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Abstract

Based on a previously introduced downscaling data assimilation algorithm, which employs a nudging term to synchronize the 
coarse mesh spatial scales, we construct a determining map for recovering the full trajectories from their corresponding coarse 
mesh spatial trajectories, and investigate its properties. This map is then used to develop a downscaling data assimilation scheme 
for statistical solutions of the two-dimensional Navier–Stokes equations, where the coarse mesh spatial statistics of the system is 
obtained from discrete spatial measurements. As a corollary, we deduce that statistical solutions for the Navier–Stokes equations 
are determined by their coarse mesh spatial distributions. Notably, we present our results in the context of the Navier–Stokes 
equations; however, the tools are general enough to be implemented for other dissipative evolution equations.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

For a given dissipative dynamical system, which is believed to accurately describe some aspect(s) of an underlying 
physical reality, often the problem of forecasting using the model becomes one of initialization. More precisely, one 
does not have the complete data available with which to properly initialize the system. However, in many cases, this 
is compensated by the fact that one has access to data from measurements of the system, collected continuously (or 
discretely) in time, albeit on a much coarser spatial grid than the desired resolution of the forecast. This, for instance, 
is the case in atmospheric sciences where, since the launch of the first weather satellites in the 1960s, weather data has 
been collected nearly continuously in time, which furnishes us with the knowledge of the state of the system, e.g., the 
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velocity vector field or temperature, on a coarse spatial grid of points. The objective of data assimilation and signal 
synchronization is to use this low spatial resolution observational measurements, obtained (nearly) continuously in 
time, to accurately find the corresponding reference solution, from which future predictions can be made. This has by 
now wide ranging applications in atmospheric, oceanic, medical and biological sciences (see e.g. [4], and references 
therein).

Due to its ubiquity in applications, several different types of methods have been developed for data assimilation; 
see, for instance, [4,6,7,20,23,47–49,57,59,60,65] and the references therein. Our focus here is on what is known as 
nudging (or Newtonian relaxation) method. There has been some earlier work implementing various versions of the 
nudging method in control theory and in the context of ordinary differential equations (ODEs); see, e.g., [64,69]. 
Moreover, there has also been attempts of extending this approach to the context of partial differential equations 
(PDEs); see, e.g., [5,51]. However, a proper and rigorous framework for the nudging approach was recently devel-
oped in [8], where the authors consider a more general setting which is valid for a broad class of infinite-dimensional 
dissipative PDEs and observables. Although the results in [8] are obtained for the two-dimensional incompressible 
Navier–Stokes equations as the reference model and under the assumption of continuous in time and error-free mea-
surements, later works applied this method to several other dissipative dynamical systems [2,12,26–29,62], as well as 
to more general situations such as discrete in time and error-contaminated measurements ([10,37]). Moreover, numer-
ical approximation schemes of this algorithm, given by a Postprocessing Galerkin spatial discretization and (semi- and 
fully-) implicit Euler time discretizations, have been analyzed in [52,63]. Specifically, uniform (global) in time error 
estimates are established, which imply that the algorithm is reliable for numerical simulations, as it is demonstrated 
computationally in [3,25,46,61] (see also [50]). A notable feature of the approach in [8] is that it allows one to provide 
explicit conditions on the relaxation (nudging) parameter and the spatial resolution of the observations, in order to 
guarantee convergence of the algorithm to the reference solution of the model equation(s). Their idea is based on the 
fact that the long-time behavior of various (infinite-dimensional) dissipative dynamical systems, is determined by only 
a finite number of degrees of freedom, e.g., modes, nodes or volume elements [17,18,38,44,45].

The algorithm in [8] can be described as follows. Suppose u is a solution to a physical model over a domain �, 
whose time evolution is governed by the equation

d

dt
u = F(u), (1.1)

except that the initial data u0 has not been provided and is thus, unknown. Then consider the following initial value 
problem:

d

dt
w = F(w) − βJh(w − u), w(0) = w0, (1.2)

where w0 is any given initial condition, h > 0 represents the spatial resolution of the observational measurements, 
β = β(h) > 0 is the “relaxation/nudging parameter”, and Jh is an adequate finite-rank linear “interpolant” operator, 
constructed from the observed coarse scale data (see [8,17,18], and references therein, for details). Due to the fact 
that there exists finitely many determining coarse-mesh quantities for dissipative systems (e.g., modes, nodes, volume 
elements [17,18,38,44,45]), it can be shown that the solution to (1.2), corresponding to the measurements interpolated 
by Jh(u), converges exponentially to the solution u of (1.1) (see [8]), provided h << 1 and β(h) >> 1 are adequately 
chosen.

The downscaling data assimilation equation (1.2) was crucial in constructing a map W in [32,33], which we refer 
to as the determining map, from a ball in the space of all continuous, bounded functions on R with values in the 
(finite dimensional) space JhH

2 to the phase space. This was then used in [33,35] to construct an associated ODE 
termed the determining form for the Navier–Stokes equations [32,33,35], and subsequently several other evolutionary 
equations including surface quasi-geostrophic equation, the damped, driven nonlinear Schrödinger equation and the 
Korteweg–de Vries equation [53–55].

Our objective here is two fold. First, we study in more detail this determining map, including extending its domain 
of definition, which allows for rougher (in time) observations. In particular, we present a simpler proof of the existence 
of the determining map W with much more relaxed conditions than the previous construction in [32,33]. This will 
allow us to apply it to the case where the observations are noisy or are contaminated with a random error. Additionally, 
we establish various properties including Fréchet differentiability of the map W . Our second objective is to construct 
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a downscaling data assimilation algorithm to recover the statistics generated by the NSE from random initial data 
from the observed spatial coarse-mesh statistics. This is formalized by using the concept of statistical solutions, either 
on phase-space, introduced in [30,31,39] (see also [36,40,41]), or trajectory space, introduced in [71,72]. The map 
W plays a fundamental role in developing such downscaling data assimilation algorithm for statistical solutions. As a 
corollary, we deduce that the notion of determining quantities, established before for individual trajectories, extends 
to the case of statistical solutions. We remark that other approaches to statistical data assimilation, for instance via 
Bayesian analysis and Kalman filtering, can be found in [13,14,21,49,59,65] and the references therein. The statistical 
data assimilation technique introduced here can be viewed as providing a connection between the deterministic algo-
rithm developed in [8] and the above mentioned approaches via Bayesian analysis and Kalman filtering. This issue 
will be further explored in a future work.

It is worth mentioning that we demonstrate our results in the context of the Navier–Stokes equations. However, the 
tools are general enough that they can be implemented equally to other dissipative evolution equations, such as the 
Rayleigh–Bénard convection system and other geophysical models, such as the 3D primitive equations and planetary 
geostrophic models.

2. Preliminaries

In this section, we briefly recall the background material and introduce some of the notation that is needed for 
the results presented later in sections 3 and 4. In particular, we recall the basic setup and results regarding the 2D 
Navier–Stokes equations in the spatial periodic case; introduce the topologies and useful operators on spaces of 
continuous functions; and present the notation and properties of the interpolation operators used throughout this 
manuscript.

2.1. Navier–Stokes equations and its functional setting

The Navier–Stokes equations for a Newtonian, homogeneous and incompressible fluid in two dimensions are given 
by

∂u
∂t

− ν�u + (u · ∇)u + ∇p = g, ∇ · u = 0, (2.1)

where u = (u1, u2) and p are the unknowns and denote the velocity vector field and the pressure, respectively; while 
ν > 0 and g are given and denote the kinematic viscosity parameter and the body forces applied to the fluid per unit 
mass, respectively. We denote the spatial domain by � ⊂ R

2 and the time interval by I ⊂ R. The variables u and p
are functions of (x, t) ∈ � × I , while, for simplicity, we assume that g is a function of x ∈ � only and g ∈ (L2(�))2. 
However, similar results, taking into account the necessary details, are also valid for a function g = g(x, t) with 
g ∈ L∞(I ; (L2(�))2).

For simplicity, and in order to fix ideas, we consider system (2.1) with periodic boundary conditions, with � ⊂R
2

as the basic domain of periodicity given by � = [0, L] × [0, L], L > 0. Moreover, we assume that g has zero spatial 
average, i.e.,∫

�

g(x)dx = 0.

We now proceed to recall the basic functional setting of the NSE, a systematic development of which can be found 
in [19,67,68]. Let V be the space of test functions, given by

V =
⎧⎨⎩ϕ :R2 → R

2 : ϕ is a L-periodic trigonometric polynomial, ∇ · ϕ = 0,

∫
�

ϕ(x)dx = 0

⎫⎬⎭ . (2.2)

We denote by H and V the closures of V with respect to the norms in (L2(�))2 and (H 1(�))2, respectively. More-
over, we denote by H ′ and V ′ the dual spaces of H and V , respectively. As usual, we identify H with H ′, so that 
V ⊆ H ⊆ V ′ with the injections being continuous and compact, with each space being densely embedded in the 
following one. The duality action between V ′ and V ′ is denoted by 〈·, ·〉V ′,V .
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The inner product in H is given by

(u1,u2) =
∫
�

u1 · u2 dx ∀u1,u2 ∈ H,

with the corresponding norm denoted by ‖u‖L2 = (u, u)1/2. In V , we consider the following inner product:

((u1,u2)) =
∫
�

∇u1 : ∇u2 dx ∀u1,u2 ∈ V,

where it is understood that ∇u1 : ∇u2 denotes the component-wise product between the tensors ∇u1 and ∇u2. The 
corresponding norm in V is given by ‖∇u‖L2 = ( (u, u) )1/2. The fact that ‖∇ · ‖L2 defines a norm on V follows from 
the Poincaré inequality, given in (2.4), below.

For every subspace � ⊂ (L1(�))2, we denote

�̇per =
⎧⎨⎩ϕ ∈ � : ϕ is L-periodic and

∫
�

ϕ(x)dx = 0

⎫⎬⎭ .

Observe that H is a closed subspace of (L̇2(�))2. Let Pσ denote the Helmholtz–Leray projector, which is defined 
as the orthogonal projection from (L̇2

per(�))2 onto H . Applying Pσ to (2.1), we obtain the following equivalent 
functional formulation

du
dt

+ νAu + B(u,u) = f in V ′, (2.3)

where f = Pσ g. The bilinear operator B : V × V → V ′ is defined as the continuous extension of

B(u,v) = Pσ [(u · ∇)v] ∀u,v ∈ V,

and A : D(A) ⊂ V → V ′, the Stokes operator, is the continuous extension of

Au = −Pσ �u ∀u ∈ V .

In fact, in the case of periodic boundary conditions, we have A = −�.
We recall that D(A) = V ∩ (Ḣ 2

per(�))2 and that A is a positive and self-adjoint operator with compact inverse. 
Therefore, the space H admits an orthonormal basis {φj }∞j=1 of eigenfunctions of A corresponding to a non-

decreasing sequence of eigenvalues {λj }∞j=1, with λ1 := κ2
0 = (2π/L)2.

For each N ∈ N, we consider the finite-dimensional space HN = span{φ1, . . . , φN } and denote by PN the orthog-
onal projector of H onto HN .

We now recall some useful inequalities and identities. First, the Poincaré inequality, given by

κ0‖u‖L2 ≤ ‖∇u‖L2 ∀u ∈ V. (2.4)

In two dimensions, the Ladyzhenskaya inequality is given by

‖u‖L4 ≤ cL‖u‖1/2
L2 ‖∇u‖1/2

L2 ∀u ∈ (Ḣ 1
per(�))2, (2.5)

and the Brézis–Gallouet inequality,

‖u‖L∞ ≤ cB‖∇u‖L2

[
1 + log

( ‖Au‖L2

κ0‖∇u‖L2

)]1/2

∀u ∈ D(A), (2.6)

where cL and cB are nondimensional (scale invariant) constants and ‖ · ‖L4 and ‖ · ‖L∞ denote the usual norms of the 
Lebesgue spaces (L4(�))2 and (L∞(�))2.

The bilinear operator B satisfies the following orthogonality property:

〈B(u1,u2),u3〉V ′,V = −〈B(u1,u3),u2〉V ′,V ∀u1,u2,u3 ∈ V.

