1| �

⎧⎪⎪⎨⎪⎪⎩
2�(α−1)2−k−|βξ

1 |, |βη
1 | = 0 �= |βξ

1 |
2�(α−1−|βη

1 |)2−k, |βξ
1 | = 0 �= |βη

1 |
2�(α−1−|βη

1 |)2k(−1−|βξ
1 |), |βξ

1 |, |β
η
1 | �= 0.

(5.15)

Thus, by combining (5.13) and (5.15) we get∣∣∂βRα,σ(ξ, η)
∣∣ � 2�α2−k|βξ

1 |2−�|βη
1 |,

which again implies (5.9) since β = (βξ
1 , β

η
1 , 0, 0).

Finally, if β1 �= 0, β2 �= 0, we may combine the argumentation of the previous two 
cases to obtain ∣∣∂βRσ,α(ξ, η)

∣∣ � 2�α2−k|βξ|2−�|βη|. (5.16)

This establishes (5.9) for all β ∈ N
4 × N

4. �
We will also need the following “rotation” lemma.
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Lemma 5.3. Let Tm be a bilinear multiplier operator with multiplier m : Rd × R
d → R. 

Then for m̃(ξ, η) := m(ξ, −ξ − η), we have

〈Tm(f, g), h〉 = 〈Tm̃(h, g), f〉, (5.17)

for all f, g, h ∈ S(Rd). Moreover, if Tm : Lp × Lq → Lr is bounded for some 1/r =
1/p + 1/q, then Tm̃ : Lr′ × Lq → Lp′ is bounded, where p′, r′ are the Hölder conjugates 
of p, r, respectively.

Proof. By change of variables we have∫
Tm(f, g)(x)h(x) dx =

∫ ∫ ∫
eix·(ξ+η)m(ξ, η)f̂(ξ)ĝ(η)h(x) dξ dη dx

=
∫ ∫ ∫

e−ix·νm(ξ, ξ − ν)f̂(ξ)ĝ(−ν − ξ)h(x) dx dξ dν

=
∫ ∫

m(ξ,−ν − ξ)ĝ(−ξ − ν)ĥ(ν)f̂(ξ) dν dξ

=
∫ ∫ ∫

e−ix·ξm(ξ,−ξ − ν)ĝ(−ξ − ν)ĥ(ν)f(x) dν dξ dx

= 〈Tm̃(h, g), f〉,

as desired. Boundedness of Tm̃ then follows from duality. �
Remark 5.2. Observe that if 1 < p, r < ∞, then 1 < p′, r′ < ∞ as well. Therefore, if Tm

is bounded in the range 1/r = 1/p + 1/q for 1 < p, r < ∞, then Tm̃ is also bounded in 
the same range.

We will first prove Theorem 3.4 since the estimates there will be used to prove Theo-
rem 3.5. As a preliminary, we recall the paraproduct decomposition:

fg =
∑
k

Skf�kg +
∑
k

�kfSkg +
∑
k

�̆kf�kg. (5.18)

This implies that

[Gγ�j , f ]g =
∑
k

Gγ�j(Skf�kg) + Gγ�j(�kfSkg) + Gγ�j(�̆kf�kg)

−
(∑

k

(Skf)(�j�kg̃) + (�kf)(�jSkg̃) + (�̆kf)(�j�kg̃)
)
. (5.19)

Then by the localization properties in (4.2), we can reduce (5.19) to
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[Gγ�j , f ]g =
∑

|k−j|≤4

{
[Gγ�j , Skf ]�kg + Gγ�j(�kfSkg) + Gγ�j(�̆kf�kg)

}
+

∑
k≥j+5

Gγ�j(�̆kf�kg)

−
∑

k≥j+1

�kf�jSkg̃ −
∑

|k−j|≤2

�̆kf�j�kg̃. (5.20)

5.1. Proof of Theorem 3.4

Observe that Gγ�j(fg) is precisely the first line of (5.19). By symmetry and local-
ization, it suffices to consider only

∑
|k−j|≤4

[
Gγ�j(�kfSkg) + Gγ�j(�̆kf�kg)

]
and

∑
k≥j+5

Gγ�j(�̆kf�kg)

Case: k ≥ j + 5 First, we rewrite Gγ�j(�̆kf�kg) as

Gγ�j(G−1
γ �̆kf̃G

−1
γ �kg̃) (5.21)

The multiplier associated to (5.21) is

mk,j(ξ, η) := eγ(‖ξ+η‖α−‖ξ‖α−‖η‖α)ϕj(ξ + η)ϕ̆k(ξ)ϕk(η), (5.22)

where ϕ̆k =
∑

|k−�|≤2 ϕ�. By Lemma 5.3, in order to apply Theorem 3.7, it suffices to 
prove

|∂β1
ξ ∂β2

η m̃k,j(ξ, η)| � ‖ξ‖−|β1|‖η‖−|β2|, (5.23)

where m̃k,j(ξ, η) = mk,j(ξ, −ξ − η). Once the required Lp bounds are deduced, we then 
show that the obtained estimate is summable in 	q with respect to j.

So first observe that for β = (β1, β2), by (5.6), (5.7), and (5.10) we have

|∂βmk,j(ξ,−ξ − η)|

�
∑
μ,ν

Cμ,νγ
|μ|eγ(‖η‖α−‖ξ‖α−‖ξ+η‖α)

∏
1≤|b|≤|β|

(2k(α−|b|))νb

� 2−k|β|
∑
μ,ν

Cμ,ν(γ2kα)|μ|eγ(‖η‖α−‖ξ‖α−‖ξ+η‖α)

Also, by the triangle inequality

‖η‖α − ‖ξ‖α − ‖ξ + η‖α � −cα2kα,
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for some absolute constant cα > 0. Thus

|∂βmk,j(ξ,−ξ − η)| � 2−k|β|
∑
μ,ν

Cμ,ν(γ2kα)|μ|e−cαγ2kα � 2−k|β1|2−k|β2| (5.24)

holds for all ξ ∈ R
2, which implies (5.23).

Now, let σ := s + t − 2/p. Observe that by the Bernstein and Theorem 3.7 we have

‖Gγ�j(�̆kf�kg)‖Lp � 2j(2/p)‖Gγ�j(�̆kf�kg)‖Lp/2

� 2j(2/p)‖�̆kf̃‖Lp‖�kg̃‖Lp

� 2−σj 2−(s+t)(k−j)︸ ︷︷ ︸
ak−j

(2sk‖�̆kf̃‖Lp)︸ ︷︷ ︸
bk

(2tk‖�kg̃‖Lp)︸ ︷︷ ︸
ck

.

