
Pipelining High-Radix SRT Division Algorithms

Saurabh Upadhyay

Illinois Institute of Technology

Pipelining High-Radix SRT Division Algorithms – p. 1/20



Outline

• Introduction
• Division by digit recurrence and pipelining
• Use of different memory elements to pipeline the algorithm in

static CMOS
• Use of pass-transistor logic
• Domino clocking techniques for the algorithm
• comparison and conclusion

Pipelining High-Radix SRT Division Algorithms – p. 2/20



Introduction

• SRT Division is very popular division algorithm used in current
microprocessors.

• It is named for D. Sweeny, J. E. Robertson and K. D. Tocher.
• This dissertation shows different ways to pipeline SRT division

algorithm.
• Simulation results are compared to find out the fastest possible

implementation.

Pipelining High-Radix SRT Division Algorithms – p. 3/20



What current microprocessors use?

Processor Division Algorithm Connectivity

DEC 21164 Alpha AXP SRT Adder-Coupled
Hal Sparc64 SRT Independent
HP PA7200 SRT Independent
HP PA8000 SRT Multiplier-accumulate-c/p
IBM RS/6000 Power2 Newton-Raphson Integrated
Intel Pentium SRT Adder-coupled
Intel Pentium Pro SRT Independent
Mips R8000 Multiplicative Integrated
Mips R10000 SRT Multiplier-coupled
PowerPc 604 SRT Integrated
PowerPc 620 SRT Integrated
Sun SuperSparc Goldschmidt Multiplier-integrated
Sun UltraSparc SRT Independent

Pipelining High-Radix SRT Division Algorithms – p. 4/20



Division by Digit Recurrence

• x = q · d + rem

Pipelining High-Radix SRT Division Algorithms – p. 5/20



Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.

Pipelining High-Radix SRT Division Algorithms – p. 5/20



Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.

• For normalized fractional divisor the quotient is in the range
0 < q < 2

Pipelining High-Radix SRT Division Algorithms – p. 5/20



Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.

• For normalized fractional divisor the quotient is in the range
0 < q < 2

• wi+1 = r · wi − qi+1 · d

where w0 = x

Pipelining High-Radix SRT Division Algorithms – p. 5/20



Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.

• For normalized fractional divisor the quotient is in the range
0 < q < 2

• wi+1 = r · wi − qi+1 · d

where w0 = x

• Consists of n iterations, each iteration produces one digit of the
quotient.

Pipelining High-Radix SRT Division Algorithms – p. 5/20



Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.

Pipelining High-Radix SRT Division Algorithms – p. 6/20



Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table

Pipelining High-Radix SRT Division Algorithms – p. 6/20



Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table

• q = q[n] = q[0] +
∑n

i=1
qir

−i

Pipelining High-Radix SRT Division Algorithms – p. 6/20



Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table

• q = q[n] = q[0] +
∑n

i=1
qir

−i

• Quotient is formed by concatenation of quotient bits.

Pipelining High-Radix SRT Division Algorithms – p. 6/20



Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table

• q = q[n] = q[0] +
∑n

i=1
qir

−i

• Quotient is formed by concatenation of quotient bits.
• On-the-fly conversion is used for redundant quotient digit set.

2−1 MUX LO
A

D
 A

N
D

 S
H

IF
T

−
IN

C
O

N
T

R
O

L

select
Load

select
Load

QM

Q QM

Q

QM

QM

Q
in

in

qj+1q . .

.

Q REG

2−1 MUX

QM REG

Pipelining High-Radix SRT Division Algorithms – p. 6/20



Basic SRT Division Algorithm

{carry[8:0],2’b00}
{sum[8:0],2’b00}

11

CSA

2d

i+1
q state0

0 {3’b000,Dividend}

mux41/mux51 mux21

11

d= {3’b000, Divisor}
__
2d

__
d

q={q2+,q+,q−,q2−,0}
i+1

ulp

mux21

11

11

8
8

3

d

QST

11

wi+1 = r · wi − qi+1 · d

Pipelining High-Radix SRT Division Algorithms – p. 7/20



Pipelining

• Pipelining is a technique used to create clock cycle times for
arithmetic data-paths.

• Usually, memory elements like flip-flops, transparent latches and
pulsed latches are used to impose sequencing.

• Pipelining techniques also vary with different logic gate family.
• Intelligent pipelining technique can improve performance greatly,

on the other hand poor pipelining introduces large sequencing
overheads.