Moreover, in the case of periodic boundary conditions, we additionally have
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(B(u,u),Au) = 0 ∀u ∈ D(A). (2.7)

From Ladyzhenskaya inequality, (2.5), we obtain that

‖B(u,v)‖L2 ≤ c2
L‖u‖1/2

L2 ‖∇u‖1/2
L2 ‖∇v‖1/2

L2 ‖Av‖1/2
L2 ∀u ∈ V,v ∈ D(A). (2.8)

From Brézis–Gallouet inequality, (2.6), it follows that

|(B(u1,u2),u3)| ≤ cB‖∇u1‖L2‖∇u2‖L2‖u3‖L2

[
1 + log

( ‖Au1‖L2

κ0‖∇u1‖L2

)]1/2

(2.9)

for all u1 ∈ D(A), u2 ∈ V, u3 ∈ H . Moreover, the following logarithmic inequality was proved in [70, Lemma 1.2, 
(c)]:

|(B(u1,u2),Au3)| ≤ cT ‖∇u1‖L2‖∇u2‖L2‖Au3‖L2

[
1 + log

( ‖Au2‖L2

κ0‖∇u2‖L2

)]1/2

(2.10)

for all u1 ∈ V, u2 ∈ D(A), u3 ∈ D(A), with cT being a nondimensional constant.
It is well-known that, given u0 ∈ H , there exists a unique solution u of (2.3) on (0, ∞) such that u(0) = u0 and

u ∈ C([0,∞);H) ∩ L2
loc([0,∞);V ) and

d

dt
u ∈ L2

loc([0,∞);V ′). (2.11)

Moreover, we also have u ∈ C((0, ∞); D(A)) (see, e.g., [19, Theorem 12.1]). Therefore, equation (2.3) has an asso-
ciated semigroup {S(t)}t≥0, where, for each t ≥ 0, S(t) : H → H is the mapping given by

S(t)u0 = u(t), (2.12)

with u being the unique solution of (2.3) on [0, ∞) satisfying u(0) = u0 and (2.11).
Recall that a bounded set B ⊂ H is called absorbing with respect to {S(t)}t≥0 if, for any bounded subset B ⊂ H , 

there exists a time T = T (B) such that S(t)B ⊂ B for all t ≥ T . The existence of a bounded absorbing set for (2.3) is a 
well-known result. Then, the global attractor A of (2.3) is defined as the set satisfying any of the equivalent conditions 
given below.

1. Let B ⊂ H be a bounded absorbing set with respect to {S(t)}t≥0. Then, the global attractor A is given by

A=
⋂
t≥0

S(t)B.

2. A is the largest compact subset of H which is invariant under the action of the semigroup {S(t)}t≥0, i.e., S(t)A = A
for all t ≥ 0.

3. A is the minimal set that attracts all bounded sets.
4. A is the set of all points in H through which there exists a globally bounded trajectory u(t), t ∈ R with 

supt∈R ‖u(t)‖L2 < ∞.

Also, recall the definition of the (dimensionless) Grashof number, given by

G = ‖f‖L2

(νκ0)2 . (2.13)

The following bounds hold in the global attractor A:

‖∇u‖L2 ≤ νκ0G ∀u ∈ A, (2.14)

and

‖Au‖L2 ≤ c2νκ2
0 (G + c−2

L )3 ∀u ∈A, (2.15)

where c2 = 2137c4
L, with cL being the constant from (2.5). The proof of (2.14) can be found in any of the references 

listed above ([19,67,68]) and the proof of (2.15) is given in [34, Lemma 4.4].
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2.2. Spaces of continuous functions

Given an interval I ⊂ R (we allow for the possibility that I = R) and a Banach space Z, we denote by C(I ; Z)

the space of all continuous functions on I with values in Z. Moreover, we denote by Cb(I ; Z) the subset of C(I ; Z)

consisting of bounded functions.
For every t ∈ I , we define the evaluation operator Et : C(I ; Z) → Z, given by

Et u = u(t) ∀u ∈ C(I ;Z). (2.16)

For every subinterval Ĩ ⊂ I , we define the restriction operator E
Ĩ
: C(I ; Z) → C(Ĩ ; Z), as

E
Ĩ
u(t) = u(t) ∀t ∈ Ĩ . (2.17)

Moreover, for every I ⊂ R and σ ∈ R such that t + σ ∈ I for all t ∈ I , we define the translation operator τσ :
C(I ; Z) → C(I ; Z), given by

(τσ u)(t) = u(t + σ) ∀t ∈ I, ∀u ∈ C(I ;Z). (2.18)

Also, for every R > 0, we denote by BZ(R) the closed ball in the Banach space Z centered at 0 with radius R.

2.3. Interpolant operators

We recall an approach introduced in [8,9] for dealing with several types of observables through a general class of 
interpolant operators. These operators are bounded, linear and of finite rank, and are required to satisfy an approxima-
tion of identity-type condition.

We consider two types of such operators. First, we say that J : (Ḣ 1(�))2 → (L̇2(�))2 is a Type I interpolant 
operator if it satisfies

‖ϕ − Jϕ‖L2 ≤ c1h‖∇ϕ‖L2 ∀ϕ ∈ (Ḣ 1(�))2. (2.19)

Secondly, we say that J : (Ḣ 2(�))2 → (L̇2(�))2 is a Type II interpolant operator if it satisfies

‖ϕ − Jϕ‖L2 ≤ c2,1h‖∇ϕ‖L2 + c2,2h
2‖�ϕ‖L2 ∀ϕ ∈ (Ḣ 2(�))2. (2.20)

Here, c1, c2,1 and c2,2 are absolute constants.
The idea is that, if ϕ is the (unknown) state vector of a certain reference physical system, Jϕ represents a spatial 

interpolation of the given spatial coarse-mesh measurements of ϕ. Thus, Jϕ is known, while ϕ is unknown.
A stronger property than (2.20) is given by

‖ϕ − Jϕ‖L2 ≤ c′
2,1h‖∇ϕ‖L2 + c′

2,2h
3/2‖∇ϕ‖1/2

L2 ‖�ϕ‖1/2
L2 ∀ϕ ∈ (Ḣ 2(�))2, (2.21)

where c′
2,1 and c′

2,2 are again absolute constants. Indeed, notice that (2.20) follows from (2.21) by applying Young’s 
inequality to the second term on the right-hand side. This stronger property for Type II interpolant operators is needed 
for obtaining some of the results concerning the ensemble data assimilation algorithm presented in subsection 4.4.

Moreover, in sections 3 and 4, in particular, we apply the operator W (given in (3.20), below) to Ju(s), s ∈ R, 
with u being a solution of (2.3) lying in the global attractor A. However, in order for this to make sense, we need 
to guarantee that Ju(s), s ∈ R is in the domain of W , which is contained in a bounded subset of Cb(R; (Ḣ 1(�))2). 
With this aim, additional properties of J must be assumed. Namely, in the case of a Type I interpolant, we assume in 
addition that J ((Ḣ 1(�))2) ⊂ (Ḣ 1(�))2 and that

‖∇(ϕ − Jϕ)‖L2 ≤ c̃1‖∇ϕ‖L2 ∀ϕ ∈ (Ḣ 1(�))2), (2.22)

for some absolute constant c̃1. In the case of a Type II interpolant, we assume in addition that J ((Ḣ 2(�))2) ⊂
(Ḣ 1(�))2 and

‖∇(ϕ − Jϕ)‖L2 ≤ c̃2,1‖∇ϕ‖L2 + c̃2,2h‖�ϕ‖L2 ∀ϕ ∈ (Ḣ 2(�))2, (2.23)

for some absolute constants c̃2,1 and c̃2,2.
Examples of interpolant operators satisfying conditions (2.19) and (2.22) and, consequently, also (2.20) and (2.23), 

include
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(i) the low-modes projector, i.e., J = PN , for some N = N(h) ∈ N;
(ii) a spatial interpolation of observables given as averages over volume elements Qj of sidelength h, with � =⋃N

j=1 Qj and N = (L/h)2, defined as

(Jϕ)(x) =
N(h)∑
j=1

1

|Qj |
∫
Qj

ϕ(y)dy[(ρε ∗ χQj
)(x) − 〈ρε ∗ χQj

〉], (2.24)

where |Qj | = h2 is the area of Qj , χQj
is the characteristic function of Qj , ρε is a smooth mollifier with ε =

ε(h), and 〈·〉 denotes the spatial average over �, i.e., 〈ψ〉 = |�|−1
∫
�

ψdx. Notably, the reason for subtracting 
the term 〈ρε ∗ χQj

〉 is to obtain that 〈Jϕ〉 = 0.

Moreover, another example of interpolant operator satisfying (2.20) and (2.23) (but not necessarily (2.19) and (2.22)) 
is:

(iii) a spatial interpolation of observables given as nodal values over volume elements {Qj}Nj=1 as above, defined as

(Jϕ)(x) =
N(h)∑
j=1

ϕ(xj )[(ρε ∗ χQj
)(x) − 〈ρε ∗ χQj

〉], (2.25)

where xj ∈ Qj , j = 1, . . . , N , are the nodal points and ρε , χQj
and 〈·〉 are as above. In fact, one can show that 

such example of J also satisfies the stronger property (2.21). The proof of this fact is given in the Appendix.

3. The determining map

We now describe the lifting map introduced in [32,33], which played a crucial role in obtaining the determining 
form for the Navier–Stokes equations, as well as several other evolutionary equations [53–55]. In some sense, this 
map is proposed as a substitute, or alternative, for the notion of inertial manifold (see, e.g., [19,22,42,43,67]), which 
is not known to exist for the NSE. Notably, the conditions we require for the construction of this map here are weaker 
than the ones considered in [33]. In particular, we do not require any condition on the time derivative of the input 
function v = v(t) in (3.1), below. This may be useful within the context of data assimilation, where v(t) represents 
the observed spatial coarse-mesh data, which is usually noisy.

3.1. The determining map W

We start by defining the functional spaces where the domain and range of W are contained, and by introducing the 
evolution equation which yields the definition of W .

First, we denote by L2
b(R; D(A)) the space of functions in L2(R; D(A)) which are translation-bounded, i.e.

sup
s∈R

s+ 1
νκ2

0∫
s

‖Au(r)‖2
L2 dr < +∞.

The definition of translation-bounded functions is given, e.g., in [16], with the slight difference that the upper limit of 
integration is written as “s + 1”. Here, we consider it as s + (νκ2

0 )−1 in order to be dimensionally consistent.
Let

Y = Cb(R;V ) ∩ L2
b(R;D(A)).

Notice that Y is a Banach space with the norm
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‖u‖Y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩sup
s∈R

‖∇u(s)‖2
L2

ν2κ2
0

+ sup
s∈R

1

νκ2
0

s+ 1
νκ2

0∫
s

‖Au(r)‖2
L2 dr

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/2

.

Moreover, let X be the Banach space

X = Cb(R; (Ḣ 1(�))2)

equipped with the norm

‖v‖X = sup
s∈R

‖∇v(s)‖L2

νκ0
.

Given v ∈ X, and β > 0 a dimensionless parameter, consider the following evolution equation in functional form:

dw
ds

+ νAw + B(w,w) = f − βνκ2
0Pσ (Jw − v), s ∈ R, (3.1)

where ν and f are the same as in (2.3). Observe that (3.1) is not an initial value problem, but an evolution equation for 
all s ∈R.

Remark 3.1. Although we consider equation (3.1) with v being a general element in the space Cb(R; (Ḣ 1(�))2), we 
emphasize that, for the specific applications we have in mind, we will restrict ourselves to the subspaces where v takes 
values in the range of an interpolant operator J , i.e., J ((Ḣ 1(�))2) in the case of a Type I interpolant, or J ((Ḣ 2(�))2)

in the case of a Type II interpolant.

The next proposition shows that, if v ∈ BX(ρ), for some ρ > 0, then, provided β is large enough depending on the 
Grashof number G, the parameter h and ρ, with h small enough depending on β and ρ, the system (3.1) is well-posed.

In the following statement and in the remaining of this paper, we denote by c a generic absolute constant, whose 
value may change from line to line.

Proposition 3.1. Let J be either a Type I or Type II interpolant operator, i.e., satisfying either (2.19) or (2.20). Let 
ρ > 0 and assume that β > 0 and h > 0 satisfy

β ≥ c∗
1

(
G2

β
+ ρ2

)
log

[
c∗

1

(
G2

β
+ ρ2

)]
(3.2)

and

βκ2
0h2 ≤ c∗

2 . (3.3)

Here, c∗
1 = c max{c2

T , c2
B} and c∗

2 = cc−2
1 in case J is a Type I interpolant satisfying (2.19), while c∗

2 =
[c(c2

2,1 + c2,2)]−1 in case J is a Type II interpolant satisfying (2.20). Then, given v ∈ BX(ρ), there exists a unique 
global solution w of (3.1) on R satisfying

w ∈ Cb(R;V ) ∩ L2
loc(R;D(A)),

dw
ds

∈ L2
loc(R;H). (3.4)

Moreover, the following bounds hold:

(i) sup
s∈R

‖∇w(s)‖2
L2 ≤ 2(νκ0)

2
(

G2

β
+ ‖v‖2

X

)
.

(ii) sup
s∈R

1

νκ2
0

s+ 1
νκ2

0∫
‖Aw(r)‖2

L2 dr ≤ 2(1 + β) 
(

G2

β
+ ‖v‖2

X

)
.

s
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Also, consider v1, v2 ∈ BX(ρ) and let w1, w2 be the solutions of (3.1) on R corresponding to v1 and v2, respectively. 
Denote w̃ = w2 − w1 and ̃v = v2 − v1. Then,

(iii) sup
s∈R

‖∇w̃(s)‖2
L2 ≤ 4(νκ0)

2‖̃v‖2
X .

(iv) sup
s∈R

1

νκ2
0

s+ 1
νκ2

0∫
s

‖Aw̃(r)‖2
L2 dr ≤ 4(2 + β)‖̃v‖2

X .