It follows that

∑
k≥j+5

2σj‖Gγ�j(�̆kf�kg)‖Lp �
∑
k

χ[n≥5](k − j)ak−jbkck

�
(∑

k

χ[n≥5](k − j)ak−jbk

)(
sup
k

ck

)
.

Observe that by Young’s convolution inequality we have

⎛⎝ ∑
k≥j+5

(ak−jbk)q
⎞⎠1/q

≤

⎛⎝∑
k≥5

ak

⎞⎠(∑
k

bqk

)1/q

,

which is finite provided that s + t > 0.
Therefore

2(s+t−2/p)j
∑

k≥j+5

‖Gγ�j(�̆kf�kg)‖Lr � cj‖f̃‖Ḃs
p,q

‖g̃‖Ḃt
p,∞

, (5.25)

where

cj := ‖f̃‖−1
Ḃs

p,q

∑
k≥j+5

ak−jbk

and satisfies (cj)j∈Z ∈ 	q. This finishes the case k ≥ j + 5.

Case: |k−j| ≤ 4 It suffices to consider Gγ�j(�kfSkg) since the term Gγ�j(�̆kf�kg)
is easier.
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First, let us we rewrite Gγ�j(�kfSkg) as∑
�≤k−3

Gγ�j(G−1
γ �kf̃G

−1
γ ��g̃). (5.26)

We claim that the associated multiplier satisfies the following bounds

|∂β1
ξ ∂β2

η mj,k,�(ξ, η)| � ‖ξ‖−|β1|‖η‖−|β2|, (5.27)

where

mj,k,�(ξ, η) = eγ(‖ξ+η‖α−‖ξ‖α−‖η‖α)ϕj(ξ + η)ϕk(ξ)ϕ�(η). (5.28)

To this end, let β = (βξ, βη) and observe that by (5.6) and Proposition 5.2 we have

|∂βeγRα(ξ,η)| �
∑
μ,ν

Cμ,νγ
|μ|eγRα(ξ,η)

∏
1≤|b|≤|β|

(2�(α−|bη|)2−k|bξ|)νb .

Since ‖η‖ ∼ 2� and k − 	 ≥ 3, it follows by Lemma A.1 that

‖ξ + η‖α − ‖ξ‖α − ‖η‖α � −cα2�α.

Thus, by (5.7) we get

|∂βeγRα(ξ,η)| �
∑
μ,ν

Cμ,νγ
|μ|e−cαγ2�α

2�(α|μ|−|βη|)2−k|βξ|

� 2−k|βξ|2−�|βη|
∑
μ,ν

Cμ,ν(γ2�α)|μ|e−cαγ2�α

� 2−k|βξ|2−�|βη| (5.29)

holds for all ξ ∈ R
2

Hence, by the product rule and the fact that 2k ∼ 2j , we can conclude that

|∂β1
ξ ∂β2

η mj,k(ξ, η)| � 2−k|β1|2−�|β2|,

for all ξ ∈ R
2, which implies (5.27).

Therefore by Theorem 3.7, we have

‖Gγ�j(�kfSkg)‖Lr �
∑

�≤k−1

‖�kf̃‖Lp‖��g̃‖Lq , (5.30)

where 1/r = 1/p + 1/q and 1 ≤ r < ∞, 1 < p < ∞, 1 < q ≤ ∞.
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Now let σ = s + t − 2/p and N > 1. Let p∗ := (pN)/(N − 1). Then by (5.30), the 
Bernstein inequalities, and the fact that |k − j| ≤ 4, we have

2σj‖Gγ�j(�kfSkg)‖Lp

�
∑

�≤k−1

2(σ−s−t+2/p∗)k2sk‖�kf̃‖Lp∗ 2t�‖��g̃‖Lp2−(2/p∗−t)(k−�)

� 2sj‖�j f̃‖Lp

∑
�≤k−1

2t�‖��g̃‖Lp2−(2/p∗−t)(k−�)

Let t < 2/p. Observe that for N large enough, we have t < 2/p∗. Then

2(s+t−2/p)j‖Gγ�j(�kfSkg)‖Lp � Cj‖f̃‖Ḃs
p,∞

‖g̃‖Ḃt
p,q

, (5.31)

where

Cj := ‖g̃‖−1
Ḃt

p,q

∑
�≤j+2

2t�‖��g̃‖Lp2(t−2/p∗)(j−�),

which satisfies (Cj)j∈Z ∈ 	q. Combining the estimates (5.25) and (5.31) completes the 
proof of Theorem 3.4. �
5.2. Proof of Theorem 3.5

Cases: k ≥ j + 1 and |k − j| ≤ 1 The corresponding terms are �kf�jSkg̃ and 
�kf�j�kg̃, respectively. By Hölder’s inequality and Bernstein we have

2σj‖�kf�jSkg̃‖Lp � cj2−(s−2/p)(k−j)2sk‖�kf‖Lp‖g̃‖Ḃt
p,q

, (5.32)

where

cj := ‖g̃‖−1
Ḃt

p,q

2tj‖�j g̃‖Lp .

Observe that by Hölder’s inequality

∑
k≥j+1

2−(s−2/p)(k−j)χ[n≥1](k − j)2sk‖�kf‖Lp �

⎛⎝∑
k≥1

2−(s−2/p)kq′

⎞⎠1/q′

‖f‖Ḃs
p,q

,

which is finite provided that s − 2/p > 0. Therefore

2(s+t−2/p)j
∑

‖�kf�jSkg̃‖Lp � cj‖f‖Ḃs
p,q

‖g̃‖Ḃt
p,q

(5.33)

k≥j+1
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Similarly, we have for any s ∈ R

2(s+t−2/p)j
∑

|k−j|≤1

‖�̆kf�kg̃‖Lp � cj‖f‖Ḃs
p,q

‖g̃‖Ḃt
p,q

, (5.34)

where

cj := ‖g̃‖−1
Ḃt

p,q

2tj‖�j g̃‖Lp .

Case: k ≥ j + 5 The derivative estimates for the corresponding multiplier remain the 
same as those from Theorem 3.4, except that we sum over k differently since now it is 
assumed that s + t − 2/p > 0.