Pipelining High-Radix SRT Division Algorithms – p. 8/20



Pipelining with Flip-Flops

11

CSA

clk FFFF

11

11

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux41/mux51 mux21mux21

clk

11

11

i+1
q state0

{q2+,q+,q−,q2−,0}

{sum[8:0],2’b00}
{carry[8:0],2’b00}

____
2ddd2d

ulp

Tc = ∆logic + ∆CQ + ∆DC + tskew

Pipelining High-Radix SRT Division Algorithms – p. 9/20



Pipelining with Flip-Flops

11

CSA

clk FFFF

11

11

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux41/mux51 mux21mux21

clk

11

11

i+1
q state0

{q2+,q+,q−,q2−,0}

{sum[8:0],2’b00}
{carry[8:0],2’b00}

____
2ddd2d

ulp

Tc = ∆logic + ∆CQ + ∆DC + tskew = 2ns

Pipelining High-Radix SRT Division Algorithms – p. 9/20



Pipelining with Latches

CSA

1111

{q2+,q+,q−,q2−,0}

2d d

i+1
q state0

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux41/mux51 mux21 mux21

latch

{carry[8:0],2’b00}
{sum[8:0],2’b00}

clk_bar clk_bar

11
1111

11 11
11

__ __
2dd

ulp

clkclkclk

latchlatch

latch latch

Tc = ∆logic + 2 · ∆DQ

Pipelining High-Radix SRT Division Algorithms – p. 10/20



Pipelining with Latches

CSA

1111

{q2+,q+,q−,q2−,0}

2d d

i+1
q state0

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux41/mux51 mux21 mux21

latch

{carry[8:0],2’b00}
{sum[8:0],2’b00}

clk_bar clk_bar

11
1111

11 11
11

__ __
2dd

ulp

clkclkclk

latchlatch

latch latch

Tc = ∆logic + 2 · ∆DQ = 1.8ns

Pipelining High-Radix SRT Division Algorithms – p. 10/20



Pipelining with Pulsed Latches

{q2+,q+,q−,q2−,0}

2d

i+1
q state0

11

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux41/mux51 mux21

ulp

11

{carry[8:0],2’b00}
{sum[8:0],2’b00}

11

____
d d 2d

clk

mux21

latchlatch

11

CSA

clk

11

Tc = ∆logic + ∆DQ + max(0, ∆DC + tskew − tpw)

Pipelining High-Radix SRT Division Algorithms – p. 11/20



Pipelining with Pulsed Latches

{q2+,q+,q−,q2−,0}

2d

i+1
q state0

11

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux41/mux51 mux21

ulp

11

{carry[8:0],2’b00}
{sum[8:0],2’b00}

11

____
d d 2d

clk

mux21

latchlatch

11

CSA

clk

11

Tc = ∆logic + ∆DQ + max(0, ∆DC + tskew − tpw) = 1.6ns

Pipelining High-Radix SRT Division Algorithms – p. 11/20



Use of Pass Transistor Logic

• Static multiplexors are replaced with transmission gate
multiplexors, a well-known application of pass transistor logic.

• The algorithm now needs a 5-1 multiplexor instead of a 4-1
multiplexor.

• The time periods are now,
1.6ns for sequencing using Flip-Flops,
1.7ns for sequencing using Latches and
1.4ns for sequencing using Pulsed Latches.

• The implementation with flip-flops is faster than the one with
latches in this case.

Pipelining High-Radix SRT Division Algorithms – p. 12/20



Using Domino Logic

• Designers prefer domino logic for high-performance systems.
• Domino logic is considered twice as fast as the static CMOS logic,

but this is often not the case.
• Requirement of dual-rail domino gates, remedies for

charge-sharing problem and clocking techniques used limit the
speed.

• Traditional domino clocking has large sequencing overhead.
• Overlapping clocks can be used to hide sequencing overheads,

as shown ahead.