In other words, the solution w of (3.1) is unique and the map W is locally Lipschitz and continuous in the Y -topology 
with respect to the input v ∈ BX(ρ).

Proof. The existence of a global solution of (3.1) satisfying the properties in (3.4) follows by deriving the estimates 
in (i) and (ii) for the unique solution wN of the Galerkin system (3.1) on the interval [−N(νκ2

0 )−1, ∞), subject to the 
initial value wN(−N(νκ2

0 )−1) = 0, and then extracting a subsequence using the diagonal process and then passing 
to the limit, as in [33]. Since the details are given in [33], we will omit them here, and restrict ourselves to proving 
estimates (i) and (ii) formally. Moreover, the uniqueness of such solution will follow from the estimate in (iii). Also, 
we show only the case of an interpolant operator J satisfying (2.20), i.e., when J is a Type II interpolant, since the 
case when J is a Type I interpolant, satisfying (2.19), follows analogously.

Taking the inner product of (3.1) with Aw in H and applying Cauchy–Schwarz, Young’s inequality and property 
(2.20) of J , we obtain that

1

2

d

ds
‖∇w‖2

L2 + ν‖Aw‖2
L2 = −βνκ2

0 ‖∇w‖2
L2 + βνκ2

0 (v,Aw)

+ (f,Aw) − βνκ2
0 (Jw − w,Aw)

≤ −βνκ2
0‖∇w‖2

L2 + βνκ2
0 ‖∇v‖2

L2 + βνκ2
0

4
‖∇w‖2

L2 + ‖f‖2
L2

ν
+ ν

4
‖Aw‖2

L2

+ βνκ2
0

4
‖∇w‖2

L2 + (c2
2,1 + c2,2)βνκ2

0 h2‖Aw‖2
L2 . (3.5)

Using hypothesis (3.3) to estimate the last term in the right-hand side of the inequality above and rearranging the 
terms, we obtain

d

ds
‖∇w‖2

L2 + ν‖Aw‖2
L2 + βνκ2

0 ‖∇w‖2
L2 ≤ 2βνκ2

0 ‖∇v‖2
L2 + 2

‖f‖2
L2

ν
. (3.6)

Integrating with respect to s on the interval [σ, t], we have

‖∇w(t)‖2
L2 ≤ ‖∇w(σ )‖2

L2 e−βνκ2
0 (t−σ) +2ν2κ2

0

(
G2

β
+ ‖v‖2

X

)
. (3.7)

Since w ∈ Cb(R; V ), taking the limit σ → −∞ in (3.7) yields

‖∇w(t)‖2
L2 ≤ 2ν2κ2

0

(
G2

β
+ ‖v‖2

X

)
∀t ∈R, (3.8)

which proves (i). We stress again that this is a formal proof to establish the explicit bounds. In particular, the rigorous 
proof, using the Galerkin procedure, does not use the assumption that w ∈ Cb(R; V ); but it establishes these estimates 
for the solution of the Galerkin system wN(s), for s ∈ [−N(νκ − 02)−1, ∞). The limit solution W will enjoy these 
estimates for all s ∈R.

Now, ignoring the third term on the left-hand side of (3.6), integrating both sides of the resulting inequality with 
respect to s on the interval [t, t + (νκ2)−1] and using (3.8), we obtain
0
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1

νκ2
0

t+ 1
νκ2

0∫
t

‖Aw(s)‖2
L2 ds ≤ 2(1 + β)

(
G2

β
+ ‖v‖2

X

)
∀t ∈R, (3.9)

proving (ii).
In order to prove (iii) and (iv), let w1 and w2 be two solutions of (3.1) corresponding to functions v1 and v2 in X, 

respectively. Let w̃ = w2 − w1 and ̃v = v2 − v1. Then, w̃ satisfies

dw̃
ds

+ νAw̃ + B(w̃,w1) + B(w1, w̃) + B(w̃, w̃) = −βνκ2
0Pσ (J w̃ − ṽ). (3.10)

Taking the inner product of (3.10) with Aw̃ in H and applying Cauchy–Schwarz, Young’s inequality and property 
(2.20) of J , we have

1

2

d

ds
‖∇w̃‖2

L2 + ν‖Aw̃‖2
L2 ≤ −βνκ2

0‖∇w̃‖2
L2

+ 2 max {|(B(w̃,w1),Aw̃)|, |(B(w1, w̃),Aw̃)|} + βνκ2
0 (̃v,Aw̃)

− βνκ2
0 (J w̃ − w̃,Aw̃)

≤ −βνκ2
0‖∇w̃‖2

L2 + 2 max {|(B(w̃,w1),Aw̃)|, |(B(w1, w̃),Aw̃)|}

+ βνκ2
0

4
‖∇w̃‖2

L2 + βνκ2
0 ‖∇ṽ‖2

L2 + βνκ2
0

4
‖∇w̃‖2

L2 + βνκ2
0 (c2

2,1 + c2,2)h
2‖Aw̃‖2

L2

(3.11)

Notice that, due to (2.9) and (2.10), we have

max {|(B(w̃,w1),Aw̃)|, |(B(w1, w̃),Aw̃)|} ≤ cBT ‖∇w̃‖L2‖∇w1‖L2‖Aw̃‖L2

[
log

(
e

κ0

‖Aw̃‖L2

‖∇w̃‖L2

)]1/2

≤ ν

6
‖Aw̃‖2

L2 + 3

2

c2
BT

ν
‖∇w1‖2

L2‖∇w̃‖2
L2

[
1 + log

( ‖Aw̃‖2
L2

κ2
0‖∇w̃‖2

L2

)]
,

(3.12)

where c2
BT = max{c2

T , c2
B}.

Thus, using (3.12) and (3.3) in (3.11) and rearranging the terms, we obtain that

d

ds
‖∇w̃‖2

L2 + ν

2
‖Aw̃‖2

L2 +
{

βνκ2
0 + νκ2

0

2

‖Aw̃‖2
L2

κ2
0 ‖∇w̃‖2

L2

− 6c2
BT

ν
‖∇w1‖2

L2

[
1 + log

( ‖Aw̃‖2
L2

κ2
0‖∇w̃‖2

L2

)]}
‖∇w̃‖2

L2

≤ 2βνκ2
0 ‖∇ṽ‖2

L2 . (3.13)

We will now need the following elementary inequality (see [8]), namely,

min
r≥1

{r − ζ(1 + log r)} ≥ −ζ log ζ, ζ > 0. (3.14)

Since w1 satisfies (3.8) and v1 ∈ BX(ρ), we have

‖∇w1(t)‖2
L2

(νκ0)2 ≤ K(G,ρ,β) := 2

(
G2

β
+ ρ2

)
. (3.15)

Thus, from (3.14) and (3.15), we obtain

νκ2
0

2

‖Aw̃‖2
L2

κ2
0 ‖∇w̃‖2

L2

− 6c2
BT

ν
‖∇w1‖2

L2

(
1 + log

( ‖Aw̃‖2
L2

κ2
0‖∇w̃‖2

L2

))

≥ νκ2
0

2

( ‖Aw̃‖2
L2

κ2
0 ‖∇w̃‖2

L2

− 12c2
BT K

(
1 + log

( ‖Aw̃‖2
L2

κ2
0‖∇w̃‖2

L2

)))
≥ −6c2

BT νκ2
0 K log(12c2

BT K). (3.16)
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Using (3.16) in (3.13) and hypothesis (3.2), we then have

d

ds
‖∇w̃‖2

L2 + ν

2
‖Aw̃‖2

L2 + βνκ2
0

2
‖∇w̃‖2

L2 ≤ 2βνκ2
0 ‖∇ṽ‖2

L2 . (3.17)

Integrating both sides of (3.17) with respect to s on the interval [σ, t], it follows that

‖∇w̃(t)‖2
L2 ≤ ‖∇w̃(σ )‖2

L2 e− βνκ2
0

2 (t−σ) +4 sup
s∈R

‖∇ṽ(s)‖2
L2 . (3.18)

Since w1, w2 ∈ Cb(R; V ), taking the limit σ → −∞, we obtain

‖∇w̃(t)‖2
L2 ≤ 4(νκ0)

2‖̃v‖2
X ∀t ∈ R, (3.19)

which proves (iii).
Now, integrating (3.17) with respect to s on the interval [t, t + (νκ2

0 )−1], we obtain

1

νκ2
0

t+ 1
νκ2

0∫
t

‖Aw̃(s)‖2
L2 ds ≤ 4(2 + β)‖̃v‖2

X ∀t ∈ R,

proving (iv). �
Remark 3.2. Notice that condition (3.2) on β is not used for proving items (i) and (ii) of Proposition 3.1, but only for 
proving items (iii) and (iv). In particular, this means that the existence of solutions to equation (3.1) can be proved by 
only assuming condition (3.3), but for proving uniqueness of such solutions, and the local Lipschitz continuity of the 
map W with respect to the input v, one needs to assume, in addition, (3.2).

Now, the result of Proposition 3.1 allows us to give the following definition.

Definition 3.1. Consider ρ > 0, β > 0 and h > 0 satisfying conditions (3.2) and (3.3). Then, the determining map
W : BX(ρ) → Y , is given by

W(v) = w, (3.20)

where w is the unique solution of (3.1) corresponding to v ∈ BX(ρ).

Remark 3.3. Observe that if v1, v2 ∈ BX(ρ) are such that Pσ v1 = Pσ v2, then, from (3.1) and the definition of W , it 
follows that W(v1) = W(v2). Thus, for a given v ∈ BX(ρ), W is in fact determined by Pσ v.

3.2. Basic properties of the determining map W

The next theorem summarizes some of the properties of the determining map W given in Definition 3.1. These 
properties are essential for obtaining the results in Section 4.

Let J be an interpolant operator of Type I or Type II. For every interval I ⊂ R, we denote by J : C(I, (Ḣ 1(�))2) →
C(I, (L̇2(�))2), in case J is of Type I, or J : C(I, (Ḣ 2(�))2) → C(I, (L̇2(�))2), in case J is of Type II, the linear 
operator defined by

(J u)(t) = J (u(t)) ∀t ∈ I. (3.21)

Theorem 3.1. Assume the hypotheses of Proposition 3.1. Then, the mapping W : BX(ρ) → Y defined in (3.20) satisfies 
the following properties:

(i) For every v ∈ BX(ρ), W(v) ∈ BY (
√

M), with

M := M(G,ρ,β) = 2(2 + β)

(
G2

β
+ ρ2

)
.



306 A. Biswas et al. / Ann. I. H. Poincaré – AN 36 (2019) 295–326
(ii) W is a Lipschitz mapping from BX(ρ) to Y with Lipschitz constant 2(3 + β)1/2.
(iii) Let v ∈ BX(ρ) and u be a solution of (2.3) on the global attractor A (i.e., u(t) ∈ A for all t ∈ R) such that 

‖∇Ju(s) − ∇v(s)‖L2 → 0, as s → ∞. Then ‖∇[W(v) − u](s)‖L2 → 0, as s → ∞.
(iv) Let ρ > 0 and J be either a Type I or a Type II interpolant. In case J is a Type I interpolant, assume that it 

additionally satisfies (2.22), and ρ satisfies

ρ ≥ (1 + c̃1)G, (3.22)

where c̃1 is the constant from (2.22). In case J is a Type II interpolant, assume that it also satisfies (2.23) and

ρ ≥ c∗
3

[
G + (G + c−2

L )3

β1/2

]
, (3.23)

where c∗
3 = max{1 + c̃2,1, c̃2,2c2

√
c∗

2}, with c̃2,1 and c̃2,2 being the constants from (2.23), c2 the constant from 
(2.15) and c∗

2 the constant from (3.3). Under these hypotheses, if u(s) for s ∈ R is a solution of (2.3), which is a 
trajectory in the global attractor A, then

W ◦J (u) = u.

Moreover, if J ◦ W(v) = v for some v ∈ BX(ρ), then W(v) is a solution of (2.3), and it is a trajectory in the 
global attractor A.

(v) Let v1, v2 ∈ BX(ρ). Then, W(v1) = W(v2) if and only if Pσ (v1 − v2) = 0.
(vi) For every σ ∈R,

W ◦ τσ (v) = τσ ◦ W(v) ∀v ∈ BX(ρ).

Proof. We provide only the proof for a Type II interpolant operator J , since the proof for a Type I interpolant follows 
analogously.