Since (5.23) holds, we know that Theorem 3.7 implies

‖Gγ�j(�̆kf�kg)‖Lp � ‖�̆kf̃‖Lp‖�kg̃‖L∞ � 2(2/p)k‖�̆kf̃‖Lp‖�kg̃‖Lp .

Thus, for σ := s + t − 2/p, by the Bernstein inequalities we have that∑
k≥j+5

2σj‖Gγ�j(�kf�kg)‖Lp

�
∑
k

χ[n≥5](k − j)︸ ︷︷ ︸
μk−j

2−(s+t−2/p)(k−j)︸ ︷︷ ︸
ak−j

2sk‖�̆kf̃‖Lp︸ ︷︷ ︸
bk

2tk‖�kg̃‖Lp︸ ︷︷ ︸
ck

.

As before Young’s convolution inequality implies

(∑
k

(μk−jak−jbk)q
)1/q

≤

⎛⎝∑
k≥5

ak

⎞⎠(∑
k

bqk

)1/q

,

which will be finite provided that

s + t− 2/p > 0.

Thus

2(s+t−2/p)j
∑

k≥j+5

‖Gγ�j(�̆kf�kg)‖Lr � cj‖f̃‖Ḃs
p,q

‖g̃‖Ḃt
p,∞

, (5.35)

with cj given by

cj := ‖f̃‖−1
Ḃs

p,q

∑
k

μk−jak−jbk.
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Case: |k−j| ≤ 4 From the proof of Theorem 3.4, it suffices to consider the commutator 
term, [Gγ�j , Skf ]�kg, which we view as Tmj,k

(Skf, �kg). Indeed, observe that

Tmj,k
(Skf,�kg)(x)

=
∫ ∫

eix·(ξ+η) [Gγ(ξ + η)ϕj(ξ + η) −Gγ(η)ϕj(η)]ψk(ξ)ϕk(η)f̂(ξ)ĝ(η) dξdη.

Then by the mean value theorem

Tmj,k
(Skf,�kg)(x) =

∑
i=1,2

∑
�≤k−3

1∫
0

Tmi,j,k,�,σ
(��∂if̃ ,�kg̃)(x) dσ,

where

mi,j,k,�,σ(ξ, η) = mA(ξ, η) + mB(ξ, η),

and

mA(ξ, η) := αγeγRα,σ(ξ,η)‖ξσ + η‖α−2(ξiσ + ηi)ϕj(ξσ + η)ϕ�(ξ)ϕk(η)

mB(ξ, η) := eγRα,σ(ξ,η)(∂iϕ0)(2−j(ξσ + η))2−jϕ�(ξ)ϕk(η).

Now observe that since ‖ξ‖ ∼ 2�, ‖η‖ ∼ 2k, and k− 	 ≥ 3, by Lemma A.1 there exists a 
constant cα > 0 such that

‖ξσ + η‖α − ‖ξσ‖α − ‖η‖α ≤ −cα‖ξ‖α, for σ ≥ 1/2, (5.36)

and by the triangle inequality

‖ξσ + η‖α − ‖ξ‖α − ‖η‖α ≤ −c′α‖ξ‖α, for σ ≤ 1/2. (5.37)

This implies that

eγRα,σ(ξ,η) �
{
e−c′αγ‖ξ‖α

, σ ≤ 1/2
e−cαγ‖ξ‖α

e−(1−σα)‖ξ‖α

, σ > 1/2.
(5.38)

Suppose that σ ≤ 1/2 and observe that by Proposition 5.2, Faà di Bruno, and (5.38), 
we have

|∂βeγRα,σ(ξ,η)| �
∑
μ,ν

Cμ,νγ
|μ|eγRα,σ(ξ,η)

∏
1≤|b|≤|β|

(2�(α−|bξ|)2−k|bη|)νb

� 2−�|β1|2−k|β2|
∑
μ,ν

Cμ,ν(γ2�α)|μ|e−cαγ2�α

� e−(c′α/2)γ2�α‖ξ‖−|β1|‖η‖−|β2|. (5.39)
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Similarly, for σ ≥ 1/2, using (5.38) we obtain

|∂βeγRα,σ(ξ,η)| �
∑
μ,ν

Cμ,νγ
|μ|e−cαγ2�α

e−(1−σα)γ‖ξ‖α ∏
1≤|b|≤|β|

(∂bRα,σ(ξ, η))νb

�
∑
μ,ν

Cμ,νγ
|μ|e−cαγ2�α ∏

1≤|b|≤|β|
(2�(α−|bξ|)2−k|bη|)νb

� e−(cα/2)γ2�α‖ξ‖−|β1|‖η‖−|β2|. (5.40)

For the other factors, observe that since ‖ξσ + η‖ ∼ 2j we have∣∣∂β‖ξσ + η‖α−2∣∣ � ‖ξσ + η‖α−2−|β| � 2j(α−2)‖ξ‖−|βξ|‖η‖−|βη| (5.41)

∣∣∂β(ξiσ + ηi)
∣∣ �

⎧⎪⎪⎨⎪⎪⎩
2� + 2k, |βξ| = 0
1, |β| = 1 and |βi

ξ| or |βi
η| = 1

0, |β| ≥ 2 or |βi′ | �= 0 i′ �= i

(5.42)

It follows from (5.41) and (5.42) that∣∣∂β
(
‖ξσ + η‖α−2(ξiσ + ηi)

)∣∣ � 2j(α−1)2−�|βξ|2−k|βη|. (5.43)

We also have ∣∣∣∂β
ξ ϕ�(ξ)

∣∣∣ � 2−�|β| � ‖ξ‖−|β|, (5.44)∣∣∂β
ηϕk(η)

∣∣ � 2−k|β| � ‖η‖−|β| (5.45)

for all η ∈ R
2.