Pipelining High-Radix SRT Division Algorithms – p. 13/20



Traditional Domino Clocking

ulp

{carry[8:0],2’b00}

11x2

clk

latchlatch

latch latchlatch

CSA

{sum[8:0],2’b00}

{q2+,q+,q−,q2−,0}

state0

{3’b000,Dividend}
d= {3’b000, Divisor}

mux21 mux21

11x2

clk_bar clk_bar

clk clk

____
2d d d 2d 0

clk
mux51

clk_bar

clkclk

q
i+1

11x2 11x2

11x2
11x2

11x2
11x2

Tc = ∆logic + 2 · ∆DC + 2 · tskew

Pipelining High-Radix SRT Division Algorithms – p. 14/20



Traditional Domino Clocking

ulp

{carry[8:0],2’b00}

11x2

clk

latchlatch

latch latchlatch

CSA

{sum[8:0],2’b00}

{q2+,q+,q−,q2−,0}

state0

{3’b000,Dividend}
d= {3’b000, Divisor}

mux21 mux21

11x2

clk_bar clk_bar

clk clk

____
2d d d 2d 0

clk
mux51

clk_bar

clkclk

q
i+1

11x2 11x2

11x2
11x2

11x2
11x2

Tc = ∆logic + 2 · ∆DC + 2 · tskew = 1.6ns

Pipelining High-Radix SRT Division Algorithms – p. 14/20



Skew Tolerant Domino Clocking

Static

D
ynam

ic

Static

D
ynam

ic

Static

D
ynam

ic

overlap

yx Phase 2

2

1

222111

Phase 1

T c

D
ynam

ic

D
ynam

ic

Static

Static

D
ynam

ic

Static

Pipelining High-Radix SRT Division Algorithms – p. 15/20



Constraints

• te =
Tc

N
+ thold + tskew

• tp = tprech + tskew

• Tc = te + tp

• toverlap =
N−1

N
Tc − tprech − tskew1 =

thold + tskew2 + tborrow

Pipelining High-Radix SRT Division Algorithms – p. 16/20



Skew Tolerant Domino Implementation

{sum[8:0],2’b00}

CSA

2d d

state0

11x2

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux21 mux21

ulp

{carry[8:0],2’b00}

____
2dd

11x2

11x2

mux51

phi2

phi1phi1 phi1

{q2+,q+,q−,q2−,0}

q
i+1

Tc = ∆logic

Pipelining High-Radix SRT Division Algorithms – p. 17/20



Skew Tolerant Domino Implementation

{sum[8:0],2’b00}

CSA

2d d

state0

11x2

0 {3’b000,Dividend}
d= {3’b000, Divisor}

mux21 mux21

ulp

{carry[8:0],2’b00}

____
2dd

11x2

11x2

mux51

phi2

phi1phi1 phi1

{q2+,q+,q−,q2−,0}

q
i+1

Tc = ∆logic = 1.1ns

Pipelining High-Radix SRT Division Algorithms – p. 17/20



Comparison

Sequencing method Time Period, Number of devices
Tcns(FO4) (p-mos,n-mos)

Skew-tolerant domino 1.1 (6.2) 1052 (264, 788)
Pulsed Latches (xmux) 1.4 (7.9) 1096 (548, 548)
Pulsed Latches 1.6 (9) 964 (482, 482)
Flip-Flops (xmux) 1.6 (9) 1140 (570, 570)
Traditional domino 1.6 (9) 1932 (704, 1228)
Transparent Latches (xmux) 1.7 (9.6) 1360 (680, 680)
Transparent Latches 1.8 (10.1) 1228 (614, 614)
Flip-Flops 2 (11.2) 1008 (504, 504)

Pipelining High-Radix SRT Division Algorithms – p. 18/20



Conclusions

• Speed improves significantly with a better pipelining approach.
• Skew tolerant domino is the fastest implementation, yet has very

few devices used.
• Alternatively, a pulsed latch implementation with transmission

gates offers high clock frequency.
• Design complexity may also be an important factor while choosing

a sequencing method.

Pipelining High-Radix SRT Division Algorithms – p. 19/20



Acknowledgements

• My deepest gratitude goes to my advisor Dr. James Stine.
• Inspiring working conditions at the Illinois Institute of Technology

greatly facilitated my research.
• Thank you!

Pipelining High-Radix SRT Division Algorithms – p. 20/20


	Outline
	Introduction
	What current microprocessors use?
	Division by Digit Recurrence
	Division by Digit Recurrence
	Division by Digit Recurrence
	Division by Digit Recurrence
	Division by Digit Recurrence

	Division by Digit Recurrence (continued)
	Division by Digit Recurrence (continued)
	Division by Digit Recurrence (continued)
	Division by Digit Recurrence (continued)
	Division by Digit Recurrence (continued)

	Basic SRT Division Algorithm
	Pipelining
	Pipelining with Flip-Flops
	Pipelining with Flip-Flops

	Pipelining with Latches
	Pipelining with Latches

	Pipelining with Pulsed Latches
	Pipelining with Pulsed Latches

	Use of Pass Transistor Logic
	Using Domino Logic
	Traditional Domino Clocking
	Traditional Domino Clocking

	Skew Tolerant Domino Clocking
	Constraints
	Skew Tolerant Domino Implementation
	Skew Tolerant Domino Implementation

	Comparison
	Conclusions
	Acknowledgements