Items (i) and (ii) follow directly from the estimates in items (i)–(iv) of Proposition 3.1. In order to prove (iii), 
let v ∈ BX(ρ) and u(s) for s ∈ R be a solution of (2.3), and it is a trajectory in the global attractor A such that 
‖∇Ju(s) − ∇v(s)‖L2 → 0, as s → ∞. Denote w = W(v), w̃ = w − u and ̃v = Ju − v. Subtracting (2.3) from (3.1), 
we obtain

dw̃
ds

+ νAw̃ + B(w̃,w) + B(w, w̃) − B(w̃, w̃) = −βνκ2
0Pσ (Jw − v)

= −βνκ2
0 w̃ − βνκ2

0 Pσ (J w̃ − w̃) − βνκ2
0 Pσ ṽ. (3.24)

Proceeding exactly as in the proof of item (iii) of Proposition 3.1, we obtain, by using conditions (3.2) and (3.3), that 
for every σ, t ∈R with σ < t ,

‖∇w̃(t)‖2
L2 ≤ ‖∇w̃(σ )‖2

L2 e− βνκ2
0

2 (t−σ) +4 sup
σ≤s≤t

‖∇ṽ(s)‖2
L2 . (3.25)

Taking the lim sup as t → ∞, we have

lim sup
t→∞

‖∇w̃(t)‖2
L2 ≤ 4 sup

σ≤s<∞
‖∇ṽ(s)‖2

L2 .

Thus, taking the limit as σ → ∞ and using that, by hypothesis, ‖∇ṽ(s)‖L2 → 0, as s → ∞, we obtain

lim
t→∞‖∇w̃(t)‖L2 = 0,

which proves (iii).
In order to prove (iv), let u(s), s ∈ R, be a solution of (2.3), which is a trajectory on the global attractor A, and 

assume that J satisfies (2.23). Thus, we have
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‖∇Ju(s)‖L2 ≤ ‖∇Ju(s) − ∇u(s)‖L2 + ‖∇u(s)‖L2

≤ (1 + c̃2,1)‖∇u(s)‖L2 + c̃2,2h‖Au(s)‖L2

≤ (1 + c̃2,1)νκ0G + c̃2,2hc2νκ2
0 (G + c−2

L )3

≤ (1 + c̃2,1)νκ0G + c̃2,2c2

√
c∗

2
νκ0

β1/2 (G + c−2
L )3, (3.26)

where in the last inequality we used hypothesis (3.3) and (2.15). Thus,

sup
s∈R

‖∇Ju(s)‖L2

νκ0
≤ max{1 + c̃2,1, c̃2,2c2

√
c∗

2}
[
G + (G + c−2

L )3

β1/2

]
.

Hence, if ρ ≥ c∗
3[G + β−1/2(G + c−2

L )3], with c∗
3 = max{1 + c̃2,1, c̃2,2c2

√
c∗

2}, then ‖Ju‖X ≤ ρ, i.e., Ju ∈ BX(ρ). 
From (3.25), it then follows that

‖∇[W ◦J (u) − u](t)‖2
L2 ≤ ‖∇[W ◦J (u) − u](σ )‖2

L2 e− βνκ2
0

2 (t−σ)

Thus, taking the limit as σ → −∞, it follows that W ◦J (u) = u.
Moreover, if J ◦ W(v) = v for some v ∈ BX(ρ), then, denoting w = W(v), we have Jw(t) − v(t) = 0, for all 

t ∈ R. Thus, we see from (3.1) that w(t) for all t ∈ R, is a solution of (2.3) which is uniformly bounded with respect 
to the norm in V . Thus, w(t) ∈ A, for all t ∈ R (see the characterization of A in section 2.1).

In order to prove (v), let v1, v2 ∈ BX(ρ) and denote w1 = W(v1), w2 = W(v2) and w̃ = w2 − w1. Then, it follows 
from (3.1) that

βνκ2
0 Pσ ṽ = dw̃

ds
+ νAw̃ + B(w̃,w2) + B(w1, w̃) + βνκ2

0 Pσ J w̃. (3.27)

If W(v1) = W(v2), i.e., w̃ ≡ 0, then it follows from (3.27) and the linearity of J that Pσ ṽ(s) = 0, for a.e. s ∈ R. 
But since v1, v2 ∈ Cb(R; J (Ḣ 1(�))2) then, in fact, Pσ ṽ(s) = 0, for every s ∈ R.

On the other hand, if Pσ ṽ = 0, then it follows from the uniqueness of solutions to (3.1) that w̃ = 0, since w̃ = 0 is 
a solution of (3.1). This finishes the proof of (v).

In order to prove (vi), notice that, given v ∈ BX(ρ), τσ ◦ W(v) is a solution of (3.1) corresponding to τσ v. By the 
uniqueness of solutions to (3.1), it follows that τσ ◦ W(v) = W ◦ τσ (v). This proves (vi). �
3.3. Fréchet differentiability of the determining map W

In this subsection, we show the Fréchet differentiability property of the determining map W given in Definition 3.1, 
and explicitly identify its derivative. Although this property is not used in the results of section 4, we present it here 
due to its own importance.

First, we state a result on well-posedness of an auxiliary, linear evolution equation, whose solutions are directly 
related to the Fréchet derivative of W . Its proof is similar to the proof of well-posedness of (3.1) (see Proposition 3.1), 
so we omit its details.

Proposition 3.2. Assume the hypotheses of Proposition 3.1. Let v ∈ X and w ∈ Cb(R; V ) satisfying the bound (3.8). 
Consider the following evolution equation on R, which is the linearization of (3.1) around w:

dw∗

ds
+ νAw∗ + B(w,w∗) + B(w∗,w) = −βνκ2

0 Pσ (Jw∗ − v), (3.28)

with ν > 0 the same as in (2.3). Then, equation (3.28) has a unique, bounded solution w∗ on R satisfying

w∗ ∈ Cb(R;V ) ∩ L2
b(R;D(A)),

dw∗

ds
∈ L2

loc(R;H). (3.29)

Moreover, ‖w∗‖Y ≤ 2(3 + β)1/2‖v‖X .
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From the result of Proposition 3.2, we conclude that, given ρ > 0, β > 0 and h > 0, satisfying conditions (3.2) and 
(3.3), we can define a mapping D : BX(ρ) × X → Y given by

D(v,v) = w∗, (3.30)

where w∗ is the unique, bounded solution of (3.28), satisfying (3.29), and which corresponds to w = W(v), with 
v ∈ BX(ρ), and v ∈ X. Indeed, by item (i) of Proposition 3.1, it follows that w = W(v) ∈ Cb(R; V ) and it satisfies the 
bound (3.8). Moreover, the mapping D(v, ·) : X → Y defines a bounded linear operator from X to Y , with operator 
norm bounded by 2(3 + β)1/2.

It turns out that, for a fixed v ∈ BX(ρ), the bounded linear operator D(v, ·) : X → Y is precisely the Fréchet 
derivative of W at v, as shown in the next theorem.

Theorem 3.2. Assume the hypotheses of Proposition 3.1. Then, the mapping W : BX(ρ) → Y is Fréchet differentiable 
and its Fréchet derivative at v ∈ BX(ρ), denoted by DW(v) : X → Y , is given by

DW(v)(v) =D(v,v) ∀v ∈ X, (3.31)

with D(v, v) as defined in (3.30).

Proof. Assume J is an interpolant operator satisfying (2.20). The proof of the case when J satisfies (2.19) follows 
analogously.

Let v, ̃v ∈ BX(ρ) and denote w = W(v), w̃ = W(̃v), w = w̃ − w and v = ṽ − v.
In order to prove (3.31), we need to show that

‖w −D(v,v)‖Y = o(‖v‖X). (3.32)

Notice that w satisfies

dw
ds

+ νAw + B(w,w) + B(w,w) + B(w,w) = −βνκ2
0Pσ (Jw − v). (3.33)

Denote w∗ =D(v, v). Subtracting (3.28) from (3.33), we obtain that

d

ds
(w − w∗) + νA(w − w∗) + B(w,w − w∗) + B(w − w∗,w) + B(w,w)

= −βνκ2
0 (w − w∗) − βνκ2

0 Pσ [J (w − w∗) − (w − w∗)]. (3.34)

Taking the inner product in H of (3.34) with A(w − w∗) and applying Cauchy–Schwarz, Young’s inequality and 
property (2.23) of J , we obtain that

1

2

d

ds
‖∇w − ∇w∗‖2

L2 + ν‖A(w − w∗)‖2
L2

≤ 2 max
{|(B(w,w − w∗),A(w − w∗))|, |(B(w − w∗,w),A(w − w∗))|}

+ ν

8
‖A(w − w∗)‖2

L2 + 2

ν
‖B(w,w)‖2

L2 − βνκ2
0

2
‖∇w − ∇w∗‖2

L2

+ βνκ2
0

(
c2

2,1

2
+ c2,2

)
h2‖A(w − w∗)‖2

L2 (3.35)

Now, proceeding analogously as in (3.12)–(3.17) and using conditions (3.2) and (3.3) on β and h, it follows that

d

ds
‖∇w − ∇w∗‖2

L2 + ν

2
‖A(w − w)‖2

L2 + βνκ2
0

2
‖∇w − ∇w∗‖2

L2 ≤ 4

ν
‖B(w,w)‖2

L2 . (3.36)

From (2.8) and Poincaré inequality (2.4), we have

‖B(w,w)‖2
L2 ≤ c4

L ‖∇w‖3
L2‖Aw‖L2 . (3.37)
κ0
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Thus, integrating (3.36) on the interval [σ, s] and using (3.37), yields

‖∇(w − w∗)(s)‖2
L2 ≤ e− βνκ2

0
2 (s−σ) ‖∇(w − w∗)(σ )‖2

L2 + 4c4
L

νκ0

s∫
σ

e− βνκ2
0

2 (s−τ) ‖∇w(τ )‖3
L2‖Aw(τ )‖L2 dτ. (3.38)

Now, we choose σ = s − n

νκ2
0

, for some n ∈N. Notice that

s∫
σ

‖Aw(τ )‖L2 e− βνκ2
0

2 (s−τ) dτ =
n∑

j=1

s− (j−1)

νκ2
0∫

s− j

νκ2
0

‖Aw(τ )‖L2 e− βνκ2
0

2 (s−τ) dτ

≤
n∑

j=1

⎛⎜⎜⎜⎜⎝
s− (j−1)

νκ2
0∫

s− j

νκ2
0

‖Aw(τ )‖2
L2

⎞⎟⎟⎟⎟⎠
1/2(

e−β(j−1) − e−βj

βνκ2
0

)1/2

≤ sup
t∈R

⎛⎜⎜⎜⎝ 1

νκ2
0

t+ 1
νκ2

0∫
t

‖Aw(τ )‖2
L2 dτ

⎞⎟⎟⎟⎠
1/2

(1 − e−β)1/2

β1/2

n∑
j=1

e− β(j−1)
2

≤ ‖w‖Y Cβ(1 − e
−βn

2 ), (3.39)

where Cβ = (1 − e−β)1/2[β1/2(1 − e−β/2)]−1.
Hence, from (3.38) and (3.39), we obtain that

‖∇(w − w∗)(s)‖2
L2 ≤ e− βνκ2

0
2 (s−σ) ‖∇(w − w∗)(σ )‖2

L2

+ 4c4
L(νκ0)

2 sup
t∈R

‖∇w(τ )‖3
L2

(νκ0)3

s∫
σ

‖Aw(τ )‖L2 e− βνκ2
0

2 (s−τ) dτ

≤ e− βνκ2
0

2 (s−σ) ‖∇(w − w∗)(σ )‖2
L2 + 4c4

LCβ(νκ0)
2‖w‖4

Y (1 − e− βn
2 ). (3.40)

Then, taking the limit as σ → −∞ (i.e., n → ∞) and using that w, w∗ ∈ Cb(R; V ), it follows that

sup
s∈R

‖∇(w − w∗)(s)‖2
L2

(νκ0)2 ≤ 4c4
LCβ‖w‖4

Y ≤ cc4
LCβ(3 + β)2‖v‖4

X, (3.41)

where, in the last inequality, we used item (ii) of Theorem 3.1.
Now, integrating (3.36) on the interval [s, s + (νκ2

0 )−1] and using (3.37) and (3.41), yields

1

νκ2
0

s+ 1
νκ2

0∫
s

‖A(w − w∗)(τ )‖2
L2 dτ ≤ cc4

LCβ(3 + β)2‖v‖4
X + cc4

L

(
sup
τ∈R

‖∇w(τ )‖3
L2

(νκ0)3

) s+ 1
νκ2

0∫
s

‖Aw(τ )‖L2 dτ

≤ cc4
LCβ(3 + β)2‖v‖4

X + cc4
L‖w‖3

Y

⎛⎜⎜⎜⎝ 1

νκ2
0

s+ 1
νκ2

0∫
s

‖Aw(τ )‖2
L2 dτ

⎞⎟⎟⎟⎠
1/2

≤ cc4
L(1 + Cβ)(3 + β)2‖v‖4

X. (3.42)
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Hence, from (3.41) and (3.42), we conclude that

‖w − w∗‖Y ≤ C̃β‖v‖2
X,

where C̃β = [cc4
L(1 + 2Cβ)(3 + β)2]1/2. This proves (3.32) and concludes the proof of the theorem. �

3.4. The map W+

We now restrict our attention to functions defined on R+ = [0, ∞) and introduce an analogous framework to the 
one developed in Subsection 3.1. Thus, we consider the Banach spaces

Y+ = Cb(R+;V ) ∩ L2
b(R+;D(A))

and

X+ = Cb(R+; (Ḣ 1(�))2)

endowed with the norms

‖u‖Y+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩sup
s≥0

‖∇u(s)‖2
L2

(νκ0)2 + sup
s≥0

1

νκ2
0

s+ 1
νκ2

0∫
s

‖Au(r)‖2
L2 dr

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/2

and

‖v‖X+ = sup
s≥0

‖∇v(s)‖L2

νκ0
,

respectively.
Now, given v ∈ X+, we consider the following initial-value problem:

dw
ds

+ νAw + B(w,w) = f − βνκ2
0Pσ (Jw − v), s ∈ R+, (3.43)

w(0) = 0, (3.44)

where ν and f are the same as in (2.3).
Similarly as in Proposition 3.1, one can show that system (3.43)–(3.44) is well-posed. In fact, all the results given 

in Proposition 3.1 are still valid after replacing R by R+ and X by X+.
Therefore, given ρ > 0, β > 0 and h > 0 satisfying conditions (3.2) and (3.3), we can define a mapping W+ :

BX+(ρ) → Y+ given by

W+(v) = w, (3.45)

where w is the unique solution of (3.43)–(3.44) corresponding to v ∈ BX+(ρ).
Moreover, we have the following analogous version of Theorem 3.1 for W+:

Theorem 3.3. Assume the hypotheses of Proposition 3.1, with X and Y replaced by X+ and Y+ respectively. Then, 
the mapping W+ : BX+(ρ) → Y+ defined in (3.45) satisfies the following properties:

(i) For every v ∈ BX+(ρ), W+(v) ∈ BY+(
√

M), with

M = M(G,ρ) = 2(2 + β)

(
G2

β
+ ρ2

)
.