Therefore, combining (5.39), (5.40) and (5.43)–(5.45), we can deduce that∣∣∣∂β1
ξ ∂β2

η mA(ξ, η)
∣∣∣ � γ2−j(1−α)e−(cα/2)γ2�α‖ξ‖−|β1|‖η‖−|β2|

� γ1−δ/α2−j(1−α)2−�δ‖ξ‖−|β1|‖η‖−|β2|, (5.46)

for any δ ≥ 0.
On the other hand, we can estimate mB using (5.39) and (5.40) by∣∣∣∂β1

ξ ∂β2
η mB(ξ, η)

∣∣∣ � 2−j‖ξ‖−|β1|‖η‖−|β2|. (5.47)

Fix N > 1 and let p∗ = (pN)/(N − 1) with (p∗)′ = pN so that 1/p = 1/(p∗)′ + 1/p∗. 
Then by Theorem 3.7 and the Bernstein inequalities

‖TmA
(��∂if̃ ,�kg̃)‖Lp � γ1−δ/α2−j(1−α)2(1−δ)�‖��f̃‖L(p∗)′ ‖�kg̃‖Lp∗ , (5.48)

‖TmB
(��∂if̃ ,�kg̃)‖Lp � 2−j2�‖��f̃‖L(p∗)′ ‖�kg̃‖Lp∗ . (5.49)
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Suppose that s < 1 + 2/p and consider 0 ≤ δ < α such that s < 1 + 2/p − δ. Moreover, 
choose N > 0 large enough so that s < 1 +2/p∗−δ. From (5.49), we apply the Bernstein 
inequalities again and the fact that |k − j| ≤ 4 to get

‖TmB
(��∂if̃ ,�kg̃)‖Lp

� 2−(s+t)k2(2/p)k‖g̃‖Ḃt
p,∞

∑
�≤k−3

2−(1+2/p∗−s)(k−�)2s�‖��f̃‖Lp

� 2−(s+t−2/p)jCj‖f̃‖Ḃs
p,q

‖g̃‖Ḃt
p,∞

, (5.50)

where

Cj := ‖f̃‖−1
Ḃs

p,q

∑
j≥�−2

2−(1+2/p∗−s)(j−�)2s�‖��f̃‖Lp ,

which satisfies (Cj)j∈Z ∈ 	q since s < 1 + 2/p∗.
Similarly, since s < 1 + 2/p∗ − δ, from (5.48) we can estimate

‖TmA
(��∂if̃ ,�kg̃)‖Lp

� γ1−δ/α2−(δ−α+s+t−2/p)j‖g̃‖Ḃt
p,∞

∑
�≤k−3

2−(1+2/p∗−δ−s)(k−�)2s�‖��f̃‖Lp

� γ(α−δ)/α2(α−δ)j2−(s+t−2/p)jCj‖f̃‖Ḃs
p,q

‖g̃‖Ḃt
p,∞

, (5.51)

where

Cj := ‖f̃‖−1
Ḃs

p,q

∑
j≥�−2

2−(1+2/p∗−δ−s)(j−�)2s�‖��f̃‖Lp ,

which satisfies (Cj)j∈Z ∈ 	q since s < 1 + 2/p∗ − δ.
Combining the estimates (5.33), (5.34), (5.35), (5.50), and (5.51) completes the proof 

of Theorem 3.5. �
6. Proof of Theorem 3.1

We will provide the proof only for the critical regularity index σc := 1 + 2/p − κ, 
the proof for σ > σc being similar. The proof will proceed in three steps. In the first 
step (Part I) we will make two preliminary estimates that arises from the linear part 
of the equation. Next, in Part II, we will construct and establish properties for the 
approximating solution sequence in the usual Besov spaces that will be necessary for 
our purposes. Finally, in Part III, we conclude the proof by making the relevant a priori
estimates in Gevrey classes.
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6.1. Part I: Preliminary estimates

We will need to control the linear term that appears from differentiating the Gevrey 
norm with respect to t in the a priori estimates. To do so, we adapt the approach in [54]
where the L2 case is dealt with, and modify the proof to accommodate the general case 
of p �= 2.

Lemma 6.1. Let 0 < α < κ and 1 ≤ p ≤ ∞. If Λαf, GγΛκf ∈ Lp, then

‖GγΛα�jf‖Lp � ‖Λα�jf‖Lp + γ−(1−κ/α)‖GγΛκ�jf‖Lp , (6.1)

for all j ∈ Z.

Proof. Fix an integer k, to be chosen later, such that N := 2k−3. Denote by �̆j the 
augmented operator �j−1 + �j + �j+1. Observe that

GγΛα�jf = GγSk(Λα�jf) + Λ−(κ−α)(I − Sk)�j(GγΛκ�̆jf).

Observe that GγSk ∈ L1. Indeed, by Lemma 4.1 we have

‖GγSk‖L1 ≤
∞∑

n=0

λnγn

n! ‖ΛαnSk‖L1 ≤ ecγ2kα

, (6.2)

for some absolute constant c > 0. On the other hand, observe that m̌ := Λ−(κ−α)(I −
Sk)�j is smooth with compact support. Let g := GγΛκ�̆jf . We consider three cases.

If 2j+2 ≤ N , then g ≡ 0. If N ≤ 2j−2, then Lemma 4.1 and Young’s convolution 
inequality implies that

‖Tmg‖L1 � 2−(κ−α)j � N−(κ−α),

where Tm is convolution with m̌. Similarly, if 2j−1 ≤ N ≤ 2j+1, then

‖Tmg‖L1 � N−(κ−α). (6.3)

Therefore, for any N > 0

‖GγΛα�jf‖Lp � eγN
α‖Λα�jf‖Lp + N−(κ−α)‖GγΛκ�̆jf‖Lp .

Finally, choose k := [α−1 log2(1/γ)], where [x] denotes the greatest integer ≤ x. Then 
N ∼ γ−1/α, which gives (6.1). �

We will also require the following properties for the solution to the linear heat equa-
tion (4.7). Let us consider the space

XT := {v ∈ C((0, T ); Ḃσ+β
p,q (R2)) : ‖v‖XT

< ∞}, (6.4)
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such that

‖v‖XT
:= sup

0<t<T
tβ/κ‖Gγv( · , t)‖Ḃσ+β

p,q
, (6.5)

where γ = λtα/κ, λ > 0, σ ∈ R and β ≥ 0.

Lemma 6.2. Let α < κ, σ > 0, and β ≥ 0 and suppose that θ0 ∈ Ḃσ
p,q(R2). Then

(i) ‖e−(·)Λκ

θ0‖XT
� ‖θ0‖Ḃσ

p,q
, for any T ≥ 0, and

(ii) limT→0‖e−(·)Λκ

θ0‖XT
= 0.