(ii) W+ is a Lipschitz mapping from BX+(ρ) to Y+ with Lipschitz constant 2(3 + β)1/2.
(iii) Let v ∈ BX+(ρ) and u be a solution of (2.3) with u(0) = u0 ∈ V , and assume that ‖∇Ju(s) −∇v(s)‖L2 → 0, as 

s → ∞. Then ‖∇[W+(v) − u](s)‖L2 → 0, as s → ∞, uniformly with respect to u0 in any bounded set in V .
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(iv) Let u be a solution of (2.3) with u(0) = u0 ∈ V . Then, ‖∇[W+(Ju) − u](s)‖L2 → 0 exponentially, as s → ∞.
(v) Let v1, v2 ∈ BX+(ρ). Then, W+(v1) = W+(v2) if and only if Pσ (v1 − v2) = 0.

(vi) For every σ ≥ 0,

W+ ◦ τσ (v) = τσ ◦ W+(v) ∀v ∈ BX+(ρ).

The proof of items (i)–(iii) and (v)–(vi) is similar to the proof of Theorem 3.1. The proof of item (iv) follows from 
(3.25), by noting that ṽ(s) = 0, for all s ∈R+.

Remark 3.4. Notice that, a priori, there is no relation between the maps W and W+ defined on the spaces X and X+, 
except the fact that they are defined following a similar approach. The construction of the map W on X given here 
is inspired by [33], while the construction of W+ on X+ uses well-established tools from [8]. However, in principle, 
they are not much different, except that for W , one has to deal with an evolution equation on all of R, and thus without 
an initial value.

4. Study of statistical solutions

In this section, we use the determining maps W and W+ introduced in section 3 to obtain results concerning 
statistical solutions of the Navier–Stokes equations. In subsections 4.1–4.3, we recall the preliminary material needed, 
while Subsections 4.4 and 4.5 contain the main results.

4.1. Preliminaries on measure theory

Let (M1, �1) and (M2, �2) be measure spaces and T : M1 →M2 be a measurable map. Then, given a measure 
μ on M1, the push-forward measure of μ by T , denoted T μ, is defined as

T μ(E) = μ(T −1E) ∀E ∈ �2. (4.1)

Moreover, given a measure space (M, �) and a measure μ on M, for every M̃⊂ M with M̃ ∈ �, we denote by 
μ|M̃ the restriction of μ to (M̃, ̃�), where

�̃ = {E ∩ M̃ : E ∈ �}. (4.2)

When M is a topological space, we denote by P(M) the space of Borel probability measures on M, i.e., the space 
of measures μ defined on the sigma-algebra � of Borel subsets of M and satisfying μ(M) = 1.

We say that a measure μ ∈P(M) is carried by E ∈ � if μ(E) = 1.
A measure μ ∈P(M) is said to be tight if for every E ∈ �,

μ(E) = sup{μ(K) : K is a compact subset of M and K ⊂ E}.
Moreover, in case M is a metric space with a metric d , we denote by P1(M, d) the subset of all measures 

μ ∈P(M) satisfying∫
M

d(x, y)dμ(x) < ∞ ∀y ∈M.

Notably, if μ ∈P(M) is carried by a bounded subset of (M, d), then, clearly, μ ∈P1(M, d).
Let Lip(M, d) denote the space of real-valued Lipschitz continuous functions on a metric space (M, d), endowed 

with the seminorm

‖ϕ‖Lip := sup
x,y∈M,x �=y

|ϕ(x) − ϕ(y)|
d(x, y)

.

We recall the definition of the Kantorovich metric in P1(M, d) (see, e.g., [24]), given by
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γM(μ,η) = sup

⎧⎨⎩
∣∣∣∣∣∣
∫
M

ϕ(x)dμ(x) −
∫
M

ϕ(x)dη(x)

∣∣∣∣∣∣ : ϕ ∈ Lip(M, d), ‖ϕ‖Lip ≤ 1

⎫⎬⎭ ∀μ,η ∈P1(M, d).

(4.3)

In the sequel, we denote by γH the Kantorovich metric on P1(H, dH ), where dH is the metric induced by 
the norm ‖ · ‖L2 , i.e., dH (u, v) = ‖u − v‖L2 for all u, v ∈ H . Also, we denote by �H the Kantorovich metric on 
P1(Cloc(R+, H), d+

0 ), where d+
0 is a suitable metric on Cloc(R+, H) defined in subsection 4.2, below.

4.2. Metrics on spaces of continuous functions

For a given Banach space Z, a useful topology on the space of continuous functions C(I, Z) is the topology of 
uniform convergence on compact subsets (see, e.g., [58]), which is defined as the topology generated by the sub-base 
of neighborhoods of the form

N (K,O) = {u ∈ C(I,Z) : u(t) ∈ O ∀t ∈ K},
where K ⊂ I is a compact subset and O ⊂ Z is an open neighborhood of the origin. Notably, a sequence {un}n∈N in 
C(I, Z) converges to u ∈ C(I, Z) with respect to this topology if, and only if, for every compact subset K ⊂ I ,

sup
t∈K

‖un(t) − u(t)‖Z → 0 as n → ∞,

where ‖ ·‖Z denotes the norm in Z. From now on, we use the notation Cloc(I, Z) to denote the space C(I, Z) endowed 
with the topology of uniform convergence on compact subsets.

Consider the spaces Cloc(I, (L̇2(�))2) and Cloc(I, (Ḣ 1(�))2) of continuous functions on an interval I ⊂ R with 
values in (L̇2(�))2 and (Ḣ 1(�))2, respectively, endowed with the corresponding topology of uniform convergence on 
compact subsets, as defined above. The fact that (L̇2(�))2 and (Ḣ 1(�))2 are, in particular, metric spaces implies that 
Cloc(I, (L̇2(�))2) and Cloc(I, (Ḣ 1(�))2) are metrizable. Indeed, let {Kn}n≥1 be a sequence of compact subintervals 
of I such that I =⋃n≥1 Kn. Then, a compatible metric with the topology of Cloc(I, (L̇2(�))2) is given by

dI
0 (u,v) =

∑
n≥1

1

2n

supt∈Kn
‖u(t) − v(t)‖L2

ν + supt∈Kn
‖u(t) − v(t)‖L2

∀u,v ∈ Cloc(I, (L̇
2(�))2), (4.4)

while a compatible metric with the topology of Cloc(I, (Ḣ 1(�))2) is given by

dI
1 (u,v) =

∑
n≥1

1

2n

supt∈Kn
‖∇u(t) − ∇v(t)‖L2

νκ0 + supt∈Kn
‖∇u(t) − ∇v(t)‖L2

∀u,v ∈ Cloc(I, (Ḣ
1(�))2). (4.5)

In particular, when I =R, we consider Kn = [−n(νκ2
0 )−1, n(νκ2

0 )−1] for all n ≥ 1; and when I =R+, we consider 

K+
n = [0, n(νκ2

0 )−1] for all n ≥ 1. Moreover, in order to simplify the notation, we denote d0 = dR

0 , d+
0 = d

R+
0 , d1 = dR

1

and d+
1 = d

R+
1 .

4.3. Statistical solutions

Statistical solutions of an evolution equation are given as probability measures which represent the evolution in time 
of probability distributions of the model state variables according to the underlying dynamics. They are particularly 
useful in the study of a physical system for which there is uncertainty with respect to the initial condition, and one 
would like to determine how this uncertainty is going to evolve in time.

Such statistical solutions can be of two types: first, the phase space statistical solutions, i.e., a family of probability 
measures {μt }t∈I defined on the phase space and indexed by the time variable t , representing the evolution in time 
of probability distributions of the state variables in the phase space; and secondly, the trajectory statistical solutions, 
i.e., a single space-time probability measure μ defined on the space of trajectories, whose support is contained in the 
set of all possible individual solutions of the evolution equation.
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These concepts proved to be the natural rigorous mathematical framework for investigating the statistical properties 
of 3D turbulent flows as demonstrated in the pioneering works of Foias and Prodi in [30,31], concerning phase-space 
statistical solutions, and later by Vishik and Fursikov in [71,72], concerning trajectory statistical solutions. More 
recently, in [40,41], inspired by the definition of a trajectory statistical solution given in [71,72], the authors provide a 
slightly different definition, still in the context of the 3D NSE, which allows for a connection with the definition of a 
phase-space statistical solution given in [30,31]. An extension of this more recent definition to an abstract framework 
that can be applied to a large class of evolution equations was given in [15].

When the evolution equation is well-posed, as is the case of the 2D NSE, then, given an initial probability measure 
μ0 defined on the associated phase space, obtaining its evolution in time is rather simple. Indeed, using the notation 
related to the 2D NSE from subsection 2.1, for the first type of statistical solution, one considers the family of measures 
given as the push-forward measures of μ0 by the solution semigroup S(t), t ≥ 0, i.e., {S(t)μ0}t≥0. Moreover, for the 
second type of statistical solution, let S be the solution operator associated to (2.3), i.e.

S : H → C(R+,H)

u0 �→ u(t) for all t ∈R+,

where u(t) for t ∈ R+ is the unique solution of (2.3) satisfying (2.11) with u(0) = u0. From the well-known stability 
estimates, i.e., Lipschitz continuous dependence on the initial data, for the 2D NSE [19,66,68], it follows that S is a 
continuous, and therefore Borel measurable, map from H to Cloc(R+, H). Then, the push-forward of μ0 by S , i.e., 
Sμ0, is a measure defined on the space of trajectories which is carried by the set of solutions of (2.3).

Now, we provide the definitions of statistical solutions on the space of trajectories and on the phase space for the 
2D NSE, on any time interval I ⊂R. First, for every interval I ⊂R, let us denote

TI = {u ∈ Cloc(I ;H) : u is a solution of (2.3) on I }. (4.6)

In the next proposition, we show that TI is a measurable subset of Cloc(I, H).

Proposition 4.1. For every interval I ⊂R, TI is a Borel subset of Cloc(I, H).

Proof. Let {un} ⊂ TI such that un → u in Cloc(I ; H). Obviously, I = ⋃
j∈N[aj , bj ] such that aj+1 ≤ aj and 

bj+1 ≥ bj for all j ∈ N. Since un(aj ) → u(aj ) in H as n → ∞, it follows from the continuous dependence on 
initial data of the solution (cf. [19]) that

sup
t∈Kj

‖S(t − aj )un(aj ) − S(t − aj )u(aj )‖L2 → 0 as n → ∞.

Since S(t − aj )un(aj ) = un(t), it follows that u(t) = S(t − aj )u(aj ), which is a solution on [aj , bj ]. Thus, u(t) is 
a solution on every [aj , bj ], and therefore on I . Consequently, u(t) ∈ TI . Therefore, TI is closed, and thus a Borel 
subset of Cloc(I, H). �
Definition 4.1. Given an interval I ⊂ R, we say that a Borel probability measure μ on Cloc(I, H) is a trajectory 
statistical solution of the 2D Navier–Stokes equations (2.3) over I if μ is carried by TI .

Remark 4.1. The abstract definition of a trajectory statistical solution given in [15] requires μ to be a tight measure 
as well. However, since every finite Borel measure on a Polish space (i.e., a separable and completely metrizable 
topological space) is tight ([1, Theorem 12.7]), and Cloc(I ; H) is a Polish space (see, e.g., [1, Lemma 3.99]), then 
the tightness condition on μ in our case is automatically satisfied. Moreover, the definition in [15] only requires μ
to be carried by a Borel set containing the set of solutions, i.e., TI in our case. This is done in order to allow for the 
application to evolution equations for which one cannot determine if its corresponding set of solutions is a Borel set. 
But since, as shown in Proposition 4.1, TI is a Borel set, we can define μ as being carried by TI directly.