Proof. Observe that for b < 1, we have eax
b−cx ≤ 1 for x > 1 and eax

b−cx � e−cx for 
0 ≤ x ≤ 1. If t2jκ ≤ 1, then arguing as in Lemma 6.1, e.g., (6.2),

‖eλtα/κΛα

e−tΛκ�jθ0‖Lp � ec1λ(t2jκ)α/κ‖e−tΛκ�jθ0‖Lp � eλ‖e−tΛκ�jθ0‖Lp ,

for some c1 > 0. If t2jκ > 1, then arguing as in Lemma 6.1 and applying Lemma 4.4

‖eλtα/κΛα

e−tΛκ�jθ0‖Lp � ec1λt
α/κ2jα−c2t2jκ‖e−(t/2)Λκ�jθ0‖Lp � ‖e−c3tΛκ�jθ0‖Lp ,

for some c1, c2, c3 > 0. Therefore, a final application of Lemma 4.4 proves

‖eλtα/κΛα

e−tΛκ�jθ0‖Lp � ‖e−c3tΛκ�jθ0‖Lp � e−c4t2jκ‖�jθ0‖Lp , (6.6)

for some c4 > 0. Now by (6.6) we have

‖eλtα/κΛα

e−tΛκ

θ0‖q
Ḃσ+β

p,q
=

∑
j

2(σ+β)jq‖eλtα/κΛα−tΛκ�jθ0‖qLp

�
∑
j

2βjqe−qc4t2jκ (
2σj‖�jθ0‖Lp

)q
� t−(βq)/κ‖θ0‖qḂσ

p,q

. (6.7)

This proves (i). Now we prove (ii). Then for let ε > 0, there exists θε0 ∈ S such that 
Fθε0 is supported away from the origin and ‖θ0 − θε0‖Ḃσ

p,q
< ε. In particular, θε0 ∈ Ḃσ+β

p,q . 
Observe that for 0 < t ≤ T

‖e−tΛκ

θ̃0‖Ḃσ+β
p,q

� ‖e−tΛκ

θ̃ε0‖Ḃσ+β
p,q

+ ‖e−tΛκ

θ̃0 − e−tΛκ

θ̃ε0‖Ḃσ+β
p,q

� ‖θε0‖Ḃσ+β
p,q

+ ‖eλtα/κΛα

e−tΛκ

(θ0 − θε0)‖Ḃσ+β
p,q

� t−β/κ
(
T β/κ‖θε0‖Ḃσ+β

p,q

)
+ t−β/κ‖θ0 − θε0‖Ḃσ

p,q
,

where we have applied (6.7) to θ0 − θε0. This implies (ii) and we are done. �
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6.2. Part II: Approximating sequence

Now let us consider the sequence of approximate solutions θn determined by⎧⎪⎪⎨⎪⎪⎩
∂tθ

n+1 + Λκθn+1 + un· ∇θn+1 = 0 in R
2 × R+,

un = (−R2θ
n, R1, θ

n) in R
2 × R+,

θn+1
∣∣
t=0 = θ0 in R

2,

(6.8)

for n = 1, 2, . . . , and where θ0 satisfies the heat equation

{
∂tθ

0 + Λκθ0 = 0 in R
2 × R,

θ0
∣∣
t=0 = θ0 in R

2.
(6.9)

It is well-known that θn is Gevrey regular for n ≥ 0. In particular, we may define

θ̃n(s) := Gγθ
n, and ũn(s) := Gγu

n(s), (6.10)

where we choose γ = γ(s) := λsα/κ. It is shown in [11] that there exists a subsequence 
of (θn)n≥0 that converges in Lp

loc(R+ × R
2) to some function θ ∈ C([0, T ); Ḃσc

p,q), where 
σc := 1 +2/p −κ, and which satisfies (1.1) in the sense of distribution, provided that either 
T or ‖θ0‖Ḃσc

p,q
is sufficiently small. Additionally, we will show that the approximating 

sequence satisfies

sup
0<t<T

tβ/κ‖θn(t)‖Ḃσc+β
p,q

� ‖θ0‖Ḃσc
p,q

and lim
T→0

sup
0<t<T

tβ/κ‖θn(t)‖Ḃσc+β
p,q

= 0, (6.11)

for any 0 < β < κ/2 and n ≥ 0, where the suppressed constant above is independent 
of n. Whenceforth, to prove Theorem 3.1 it will suffice to obtain a priori bounds for 
‖θn( · )‖XT

, independent of n (see (6.5)). We will also make crucial use of the estimates 
(6.11) in the proof of Theorem 3.1 (see (6.25))

To prove (6.11), we follow [52]. First observe that θ0 = e−tΛκ

θ0. Then by Lemma 6.2
we have

tβ/κ‖θ0‖Ḃσc+β
p,q

� ‖θ0‖Ḃσc
p,q

and lim
T→0

sup
0<t<T

tβ/κ‖e−tΛκ

θ0‖Ḃσc+β
p,q

= 0.

We proceed by induction. Assume that (6.11) holds for some n > 0.
We apply �j to (6.8) to obtain

∂tθ
n+1
j + Λκθn+1

j + �j(un· ∇θn+1) = 0. (6.12)

Then we take the L2 inner product of (6.12) with |θj |p−2θj and use the fact that ∇· un = 0
to write
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1
p

d

dt
‖θn+1

j ‖pLp +
∫
R2

Λκθn+1
j |θn+1

j |p−2θn+1
j dx

= −
∫
R2

[�j , u
n]∇θn+1

j |θn+1
j |p−2θn+1

j dx. (6.13)

Note that we used the fact that∫
R2

un· ∇θn+1
j |θj |p−2θ̃n+1

j dx = 0, (6.14)

which one obtains by integrating by parts and invoking the fact that ∇· un = 0 for all 
n > 0. Now, we apply Lemmas 4.3, 4.2, and Hölder’s inequality, so that after dividing 
by ‖θj‖p−1

Lp , (6.13) becomes

d

dt
‖θn+1

j ‖Lp + C2κj‖θn+1
j ‖Lp � ‖[�j , u

n]∇θn+1‖Lp .

Let β < κ/2. By Corollary 3.6 with s = σc + β and t = 2/p − κ + β we get

d

dt
‖θn+1

j ‖Lp + C2κj‖θn+1
j ‖Lp � 2−((σc+β)−(κ−β))jcj‖θn‖Ḃσc+β

p,q
‖θn+1‖Ḃσc+β

p,q
.

Note that we have used boundedness of the Riesz transform. Thus, multiplying by 
2(σc+β)j , then applying Gronwall’s inequality gives

‖θn+1(t)‖Ḃσc+β
p,q

�

⎛⎝∑
j

(
e−C2κjt2(σc+β)j‖�jθ0‖Lp

)q

⎞⎠1/q

+

⎛⎝ t∫
0

∑
j

(
e−C2κj(t−s)2(κ−β)jcj‖θn(s)‖Ḃσc+β

p,q
‖θn+1(s)‖Ḃσc+β

p,q
ds

)q

⎞⎠1/q

.

In particular, this implies

tβ/κ‖θn+1(t)‖Ḃσ+β
p,q

� tβ/κ

⎛⎝∑
j

(
e−C2κjt2(σ+β)j‖�jθ0‖Lp

)q

⎞⎠1/q

+ tβ/κ

⎛⎝ t∫
s−2β/κ(t− s)−(1−β/κ)ds

⎞⎠⎛⎝∑
j

cqj

⎞⎠1/q
0



JID:YJFAN AID:7322 /FLA [m1L; v1.159; Prn:15/09/2015; 12:54] P.28 (1-37)
28 A. Biswas et al. / On Gevrey regularity for supercritical SQG
×
(

sup
0<t<T

tβ/κ‖θn(s)‖Ḃσc+β
p,q

)(
sup

0<t<T
tβ/κ‖θn+1(s)‖Ḃσc+β

p,q

)
, (6.15)

where we have used the fact that

xbe−axc � a−b/c. (6.16)

Since β < κ/2, (cj)j∈Z ∈ 	q and

t∫
0

1
s2β/κ(t− s)1−β/κ

ds � t−β/κ,

we actually have

sup
0<t<T

tβ/κ‖θn+1(t)‖Ḃσc+β
p,q

� sup
0<t<T

tβ/κ

⎛⎝∑
j

(
e−C2κjt2(σ+β)j‖�jθ0‖Lp

)q

⎞⎠1/q

+
(

sup
0<t<T

tβ/κ‖θn(t)‖Ḃσc+β
p,q

)(
sup

0<t<T
tβ/κ‖θn+1(t)‖Ḃσc+β

p,q

)
. (6.17)

In fact, (6.16) also implies

M(t) := tβ/κ

⎛⎝∑
j

(
e−C2κjt2(σc+β)j‖�jθ0‖Lp

)q

⎞⎠1/q

� ‖θ0‖Ḃσc
p,q

. (6.18)

From Lemma 6.2 we know that

e−C2κjt‖�jθ0‖Lp � ‖e−c′tΛκ�jθ0‖Lp ,

for some c′ > 0, where vj = e−c′tΛκ�jθ0 solves the heat equation{
∂tv + c′Λκv = 0
v(x, 0) = �jθ0(x).

Hence

M(t) � sup
0<t<T

tβ/κ‖e−c′tΛκ

θ0‖Ḃσc+β
p,q

,

so that arguing as in Lemma 6.2, we may deduce that

lim sup M(t) = 0. (6.19)

T→0 0<t<T
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Recall that by hypothesis, we have

lim
T→0

sup
0<t<T

tβ/κ‖θn(t)‖Ḃσc+β
p,q

= 0.

Then returning to (6.17), by hypothesis, we may choose T sufficiently small so that

sup
0<t<T

tβ/κ‖θn(t)‖
Ḃ

1+2/p−κ+β
p,q

< 1/2.

This implies that

sup
0<t<T

tβ/κ‖θn+1(t)‖Ḃσ+β
p,q

� sup
0<t<T

M(t).

Finally, letting T → 0 and invoking (6.19) completes the induction.

6.3. Part III: A priori bounds in Gevrey spaces

It will be convenient to introduce the space

XT := {v ∈ C((0, T ); Ḃσc+β
p,q (R2)) : ‖v‖XT

< ∞}, (6.20)

where,

‖v‖XT
:= sup

0<t<T
tβ/κ‖Gγv( · , t)‖Ḃσc+β

p,q
, (6.21)

and 0 < β < κ/2 additionally satisfies (6.24) below.
Now we will demonstrate a priori bounds for ‖θn( · )‖XT

, independent of n. First 
apply Gγ�j to (6.8). Using the fact that Gγ , �j , ∇ are Fourier multipliers (and hence, 
commute), we obtain

∂tθ̃
n+1
j + Λκθ̃n+1

j + Gγ�j(un· ∇θn+1) = λκ/αγ1−κ/αΛαθ̃n+1
j , (6.22)

where we have used the fact that γ := λtα/κ. Now apply Lemmas 4.3, 4.2, and Hölder’s 
inequality, as well as Lemma 6.1 to obtain

d

dt
‖θ̃n+1

j ‖Lp + C2κj‖θ̃n+1
j ‖Lp

� λκ/αγ1−κ/α‖Λαθn+1
j ‖Lp + λκ/α‖Λκθ̃n+1

j ‖Lp + ‖[Gγ�j , u
n]∇θn+1‖Lp .

We choose λ > 0 small enough so that Lemma 4.1 implies

d

dt
‖θ̃n+1

j ‖Lp + C2κj‖θ̃n+1
j ‖Lp

� γ1−κ/α2αj‖θn+1
j ‖Lp + ‖[Gγ�j , u

n]∇θn+1‖Lp . (6.23)
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Now choose α < κ, 0 < β < min{α, κ/2} and δ > 0 such that

α < δ + β < κ <
1
2 + 1

p
+ β. (6.24)

Then by Theorem 3.5 with s = σc + β and t = 2/p − κ + β, we have

d

dt
‖θ̃n+1

j ‖Lp + 2κj‖θ̃n+1
j ‖Lp

� γ1−κ/α2αj‖θn+1
j ‖Lp

+ 2−((σc+β)−(κ−β))jCjγ
(α−δ)/α2(α−δ)j‖θ̃n‖Ḃσc+β

p,q
‖θ̃n+1‖Ḃσc+β

p,q

+ 2−((σc+β)−(κ−β))jCj‖θ̃n‖Ḃσc+β
p,q

‖θ̃n+1‖Ḃσc+β
p,q

.

Now by Gronwall’s inequality, for t ≥ 0 we have

2(σc+β)j‖θ̃n+1
j (t)‖Lp

� 2βje−C2κjt2σj‖�jθ0‖Lp

+
t∫

0

γ(s)1−κ/α2αje−C(t−s)2κj

2(σc+β)j‖θn+1
j (s)‖Lp ds

+ Cj

t∫
0

γ(s)(α−δ)/α2(α−δ+κ−β)je−C(t−s)2κj‖θ̃n(s)‖Ḃσc+β
p,q

‖θ̃n+1(s)‖Ḃσc+β
p,q

ds

+ Cj

t∫
0

2(κ−β)je−C(t−s)2κj‖θ̃n(s)‖Ḃσc+β
p,q

‖θ̃n+1(s)‖Ḃσc+β
p,q

.