Before providing the definition of statistical solutions on phase space, we need to recall the definition of a special 
class of test functions, called cylindrical test functions (see, e.g., [36,41]). These are functions � : V ′ →R of the form

�(u) = φ(〈u,v1〉V ′,V , . . . , 〈u,vk〉V ′,V ) ∀u ∈ V ′,
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where φ is a continuously differentiable real-valued function on Rk with compact support and v1, . . . , vk ∈ V . We 
denote by �′ : V ′ → V its Fréchet derivative, given by

�′(u) =
k∑

j=1

∂jφ(〈u,v1〉V ′,V , . . . , 〈u,vk〉V ′,V )vj ∀u ∈ V ′,

where ∂jφ denotes the derivative of φ with respect to its j -th coordinate.

Definition 4.2. Given an interval I ⊂R, we say that a family {μt }t∈I of Borel probability measures on H is a phase-
space statistical solution of the 2D Navier–Stokes equations (2.3) over I if

(i) The function

t �→
∫
H

ϕ(u)dμt(u)

is continuous on I , for every ϕ ∈ Cb(H);
(ii) For almost every t ∈ I , the measure μt is carried by V and the function

u �→ 〈f − νAu − B(u,u),v〉V ′,V

is μt -integrable, for every v ∈ V . Moreover, the map

t �→
∫
H

〈f − νAu − B(u,u),v〉V ′,V dμt(u)

belongs to L1
loc(I ), for every v ∈ V .

(iii) For any cylindrical test function � in V ′, it holds∫
H

�(u)dμt(u) =
∫
H

�(u)dμt ′(u) +
t∫

t ′

∫
H

〈f − νAu − B(u,u),v〉V ′,V dμs(u)ds, (4.7)

for all t, t ′ ∈ I with t ′ < t .

In [15], it is shown that, given a trajectory statistical solution μ on I ⊂R, in the sense of Definition 4.1, the family 
of measures obtained as its projections in time, i.e., {Etμ}t∈I , is a phase-space statistical solution on I , in the sense of 
Definition 4.2.

Notice that, given u ∈ TI , the Dirac measure concentrated on u, denoted δu, is clearly a trajectory statistical solution 
on I . Thus, the family of measures {Et δu}t∈I = {δu(t)}t∈I is a phase-space statistical solution on I . In fact, the same 
holds for any convex combination of Dirac measures δu1, . . . , δuk

, with u1, . . . , uk ∈ TI and k ∈ N. The following 
proposition elucidates the connection between phase space statistical solutions and trajectory statistical solutions for 
the 2D NSE.

Proposition 4.2. Let μ0 be a Borel probability measure on H with∫
H

‖u‖2
L2dμ0(u) < ∞.

Then the family of measures {μt = EtSμ0 = S(t)μ0}t≥0 is the unique phase space statistical solution with the initial 
measure given by μ0 and moreover, μ = Sμ0 is the unique trajectory statistical solution satisfying E0μ = μ0.

Proof. The fact that the family of measures {EtSμ0}t≥0 = {S(t)μ0}t≥0 is a phase-space statistical solution on [0, ∞)

corresponding to the initial measure μ0 follows from the definition of a phase space statistical solution and that of the 
push forward measure S(t)μ0, while the uniqueness follows from [36, Theorem V.1.4].
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For the second part of the statement, clearly, μ = Sμ0 is a trajectory statistical solution on Cloc(R+, H) satisfying 
the initial condition E0μ = μ0. To show uniqueness, if ρ is any trajectory statistical solution on Cloc(R+, H) satisfying 
E0ρ = μ0, then, for every Borel subset E of Cloc(R+, H), using the fact that S ◦ E0 is the identity map on TI , where 
I =R+, we have

ρ(E) = ρ(E ∩TI ) = ρ((S ◦ E0)
−1(E ∩TI )) = E0ρ(S−1(E ∩TI ))

= μ0(S−1(E ∩TI )) = μ0(S−1(E)) = Sμ0(E). � (4.8)

4.4. Ensemble downscaling data assimilation

In this subsection, our goal is to show that if μ is a trajectory statistical solution on R+, then the translations 
(or evaluations) in time of the measure (W+ ◦ J )μ, with J as defined in (3.21), converge to the translations (or 
evaluations) in time of μ asymptotically in time, in a suitable sense. In practice, Jμ is a measure constructed through 
uncertainties associated with measurements of the model state variables and the purpose of W+ is to downscale Jμ, 
and hence reduce these uncertainties by decreasing the error due to the coarse spatial resolution of the measurements.

Let us consider the following set of trajectories, for every interval I ⊂R:

TI
b = {u ∈ TI : ‖∇u(t)‖L2 ≤ √

2νκ0G, ‖Au(t)‖L2 ≤ c2νκ2
0 (G + c−2

L )3 ∀t ∈ I }, (4.9)

where c2 is the constant from (2.15). Notice that T+
b = T

R+
b is a nonempty set, since the global attractor A is nonempty, 

and for every trajectory u(t), t ∈ R in the global attractor, its restriction to I belongs to T+
b , due to the estimates (2.14)

and (2.15).
As shown in Proposition 4.1, TI

b is closed, and therefore a Borel subset, of Cloc(I ; H). Additionally, as we show in 
the proposition below, it is a compact subset of Cloc(I ; V ), and therefore it is a compact subset of Cloc(I ; H) as well.

Lemma 4.1. For every interval I ⊂R, TI
b is a compact subset of Cloc(I ; V ).

Proof. First, note that the inclusion TI
b ⊂ Cloc(I ; V ) follows from the bounds in (4.9), the fact that TI

b ⊂ Cloc(I ; H)

and the interpolation inequality

‖∇(u(t1) − u(t2))‖L2 ≤ ‖u(t1) − u(t2)‖1/2
L2 |Au(t1) − Au(t2)|1/2

L2 , ∀t1, t2 ∈ I.

Since Cloc(I ; V ) is metrizable, it suffices to show that TI
b is sequentially compact. Note first that due to (2.5), for 

all u ∈ TI
b , we have

|B(u,u)| ≤ ‖u‖1/2
L2 ‖∇u‖L2‖Au‖1/2

L2 .

From the definition of TI
b in (4.9) and (2.3), it now follows that

sup
u∈TI

b

(
sup
t∈I

∥∥∥∥ d

dt
u(t)

∥∥∥∥
L2

)
< ∞. (4.10)

Let {un}n∈N be a sequence in TI
b. Due to (4.10) and the compact embedding of V in H , we can invoke an Arzela–

Ascoli type theorem and a diagonal process, to extract a subsequence unk
−→ u in Cloc(I ; H) as k → ∞. Moreover, 

due to the uniform bounds on ‖Aunk
(t)‖L2 and ‖∇unk

(t)‖L2 given in (4.9), and since unk
−→ u in Cloc(I ; H) as 

k → ∞, one can easily show that ‖Au(t)‖L2 and ‖∇u(t)‖L2 satisfy the same bounds given in (4.9). Thus, u ∈ TI
b and 

we conclude that TI
b is compact in Cloc(I, H).

Let now K ⊂ I be a compact subinterval. By interpolation, we have

‖∇unk
(t) − ∇u(t)‖L2 ≤ c‖unk

(t) − u(t)‖1/2
L2 ‖Aunk

(t) − Au(t)‖1/2
L2 ∀t ∈ K.

Thus,

sup
t∈K

‖∇unk
(t) − ∇u(t)‖L2 ≤ c(2c2νκ2

0 (G + c−2
L )3)1/2 sup

t∈K

‖unk
(t) − u(t)‖1/2

L2 .

Since unk
→ u in Cloc(I ; H), the right-hand side of the above inequality vanishes as k → ∞, and we obtain that 

unk
→ u in Cloc(I ; V ). Therefore, TI is compact in Cloc(I ; V ). �
b
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Here, we consider trajectory statistical solutions on R+ that are carried by T+
b . This assumption of being carried 

by T+
b is needed in order to make sense of the measure (W+ ◦J )μ, with J corresponding to an interpolant operator 

J which is either a Type I interpolant operator satisfying (2.22) or a Type II interpolant operator satisfying (2.23). 
More specifically, the requirement that trajectories in T+

b are uniformly bounded in time with respect to the norm in 
V is needed when J is as in the former case; while the requirement that the trajectories are uniformly bounded in time 
with respect to the norm in D(A) is needed in addition when J is as in the latter case. This is clearly seen from the 
definitions of the map W+ and the types of interpolant operator J .

Notice that, for every solution u ∈TR+ , there exists t0 = t0(ν, κ0, G, ‖∇u(0)‖L2) such that

‖∇u(t)‖L2 ≤ √
2νκ0G ∀t ≥ t0, (4.11)

and

‖Au(t)‖L2 ≤ c2νκ2
0 (G + c−2

L )3 ∀t ≥ t0. (4.12)

Therefore, τt0u ∈ T
+
b . The bound in (4.11) is easily seen by taking the inner product of (2.3) in H with Au and 

performing the usual estimates, while the bound in (4.12) follows analogously to the proof of (2.15) in [34].
Therefore, if we consider an initial measure μ0 which is carried by BV (R), for some R > 0, then by (4.11), 

(4.12), the trajectory statistical solution on R+ starting from μ0, i.e., μ = Sμ0, satisfies τt0μ(T+
b ) = 1, for some 

t0 = t0(ν, κ0, G, R). Indeed,

τt0μ(T+
b ) = μ(τ−1

t0
T

+
b ) = Sμ0(τ

−1
t0

T
+
b ) = μ0(S−1 ◦ τ−1

t0
(T+

b )) ≥ μ0(BV (R)) = 1.

Therefore, τt0μ is a trajectory statistical solution on [0, ∞) which is carried by T+
b .

Another fact that we need to verify in order to make sense of the measure (W+ ◦J )μ and, in addition, its transla-
tions or evaluations in time, is the measurability of the mappings W+, J , τσ and Et , with σ, t ≥ 0. More specifically, 
this needs to be proved by considering the corresponding domain and range spaces endowed with the topology of 
uniform convergence on compact sets (see subsection 2.2), since this is the natural topology to be considered in the 
context of statistical solutions. This is done in Lemma 4.2 below. For this, we assume throughout this section that 
J is either a Type I interpolant operator satisfying (2.19) and (2.22) or a Type II interpolant satisfying the stronger 
condition (2.21), as well as (2.23). The stronger condition (2.21) is needed for establishing continuity of W+, and 
consequently its measurability, between appropriate spaces.

From now on, for every interval I ⊂ R, we denote by TI
b,locH

the space TI
b endowed with the topology inherited 

from Cloc(I ; H), and by TI
b,locV

when TI is endowed with the topology inherited from Cloc(I ; V ). Moreover, we de-
note by BX(ρ)locH

and BX+(ρ)locH
the balls BX(ρ) and BX+(ρ) endowed with the induced topology from Cloc(R, H)

and Cloc(R+, H), respectively.

Lemma 4.2. The following hold:

(i) For every t ≥ 0 and I ⊂R, Et : Cloc(I, H) → H is a continuous function.
(ii) For every σ ≥ 0, τσ : Cloc(R+; H) → Cloc(R+; H) is a continuous function.

(iii) Let J be an interpolant operator satisfying either (2.19) or (2.21). Also, consider ρ > 0, β > 0 and h > 0
satisfying conditions (3.2) and (3.3). Then,

W : BX(ρ)locH
→ Cloc(R;V )

and

W+ : BX+(ρ)locH
→ Cloc(R+;V )

are continuous functions. Moreover, W+ is a Lipschitz function with respect to the metrics d+
0 in BX+(ρ)locH

and d+
1 in Cloc(R+; V ).

(iv) Let J be an interpolant operator satisfying either (2.19) or (2.21). Then, the mapping J : TI
b,locH

→
Cloc(I ; (L̇2(�))2), defined as in (3.21), is continuous.
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Proof. The proofs of (i) and (ii) follow directly from the definition of the topology in Cloc(R+; H) and the definitions 
of the mappings Et and τσ .

Now let us prove (iii). Let v1, v2 ∈ BX(ρ) and consider ε > 0 and K = [a, b] ⊂ R, a compact interval. Denote 
ṽ = v2 − v1 and w̃ = W(v2) − W(v1), and proceed as in the proof of item (iii) of Proposition 3.1. Then, estimating 
the third term on the right-hand side of the first inequality in (3.11) as

βνκ2
0 |(̃v,Aw̃)| ≤ 2β2νκ4

0 ‖̃v‖2
L2 + ν

8
‖Aw̃‖2

L2,

and proceeding analogously as in (3.11)–(3.18), one obtains that, for every t, σ ∈R with σ < t ,

‖∇w̃(t)‖2
L2 ≤ ‖∇w̃(σ )‖2

L2 e− βνκ2
0

2 (t−σ) +8βκ2
0 sup

s∈[σ,t]
‖̃v(s)‖2

L2

≤ 2(νκ0)
2
(

G2

β
+ ρ2

)
e− βνκ2

0
2 (t−σ) +8βκ2

0 sup
s∈[σ,b]

‖̃v(s)‖2
L2 , (4.13)

where in the last inequality we used item (i) of Proposition 3.1. In particular, let us choose t ∈ K = [a, b] and σ < a, 
with sufficiently large absolute value such that

2(νκ0)
2
(

G2

β
+ ρ2

)
e− βνκ2

0
2 (a−σ) <

ε

2
. (4.14)

Thus, if v2 ∈ v1 +N1, with

N1 = {v ∈ BX(ρ) : ‖v(s)‖L2 < (16βκ2
0 )−1ε, ∀s ∈ [σ,b]},

then, from (4.13) and (4.14), it follows that

sup
t∈[a,b]

‖∇[W(v2) − W(v1)](t)‖L2 < ε.

Moreover, we also show the measurability of the determining map W since this is needed in Subsection 4.5 when we 
consider trajectory statistical solutions on the whole R. This shows that W : BX(ρ)locH

→ Cloc(R; V ) is continuous.
In order to prove that W+ : (BX+(ρ), d+

0 ) → (Cloc(R+; V ), d+
1 ) is Lipschitz, consider v1, v2 ∈ BX+(ρ). As before, 

denote ̃v = v1 − v2 and w̃ = W+(v2) − W+(v1). Similarly as in (4.13), we have, for every t, σ ∈R+,

‖∇w̃(t)‖2
L2 ≤ ‖∇w̃(σ )‖2

L2 e− βνκ2
0

2 (t−σ) +8βκ2
0 sup

s∈[σ,t]
‖̃v(s)‖2

L2 .

In particular, choosing σ = 0 and t ∈ [0, n(νκ2
0 )−1], with n ∈N, we obtain that

sup
t∈[0,n(νκ2

0 )−1]
‖∇w̃(t)‖2

L2 ≤ 8βκ2
0

⎛⎝ sup
s∈[0,n(νκ2

0 )−1]
‖̃v(s)‖2

L2

⎞⎠ ,

where we used that w̃(0) = 0. Thus,

sup
s∈Kn

‖∇[W+(v2) − W+(v1)](s)‖L2

νκ0
≤ (8β)1/2 sup

s∈Kn

‖v2(s) − v1(s)‖L2

ν
∀n ∈ N, (4.15)

where Kn = [0, n(νκ2
0 )−1]. From the definitions of the metrics d+

0 and d+
1 , this implies that

d+
1 (W+(v2),W+(v1)) ≤ (8β)1/2d+

0 (v2,v1), (4.16)

as desired.
Finally, let us prove (iv). Suppose that J is a Type II interpolant operator satisfying the stronger property (2.21). 

Let u1, u2 ∈ TI . Notice that, for every t, s ∈ I ,
b
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‖(J u1)(t) − (J u2)(s)‖L2 ≤ ‖u1(t) − u2(s)‖L2 + c′
2,1h‖∇u1(t) − ∇u2(s)‖L2

+ c′
2,2h

3/2‖∇u1(t) − ∇u2(s)‖1/2
L2 ‖Au1(t) − Au2(s)‖1/2

L2

≤ ‖u1(t) − u2(s)‖L2 + c′
2,1h‖u1(t) − u2(s)‖1/2

L2 ‖Au1(t) − Au2(s)‖1/2
L2

+ c′
2,2h

3/2‖u1(t) − u2(s)‖1/4
L2 ‖Au1(t) − Au2(s)‖3/4

L2

≤ ‖u1(t) − u2(s)‖L2 + c′
2,1h(2c2νκ2

0 (G + c−2
L )3)1/2‖u1(t) − u2(s)‖1/2

L2

+ c′
2,2h

3/2(2c2νκ2
0 (G + c−2

L )3)3/4‖u1(t) − u2(t)‖1/4
L2 . (4.17)

First, by taking u1 = u2 = u in (4.17), we see that J u belongs to Cloc(I, (L2(�))2). Subsequently, by taking s = t in 
(4.17), it follows that J : TI

b,locH
→ Cloc(I, (L̇2(�))2) is continuous. The proof for an interpolant operator satisfying 

(2.19) is similar, and therefore omitted. �
In the next theorem, for a given trajectory statistical solution μ on R+, we show the asymptotic convergence in 

time of the translations or evaluations in time of (W+ ◦J )μ to μ, with respect to the Kantorovich metric. Note that the 
measure Jμ is constructed from the observations. For instance, if J is the nodal interpolant, then the corresponding 
measure Jμ is constructed from the statistics observed at the measurement nodes. Applying W+ to the measure Jμ, 
constitutes an ensemble-based data assimilation algorithm, where the evolution equation (3.1) is used as the forecast 
model.

We recall that �H denotes the Kantorovich metric on P1(Cloc(R+; H), d+
0 ) and γH denotes the Kantorovich metric 

on P1(H, dH ), with dH (u, v) = ‖u − v‖L2 . Moreover, we recall that μT
+
b

denotes the restriction of the measure μ to 

the measurable set T+
b , as defined in (4.2). In case μ is carried by T+

b then, for any Borel set E, μT
+
b
(E ∩T

+
b ) = μ(E).

Theorem 4.1. Let J be an interpolant operator satisfying either (2.19) and (2.22) or (2.21) and (2.23). Let ρ > 0, 
β > 0 and h > 0 satisfying conditions (3.2) and (3.3). Moreover, in case J satisfies (2.19) and (2.22), we assume that 
ρ satisfies

ρ ≥ √
2(1 + c̃1)G, (4.18)

where c̃1 is the constant from (2.22); and in case J satisfies (2.21) and (2.23), we assume that

ρ ≥ c∗∗
3

[
G + (G + c−2

L )3

β1/2

]
, (4.19)

where c∗∗
3 = max{√2(1 + c̃2,1), c̃2,2c2

√
c∗

2}, with c̃2,1 and c̃2,2 being the constants from (2.23), c2 the constant from 
(2.15) and c∗

2 the constant from (3.3). Let μ ∈P(Cloc(R+; H), d+
0 ) be a trajectory statistical solution on R+ which is 

carried by T+
b . Then, the following properties hold:

(i) �H ((τt ◦ W+ ◦J )μ|T+
b
, τtμ) → 0 exponentially, as t → ∞;

(ii) γH ((Et ◦ W+ ◦J )μT
+
b
, Etμ) → 0 exponentially, as t → ∞.

Proof. Let � : (Cloc(R+; H), d+
0 ) → R be a Lipschitz function with ‖�‖Lip ≤ 1. Notice that∣∣∣∣∣∣∣

∫
Cloc(R+;H)

�(u)d(τt ◦ W+ ◦J )μT
+
b
(u) −

∫
Cloc(R+;H)

�(u)d(τtμ)(u)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫
T

+
�((τt ◦ W+ ◦J )u)dμ(u) −

∫
T

+
�(τtu)dμ(u)

∣∣∣∣∣∣∣∣

b b
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≤
∫
T

+
b

d+
0 ((τt ◦ W+ ◦J )u, τtu)dμ(u) ≤

∫
T

+
b

sup
s≥0

‖[τt ◦ W+ ◦J (u) − τtu](s)‖L2 dμ(u)

≤
∫
T

+
b

sup
s≥t

‖[W+ ◦J (u) − u](s)‖L2 dμ(u) ≤ √
2νκ0G e− βνκ2

0
4 t , (4.20)

where, in the last inequality we used item (iv) of Theorem 3.3. Since � is an arbitrary Lipschitz function on 
(Cloc(R+; H), d+

0 ) with ‖�‖Lip ≤ 1, we conclude that

�H ((τt ◦ W+ ◦J )μT
+
b
, τtμ) ≤ √

2νκ0G e− βνκ2
0

4 t ,

which proves (i).
In order to prove (ii), let ϕ : H →R be a Lipschitz function with ‖ϕ‖Lip ≤ 1. Notice that∣∣∣∣∣∣

∫
H

ϕ(u)d(Et ◦ W+ ◦J )μT
+
b
(u) −

∫
H

ϕ(u)d(Etμ)(u)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫
T

+
b

ϕ(Et ◦ W+ ◦J (u)dμ(u) −
∫
T

+
b

ϕ(Etu)dμ(u)

∣∣∣∣∣∣∣∣
≤
∫
T

+
b

‖Et ◦ W+ ◦J (u) − Etu‖L2dμ(u) ≤
∫
T

+
b

sup
s≥t

‖[W+ ◦J (u) − u](s)‖L2 dμ(u). (4.21)

The remaining of the proof follows analogously as in the previous item. �
The next result shows that, when J is either a Type I interpolant operator or a Type II interpolant operator satisfying 

the stronger property (2.21), then we can prove that, given a trajectory statistical solution μ on R+, the asymptotic 
convergence of translations or evaluations in time of (W+ ◦ J )μ to μ is valid in the sense of distributions. Observe 
that convergence in the Kantorovich metric implies convergence in distribution (i.e., weak convergence of probability 
measures) provided the underlying measures are carried by a compact set (see, e.g., [24, Theorem 11.3.3]). Under 
the assumption that J is a Type I interpolant, or a Type II interpolant satisfying the stronger condition (2.21), the 
associated mapping J is continuous between appropriate spaces. Therefore, the push forward of measures carried by 
a compact set is also carried by a compact set. Thus, convergence in the Kantorovich metric implies convergence in 
distribution in this case. This is stated in the Corollary below.

Corollary 4.1. Let J be an interpolant operator satisfying either (2.19) and (2.22) or (2.21) and (2.23). Let ρ > 0, 
β > 0 and h > 0 satisfying conditions (3.2) and (3.3). Moreover, in case J satisfies (2.19) and (2.22), assume that ρ
satisfies (4.18); and in case J satisfies (2.21) and (2.23), assume that ρ satisfies (4.19). Let μ ∈P(Cloc(R+; H), d+

0 )

be a trajectory statistical solution on R+ which is carried by T+
b . Then, the following properties hold:

(i) For every continuous function � : Cloc(R+, H) → R,

lim
t→∞

∣∣∣∣∣∣∣
∫

Cloc(R+;H)

�(u)d(τt ◦ W+ ◦J )μT
+
b
(u) −

∫
Cloc(R+;H)

�(u)d(τtμ)(u)

∣∣∣∣∣∣∣= 0; (4.22)

(ii) For every continuous function ϕ : H → R,

lim
t→∞

∣∣∣∣∣∣
∫
H

ϕ(u)d(Et ◦ W+ ◦J )μT
+
b
(u) −

∫
H

ϕ(u)d(Etμ)(u)

∣∣∣∣∣∣= 0. (4.23)
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Remark 4.2. Note that for any Borel measure η on Cloc(R+, H), τtη is the time shifted measure on paths starting at 
time t . The above theorem says that the measures W+ ◦J ◦μ, which is constructed by the data assimilation algorithm 
from the observed measure J ◦ μ, and μ converge when shifted by time t as t → ∞. This is precisely the data 
assimilation algorithm for observed path space measures.

4.5. Determining parameters for statistical solutions

In this subsection, we show that statistical solutions of the 2D NSE can be determined by a finite number of 
parameters, which are represented through the finite-rank interpolant operator J (of Type I or Type II). This type of 
result, as is well-known, holds for individual solutions of the 2D NSE, and thus it is natural to expect it to hold for 
statistical solutions as well. The concept of data assimilation by the “nudging approach” initiated in [8] was motivated 
by the existence of determining parameters for dissipative systems. However, as in the case of individual trajectories 
for the MHD equation in [11], here we use the data assimilation algorithm for statistical solutions to establish the 
existence of determining parameters for statistical solutions.

We start by showing this type of result for trajectory statistical solutions on R which are carried by the set of 
trajectories in the global attractor A, denoted by

TA = {u ∈ TR : u(t) ∈ A ∀t ∈ R}. (4.24)

Similarly as in the proof of Lemma 4.1, we can prove that TA is compact in Cloc(R, V ). Thus, TA is compact, and 
therefore a Borel subset, of Cloc(R, H).

Theorem 4.2. Let J be an interpolant operator satisfying either (2.19) and (2.22) or (2.21) and (2.23). Let ρ > 0, 
β > 0 and h > 0 satisfying conditions (3.2) and (3.3). In case J satisfies (2.19) and (2.22), assume that ρ satisfies 
(3.22); and in case J satisfies (2.21) and (2.23), assume that ρ satisfies (3.23). Let μ and η be two trajectory statistical 
solutions carried by TA. If JμTA = J ηTA , then μ = η.