Substituting γ(s) = λsα/κ, applying the decay properties of the heat kernel e−C(t−s)2κj , 
Minkowski’s inequality, and by definition of the space XT , we arrive at

‖θ̃n+1(t)‖Ḃσc+β
p,q

� t−β/κ‖θ0‖Ḃσc
p,q

+

⎛⎝ t∫
0

s−(1−(α−β)/κ)(t− s)−α/κ ds

⎞⎠(
sup

0<t≤T
tβ/κ‖θn+1(t)‖Ḃσc+β

p,q

)

+

⎛⎝ t∫
0

s(α−δ−2β)/κ(t− s)−(α−δ+κ−β)/κ ds

⎞⎠ ‖θn‖XT
‖θn+1‖XT

+

⎛⎝ t∫
s−2β/κ(t− s)−(κ−β)/κ ds

⎞⎠ ‖θn‖XT
‖θn+1‖XT
0
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Since β < min{α, κ/2}, α < β + δ, and α < κ, we deduce after an application of (6.11)
that

‖θn+1‖XT
≤ C1‖θ0‖Ḃσc

p,q
+ C2‖θn‖XT

‖θn+1‖XT
, (6.25)

for some constants C1, C2 > 1. By Lemma 6.2 we have

‖θ0‖XT
≤ C3‖θ0‖Ḃσc

p,q
≤ 2(C1 ∨ C3)‖θ0‖Ḃσc

p,q
, (6.26)

for some constant C3 > 1. Let C4 := 2(C1 ∨C3) and assume that ‖θ0‖Ḃσc
p,q

≤ (2C2C4)−1. 
If ‖θn‖XT

≤ C4‖θ0‖Ḃσc
p,q

for some n > 0, then from (6.25), we get

1
2‖θ

n+1‖XT
≤ C1‖θ0‖Ḃσc

p,q
. (6.27)

Therefore, by induction ‖θn‖XT
≤ C4‖θ0‖Ḃσc

p,q
for all n ≥ 0.

For arbitrary θ0 ∈ Ḃσc
p,q, we can deduce uniform bounds for {θn}n≥0 by induction 

similarly. To this end, we first observe that by Lemma 6.2, there exists T1 > 0 such 
that ‖θ0‖XT1

≤ C, where C < (2C2)−1. We can also choose T0 = T0(θ0) such that 
sup0<t<T0

M(t) ≤ C(2C1)−1, where M(t) is defined as in (6.18). Now let T ∗ := T ∧ T0. 
It follows that ‖θ0‖XT∗ ≤ C.

For n > 0, observe that similar to (6.25), we also have the estimate

‖θn+1‖XT∗ ≤ C1

(
sup

0<t<T∗
M(t)

)
+ C2‖θn‖XT∗ ‖θn+1‖XT∗ . (6.28)

If ‖θk‖XT∗ ≤ C, for all 0 < k ≤ n, then applying this to (6.28) and using the fact that 
C < (2C2)−1, we have

‖θn+1‖XT∗ ≤ 2C1

(
sup

0<t<T∗
M(t)

)
.

Since sup0<t<T∗ M(t) ≤ C(2C1)−1 we therefore have

‖θn+1‖XT∗ ≤ C,

which completes the induction.
Finally, define the spaces YT and ZT by

YT := {v ∈ C([0, T );Bσc
p,q : ‖v‖YT

:= sup
0≤t<T

‖Gγv‖Bσc
p,q

< ∞}

and

ZT := {v ∈ XT ∩ YT : ‖v‖ZT
:= max{‖v‖XT

, ‖v‖YT
} < ∞}.
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To obtain estimates in the class ZT , one must first prove an analog of Lemma 6.2(i) 
for the space YT to take care of the case n = 0. This follows easily from the proof of 
Lemma 6.2 by setting β = 0. Then for the case n > 0, one returns to (6.23) and applies 
Theorem 3.5 with s = 1 + 2/p − κ + β and t = 2/p − κ, which forces the additional 
constraint 1/2 + 1/p + β/2 > κ. One can then obtain uniform bounds on ‖θn‖YT

by 
following steps similar to those made for estimating ‖θn‖XT

, and taking advantage of 
the fact that ‖θn‖XT

is already uniformly bounded for all n ≥ 0. This finishes the proof 
of the theorem.
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Appendix A

We recall in the proofs of Theorems 3.4 and 3.5, we made crucial use of the concavity 
of the function ‖ξ‖α, where α < 1. In particular, we used the following fact, whose proof 
we supply now.

Lemma A.1. Let α < 1 and f : R2 × R
2 → R be given by

f(ξ, η) := ‖ξ‖α + ‖η‖α − ‖ξ + η‖α. (A.1)

If ‖ξ‖/‖η‖ ≥ c for some c > 0, then there exists ε > 0, depending only on c, such that 
f(ξ, η) ≥ ε‖η‖α.

Proof. Observe that

f(ξ, η) = ‖η‖α
(∥∥∥∥ ξ

‖η‖

∥∥∥∥α

+ 1 −
∥∥∥∥ ξ

‖η‖ + η

‖η‖

∥∥∥∥α)
.

Also observe that if R is a rotation matrix, then f(Rξ, Rη) = f(ξ, η). Thus, we may 
assume that ‖ξ‖ ≥ c and that η = e1, where e1 := (1, 0). Now observe that

f(ξ, η) = (ξ2
1 + ξ2

2)α/2 + 1 − ((ξ1 + η1)2 + (ξ2 + η2)2)α/2

= (ξ2
1 + ξ2

2)α/2 + 1 − ((ξ1 + 1)2 + ξ2
2)α/2.

Let x := ‖ξ‖. Then

f(ξ, η) = gξ1(x) := xα + 1 − (x2 + 1 + 2ξ1)α/2,
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where x ≥ c. Thus, we may assume ξ2 = 0 and |ξ1| ≥ c. In particular, we may assume that 
x = ξ1. An elementary calculation finally shows that g(x) := |x|α+1 −|x +1|α ≥ g(c) > 0
since x ≥ c. �

Now we provide the proof of our multiplier theorem, Theorem 3.7.