Proof. Let � ∈ Cb(Cloc(R; H)). It suffices to prove that (see, e.g., [24, Lemma 9.3.2])∫
Cloc(R;H)

�(u)dμ(u) =
∫

Cloc(R;H)

�(u)dη(u). (4.25)

Observe that due to (3.22) or (3.23), as well as (2.14) and (2.15), J u ∈ Bρ(X) for u ∈ TA. Thus, W ◦ J is defined 
for u ∈ TA. Since μ is carried by TA, using item (iv) of Theorem 3.1, we obtain that∫

Cloc(R;H)

�(u)dμ(u) =
∫
TA

�(u)dμ(u) =
∫
TA

�(W ◦J (u))dμ(u) =
∫

J (TA)

�(W(v))d(Jμ)(v). (4.26)

Since, by hypothesis, JμTA = J ηTA , then∫
J (TA)

�(W(v))d(Jμ)(v) =
∫

J (TA)

�(W(v))d(J η)(v) (4.27)

But, analogously to (4.26), we have∫
J (TA)

�(W(v))d(J η)(v) =
∫

Cloc(R;H)

�(u)dη(u) (4.28)

Thus, from (4.26)–(4.28), we conclude (4.25). �
Remark 4.3. We observe that if μ is a trajectory statistical solution on R which is invariant under the action of the 
semigroup of translations {τt }t≥0 (i.e., τtμ = μ, for all t ≥ 0) then μ is carried by TA. Indeed, for every t ≥ 0, we have 
(S(t) ◦ E0)μ = Etμ = (E0 ◦ τt )μ = E0μ. Thus, E0μ is an invariant measure with respect to the semigroup {S(t)}t≥0, 
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which implies that E0μ(A) = 1 ([36, Theorem IV.4.1]). Notice that, by the definition of A (in particular, item 4), it 
follows that the mapping E0|TA : TA →A is surjective. Consequently, we have

μ(TA) = μ(E−1
0 ◦ E0(TA)) ≥ μ(E−1

0 (A)) = E0μ(A) = 1.

Now, in the following theorem, we consider the case of trajectory statistical solutions on R+ which are carried 
by the set T+

b , given in (4.9). We show that the translations in time of such measures can be determined by a finite 
number of parameters.

Recall that �H denotes the Kantorovich metric on P1(Cloc(R+, H), d+
0 ).

Theorem 4.3. Let J be an interpolant operator satisfying either (2.19) and (2.22) or (2.21) and (2.23). Let 
ρ > 0, β > 0 and h > 0 satisfying conditions (3.2) and (3.3). Moreover, in case J satisfies (2.19) and (2.22), as-
sume that ρ satisfies (4.18); and in case J satisfies (2.21) and (2.23), assume that ρ satisfies (4.19). Let μ, η ∈
P(Cloc(R+; H), d+

0 ) be two trajectory statistical solutions on R+ which are carried by T+
b . If

lim
t→∞�H ((τt ◦J )μT

+
b
, (τt ◦J )ηT+

b
) = 0, (4.29)

then

lim
t→∞�H (τtμ, τtη) = 0. (4.30)

Proof. Notice that

�H (τtμ, τtη) ≤ �H (τtμ, (τt ◦ W+ ◦J )μT
+
b
) + �H ((τt ◦ W+ ◦J )μT

+
b
, (τt ◦ W+ ◦J )ηT+

b
)

+ �H (τtη, (τt ◦ W+ ◦J )ηT+
b
). (4.31)

Let � : (Cloc(R+; H), d+
0 ) → R be a Lipschitz function with ‖�‖Lip ≤ 1.

Using inequality (4.16) for W+ and the Poincaré inequality, we have

d+
0 (W+(v1),W+(v2)) ≤ (8β)1/2d+

0 (v1,v2) ∀v1,v2 ∈ BX+(ρ). (4.32)

This implies that � ◦ W+ : (BX+(ρ), d+
0 ) → R is a Lipschitz function with ‖� ◦ W+‖Lip ≤ (8β)1/2. Therefore,∣∣∣∣∣∣∣

∫
Cloc(R+;H)

�(u)d(W+ ◦ τt ◦J )μT
+
b
(u) −

∫
Cloc(R+;H)

�(u)d(W+ ◦ τt ◦J )ηT+
b
(u)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

BX+ (ρ)

�(W+(v))d(τt ◦J )μT
+
b
(v) −

∫
BX+ (ρ)

�(W+(v))d(τt ◦J )ηT+
b
(v)

∣∣∣∣∣∣∣
≤ (8β)1/2�H ((τt ◦J )μT

+
b
, (τt ◦J )ηT+

b
). (4.33)

Since � is an arbitrary Lipschitz function with ‖�‖Lip ≤ 1, we then have

�H ((τt ◦ W+ ◦J )μT
+
b
, (τt ◦ W+ ◦J )ηT+

b
) = �H ((W+ ◦ τt ◦J )μT

+
b
, (W+ ◦ τt ◦J )ηT+

b
)

≤ (8β)1/2�H ((τt ◦J )μT
+
b
, (τt ◦J )ηT+

b
), (4.34)

where we used that W+ commutes with τt (see Theorem 3.3, (vi)).
Thus, (4.30) follows from (4.31), by using item (i) of Theorem 4.1, (4.34) and hypothesis (4.29). �
Finally, still considering the case of trajectory statistical solutions on R+ which are carried by T+

b , we now prove 
that its evaluations in time can be determined by a finite number of parameters.
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Theorem 4.4. Under the hypotheses of Theorem 4.3, if

lim
t→∞�H ((τt ◦J )μT

+
b
, (τt ◦J )ηT+

b
) = 0, (4.35)

then

lim
t→∞γH (Etμ,Et η) = 0. (4.36)

Proof. We have

γH (Etμ,Et η) ≤ γH (Etμ, (Et ◦ W+ ◦J )μT
+
b
)

+ γH ((Et ◦ W+ ◦J )μT
+
b
, (Et ◦ W+ ◦J )ηT+

b
) + γH (Et η, (Et ◦ W+ ◦J )ηT+

b
). (4.37)

Notice that

Et = Et ◦ τ−t ◦ τt = E0 ◦ τt . (4.38)

Let ϕ : H → R be a Lipschitz function with ‖ϕ‖Lip ≤ 1. Notice that ϕ ◦E0 ◦W+ : (BX+(ρ), d+
0 ) → R is a Lipschitz 

function with

‖ϕ ◦ E0 ◦ W+‖Lip ≤ (8β)1/2ν(1 + 2ρ). (4.39)

Indeed, by the definition of d+
0 , it follows that

‖E0(u1) − E0(u2)‖L2 ≤ ν(1 + 2ρ)d+
0 (u1,u2) ∀u1,u2 ∈ BX+(ρ). (4.40)

Thus, (4.39) follows from (4.40) and (4.32).
Now, using that τt ◦ W+ = W+ ◦ τt (cf. Theorem 3.3, (vi)), (4.38) and (4.39), we obtain∣∣∣∣∣∣

∫
H

ϕ(u)d(Et ◦ W+ ◦J )μT
+
b
(u) −

∫
H

ϕ(u)d(Et ◦ W+ ◦J )ηT+
b
(u)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

BX+ (ρ)

ϕ ◦ E0 ◦ W+(v)d(τt ◦J )μT
+
b
(v) −

∫
BX+ (ρ)

ϕ ◦ E0 ◦ W+(v)d(τt ◦J )ηT+
b
(v)

∣∣∣∣∣∣∣
≤ (8β)1/2ν(1 + 2ρ)�H ((τt ◦J )μT

+
b
, (τt ◦J )ηT+

b
). (4.41)

But since ϕ is an arbitrary Lipschitz function with ‖ϕ‖Lip ≤ 1, we conclude that

γH ((Et ◦ W+ ◦J )μT
+
b
, (Et ◦ W+ ◦J )ηT+

b
) ≤ (8β)1/2ν(1 + 2ρ)�H ((τt ◦J )μT

+
b
, (τt ◦J )ηT+

b
). (4.42)

Therefore, (4.36) follows from (4.37), by using item (ii) of Theorem 4.1, (4.42) and hypothesis (4.35). �
5. Conclusions and outlook

We show how to approximate the reference statistics of a physical system, modeled by the two-dimensional in-
compressible Navier–Stokes equations (2.1), by the given statistics of its coarse-scale observational measurements, 
through the downscaling data assimilation algorithm (1.2). This was achieved in the case of continuous in time 
measurements and under the appropriate conditions on the relaxation parameter and the spatial resolution of the 
observations. As a consequence, we show that the statistical solutions of (2.1) are, in an appropriate sense, determined 
by only a finite number of degrees of freedom. It should be noted that our method is quite general and applies to a 
large class of dissipative dynamical systems.

We believe this constitutes a first step in establishing a general framework for ensemble downscaling data assim-
ilation algorithms. A future goal consists in extending the framework developed here to the case of discrete in time 
measurements, and also to the case when the model is not exact, i.e., contains an error term. This extension should 
provide a general framework that is more strongly connected to the Bayesian and Kalman filtering approaches as 
considered, e.g., in [13,14,21,49,59,65].
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Appendix A

We now show that the example of interpolant operator concerning nodal values, given in (2.25), is a Type II 
interpolant operator satisfying the stronger property (2.21). The proof follows from a slightly modified version of 
Proposition 4 in [8], whose proof is given in [56, Appendix]. In fact, the result below follows the same steps done in 
[56, Appendix], modulo an application of Young’s inequality. We present it here for completeness.

Proposition A.1. Let l > 0 and Q be the square [0, l] × [0, l] ⊂ R
2. Then, for every ϕ ∈ H 2(Q) and (x1, x2),

(y1, y2) ∈ Q, we have

|ϕ(x1, x2) − ϕ(y1, y2)| ≤ 2

(
‖∇ϕ‖2

L2(Q)
+ √

2l‖∇ϕ‖L2(Q)

∥∥∥∥ ∂2ϕ

∂x∂y

∥∥∥∥
L2(Q)

)1/2

(A.1)

Proof. First, consider ψ = ψ(x, y) ∈ C∞(Q) and let ỹ ∈ [0, l]. Without loss of generality, assume that ỹ is closer to 
0 than l, i.e., l − ỹ ≥ ỹ. Notice that, for every x ∈ [0, l] and y ∈ [ỹ, l], we have

ψ2(x, ỹ) = ψ2(x, y) −
y∫

ỹ

∂

∂y
ψ2(x, s)ds

Integrating with respect to x and y over [0, l] × [ỹ, l] and applying Cauchy–Schwarz inequality, it follows that

(l − ỹ)

l∫
0

|ψ(x, ỹ)|2dx ≤ ‖ψ‖2
L2(Q)

+ 2(l − ỹ)‖ψ‖L2(Q)

∥∥∥∥∂ψ

∂y

∥∥∥∥
L2(Q)

.

But since l − ỹ ≥ ỹ, then, in particular, l − ỹ ≥ l/2 > 0. Therefore,

l∫
0

|ψ(x, ỹ)|2dx ≤ 2

l
‖ψ‖2

L2(Q)
+ 2‖ψ‖L2(Q)

∥∥∥∥∂ψ

∂y

∥∥∥∥
L2(Q)

. (A.2)

In case l − ỹ < l, we consider y ∈ [0, ỹ] instead and proceed analogously as above, so that (A.2) is valid for every 
ỹ ∈ [0, l]. Moreover, since ψ ∈ C∞(Q) is arbitrary, we conclude, by density, that (A.2) is also valid for every ψ ∈
H 1(Q).

Now, let ϕ ∈ C∞(Q) and (x1, y1), (x2, y2) ∈ Q. By triangle inequality,

|ϕ(x1, x2) − ϕ(y1, y2)| ≤ |ϕ(x1, y1) − ϕ(x2, y1)| + |ϕ(x2, y1) − ϕ(x2, y2)|. (A.3)

Notice that

|ϕ(x1, y1) − ϕ(x2, y1)| =
∣∣∣∣∣∣

x2∫
∂ϕ

∂x
(s, y1)ds

∣∣∣∣∣∣≤ l1/2
∥∥∥∥∂ϕ

∂x
(·, y1)

∥∥∥∥
L2(Q)

.

x1
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Thus, using (A.2) with ψ = ∂ϕ/∂x, it follows that

|ϕ(x1, y1) − ϕ(x2, y1)| ≤
(

2

∥∥∥∥∂ϕ

∂x

∥∥∥∥2

L2(Q)

+ 2l

∥∥∥∥∂ϕ

∂x

∥∥∥∥
L2(Q)

∥∥∥∥ ∂ϕ

∂y∂x

∥∥∥∥
L2(Q)

)1/2

. (A.4)

Analogously, one can prove that

|ϕ(x2, y1) − ϕ(x2, y2)| ≤
(

2

∥∥∥∥∂ϕ

∂y

∥∥∥∥2

L2(Q)

+ 2l

∥∥∥∥∂ϕ

∂y

∥∥∥∥
L2(Q)

∥∥∥∥ ∂ϕ

∂x∂y

∥∥∥∥
L2(Q)

)1/2

. (A.5)

Plugging estimates (A.4) and (A.5) into (A.3) and using the density of C∞(Q) in H 2(Q), we conclude (A.1). �
In [8, Proposition 8], it is proved that the interpolant operator given in (2.25) satisfies (2.20). Now, the proof that 

this interpolant operator satisfies the stronger property (2.21) follows the same steps, but using (A.1) instead. We refer 
the reader to [8] for further details.
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