Proof. By Proposition A.2, we may assume that for each fixed ξ ∈ R
d, m(ξ, η) is sup-

ported in [1/2 ≤ ‖η‖ ≤ 2] ⊂ [0, 4]d as a function of η. Thus, we may take the Fourier 
transform in the variables η1, . . . , ηd, i.e.,

m(ξ, η) ∼
∑
k∈Zd

m̂k(ξ)eik·ηχ(η), (A.2)

where m̂k(ξ) := m̂(ξ, k) is the k-th Fourier coefficient of m and χ(η) = 1 for 1/2 ≤ ‖η‖ ≤
2 and is supported on [1/4 ≤ ‖η‖ ≤ 4]. In fact, we write m(ξ, η) as

m(ξ, η) ∼ m̂0(ξ)χ(η) +

⎛⎝ ∑
k∈Z0

+ · · · +
∑

k∈Zd−1

⎞⎠ m̂k(ξ)eik·ηχ(η), (A.3)

where Zj ⊂ Z
d is defined by

Zj := {k ∈ Z
d : ki = 0 for exactly j many indices i and ki′ �= 0 for i′ �= i}. (A.4)

Observe that Zj is isomorphic to C(d, d − j) copies of (Z \ {0})(d−j), where Z0 := {0}.
Using multi-index notation, observe that for each k ∈ Z

d \ {0}, integration by parts 
gives

m̂k(ξ) =
∫

e−ik·ηm(ξ, η) dη = cα(−ik)−αm̃k,α(ξ),

for all α ∈ N
d, where

m̃k,α(ξ) :=
∫

e−ik·η∂α
η (m(ξ, η)χ(η)) dη.

By (3.5), it follows that m0(ξ) is a Hörmander–Mikhlin multiplier. On the other hand, 
(3.5) and the fact that χ is supported in [1/4 ≤ ‖η‖ ≤ 4] implies∣∣∣∂β

ξ m̃k,α(ξ)
∣∣∣ � ∑

α1+α2=α

∫ ∣∣∣∂β
ξ ∂

α1
η m(ξ, η)∂α2

η χ(η)
∣∣∣ dη

�β,α,d ‖ξ‖−|β|
∫

[1/4�‖η‖�4]

‖η‖−|α1| dη

�β,α,d ‖ξ‖−|β|. (A.5)
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Thus m̃k,α is also a Hörmander–Mikhlin multiplier for all k ∈ Z
d and α ∈ N

d. Moreover, 
note that the suppressed constant in (A.5) is independent of k.

Now for each j = 1, . . . , d, choose a multi-index aj ∈ Zj∩Nd so that 
∑

k∈Zj
k−aj < ∞. 

Finally, observe that

Tm(f, g) = Tm0(f)Tχ(g) +
d∑

j=1

∑
k∈Zj

Tmk
(f)Tχk

(g)

= Tm0(f)Tχ(g) +
d∑

j=1

∑
k∈Zj

cαj
k−aj (Tm̃k,aj

f)(Tχτ−kg),

where χk(η) := χ(η)eik·η and Tmk
, Tχk

denote linear multiplier operators with symbols 
mk, χk, respectively, and τv denotes the translation by v operator, i.e. (τvh)(x) = h(x −v). 
Therefore, by Minkowski’s inequality, Hölder’s inequality, and the Hörmander–Mikhlin 
multiplier theorem we have

‖Tm(f, g)‖Lr �a ‖f‖Lp‖χ‖L1‖g‖Lq ,

where we have used Young’s convolution inequality and translation invariance of dx, and 
the suppressed constant depends on supj

(∑
k∈Zj

k−aj

)
. �

The next proposition shows that Marcinkiewicz multipliers are dilation invariant. 
Thus, we may (isotropically) rescale the support of m without penalty.

Proposition A.2. Let 1/r = 1/p + 1/q and Tm : Lp × Lq → Lr be a bounded bilinear 
multiplier operator whose multiplier, m, satisfies m ∈ L∞(Rd × R

d)∣∣∣∂β1
ξ ∂β2

η m(ξ, η)
∣∣∣ �β,d ‖ξ‖−|β1|‖η‖−|β2|, (A.6)

for all ξ, η ∈ R
d \ {0} and multi-indices β1, β2 ∈ N

d. Then Tmλ
is also bounded with the 

same operator norm, where mλ is given by

mλ(ξ, η) := m(λξ, λη).

Proof. We first show that mλ also satisfies (A.6). Observe that

∂β1
ξ ∂β2

η mλ(ξ, η) = λ|β1|+|β2|(∂β1
ξ ∂β2

η m)(λξ, λη).

Then since m satisfies (A.6) we have∣∣∣∂β1
ξ ∂β2

η mλ(ξ, η)
∣∣∣ � λ|β1|+|β2|‖λξ‖−|β1|‖λη‖−|β2|.
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Now we prove the claim. Indeed, let f ∈ Lp, g ∈ Lq, and λ > 0. Then

Tmλ
(f, g)(x) =

∫
Rd

∫
Rd

eix·(ξ+η)mλ(ξ, η)f̂(ξ)ĝ(η) dξ dη

=
∫
Rd

∫
Rd

eix·(ξ+η)m(λξ, λη)f̂(ξ)ĝ(η) dξ dη

=
∫
Rd

∫
Rd

ei(x/λ)·(ξ′+η′)m(ξ′, η′)λ−df̂(ξ′/λ)λ−dĝ(η′/λ) dξ′ dη′

=
∫
Rd

∫
Rd

ei(x/λ)·(ξ+η)m(ξ, η)f̂λ(ξ)ĝλ(η) dξ dη

= Tm(fλ, gλ)(x/λ) = (Tm(fλ, gλ))1/λ(x).

This implies

‖Tmλ
(f, g)‖Lr = λd/r‖Tm(fλ, gλ)‖Lr

� λd/r‖fλ‖Lp‖gλ‖Lq = λd/rλ−d/pλ−d/q‖f‖Lp‖g‖Lq .

In particular, ‖Tmλ
‖ ≤ ‖Tm‖. On the other hand, one can similarly argue

‖Tm(f, g)‖Lr = λ−d/r‖Tm1/λ(f1/λ, g1/λ)‖Lr

� λ−d/r‖f1/λ‖Lp‖g1/λ‖Lq = λ−d/rλd/pλd/q‖f‖Lp‖g‖Lq .

Therefore ‖Tm‖ ≤ ‖Tm1/λ‖. This completes the proof. �
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