
From Smart to Deep: Robust Activity Recognition
on Smartwatches using Deep Learning

Sourav Bhattacharya and Nicholas D. Lane
Bell Labs

Abstract—The use of deep learning for the activity recog-
nition performed by wearables, such as smartwatches, is an
understudied problem. To advance current understanding in this
area, we perform a smartwatch-centric investigation of activity
recognition under one of the most popular deep learning methods
– Restricted Boltzmann Machines (RBM). This study includes
a variety of typical behavior and context recognition tasks
related to smartwatches (such as transportation mode, physical
activities and indoor/outdoor detection) to which RBMs have
previously never been applied. Our findings indicate that even a
relatively simple RBM-based activity recognition pipeline is able
to outperform a wide-range of common modeling alternatives
for all tested activity classes. However, usage of deep models
is also often accompanied by resource consumption that is
unacceptably high for constrained devices like watches. There-
fore, we complement this result with a study of the overhead
of specifically RBM-based activity models on representative
smartwatch hardware (the Snapdragon 400 SoC, present in
many commercial smartwatches). These results show, contrary to
expectation, RBM models for activity recognition have acceptable
levels of resource use for smartwatch-class hardware already on
the market. Collectively, these two experimental results make
a strong case for more widespread adoption of deep learning
techniques within smartwatch designs moving forward.

I. INTRODUCTION

By leveraging the sensors present in wearables like smart-

watches, powerful new mobile experiences are being offered to

users. For example, it is possible for a smartwatch to track: ex-

ercise and sleep patterns [12], commute routines [29], or even

emotional states [27]. The key to these advances is the use of

activity recognition algorithms to infer behaviors and contexts

from mobile sensor data. However, unfortunately recognizing

activities under real-world conditions remains inaccurate and

prone to failure (e.g., [12]). Reasons that performing robust

sensor inference remains difficult are numerous and include:

uncontrolled device positions [23] (e.g., in a pocket, in a

bag); background noise (e.g., outdoors, while driving) when

sampling data [24]; and differences in data generated by a

diverse user population [20] (e.g., lifestyle, demographics).

This paper investigates the challenge of error-prone real-

world activity recognition as it manifests within smartwatches

specifically; although, we also believe our findings will have

broader relevance to activity recognition on any mobile plat-

form. Our approach is grounded in the use of deep learn-
ing [6], [13]. In recent years, this growing field of machine

learning has completely changed the way many inference tasks

closely related to smartwatches (e.g., speech recognition [16])

are performed. Early exploration of deep learning benefits

within these mobile systems is already underway (e.g., [10],

[15], [17]), with promising early results. But we still know

very little about how to apply deep learning to perform a

variety of activity recognition inferences; for example: Which

activity categories are best suited to these methods, and

which are too simple for it to be useful? How best should

sensors not conventionally used by deep learning algorithms

(e.g., accelerometers, magnetometers, GPS), but common on

smartwatches, be processed and utilized within these models?

Broadly speaking, activity recognition algorithms for smart-

watches have carefully considered how to remain computa-

tionally light-weight. This is one of the factors why deep

learning has not been carefully examined for such purposes

until very recently. But now as the SoCs in smartwatches (and

other wearables) evolve they are squeezing in an increasingly

wide range of different computational units (DSPs, GPUs, low-

power CPU cores, multi-core CPUs) along with ever increas-

ing amounts of memory. Resources of this nature are changing

the way we should think of wearable computation. Even the

Android-based LG G Watch R [4] includes a Snapdragon

400 [5] that pairs a DSP and a dual-core CPU. Similarly,

the Intel Edison [3], designed for wearable use includes 1GB

of RAM, as well as again a dual-core CPU and low-power

unit. We now have the computational resources necessary to

consider much more complex models like deep learning.

Motivated by the untapped potential of mobile deep learning

combined with increased embedded systems resources, we

report here on a systematic study of the benefits to smartwatch-

based activity recognition using of one of the most commonly

used deep learning algorithms today – Restricted Boltzmann
Machines (RBMs). Specifically in this work we study two

questions. First, how should RBMs be integrated into an activ-

ity recognition pipeline? Second, how well can an RBM based

model and pipeline operate on a bleeding edge smartwatch-

used platform – the Qualcomm Snapdragon 400? The goal

being to understand the feasibility of RBM deep learning on

this class of device, and address key issues such as: How much

model complexity can a smartwatch of this type afford?

The outcome of our study into these methods is (to the best

of our knowledge) the first deep learning pipeline for activity

and context inference for smartwatches. Through experiments

under a range of common smartwatch sensor inference tasks,

we develop the necessary pipelines of: feature representation

and RBM layer activation functions, for a range of smartwatch

sensor types to be integrated within our model. Importantly,

we discover this general-purpose RBM-based sensor modeling

approach is able to significantly outperform existing sensing

The Second IEEE International Workshop on Sensing Systems and Applications Using Wrist Worn Smart Devices, 2016

978-1-5090-1941-0/16/$31.00 ©2016 IEEE

systems, even in comparison to purpose-built techniques for

specific inference tasks. We combine with this pipeline with

a proof-of-concept smartwatch-like device that supports ap-

plications scenarios through this RBM pipeline to recognize:

physical activity states, hand gestures, transportation mode and

when the user is either outside or inside – these tasks provide a

challenging representative sensing workload. Importantly, we

find that the increased complexity of our modeling approach

does not overly comprise: device lifetime, form-factor, weight;

in comparison to the norms established by existing commercial

smartwatch systems.

The scientific contributions of this work include:

• The design and development of the first RBM-based ac-

tivity and context recognition pipeline for smartwatches.

• A systematic evaluation of this RBM-based pipeline

under 3 common smartwatch-related sensing tasks; ex-

periments include 5 state-of-the-art classification methods

designed for each sensing task, and real-world datasets

that highlight task-specific recognition challenges.

• A feasibility analysis, using a prototype smartwatch

implementation, that demonstrates RBM-based activity

modeling is viable under typical hardware constraints.

II. RBM-BASED ACTIVITY RECOGNITION PIPELINE

Our activity recognition pipeline for smartwatches spans 4

phases: (i) data pre-processing, (ii) input layer representation,

(iii) the RBM model itself, and finally (iv) model inference. We

now describe each of these in turn.

A. Data Pre-processing

The main purpose of this stage is to segment a continuous

stream of measurements and extract measurement windows.

The key parameters are: window width (wd) and window over-

lap (lp). In line with previous work on activity recognition [7],

[25] we use typically wd = 1/2 second (though this may vary

based on the target activities, see Section III for details) and

lp = 50%. For any accelerometer data, to reduce the effect

of sensor placement and orientation, we use the magnitude of

measurements (i.e., take the norm of the three axis).

B. Input Layer Representation

Activity recognition approaches predominantly rely on super-

vised learning, where a classifier is trained with a large amount

of labeled data using handcrafted (ad-hoc) features. However,

collecting a very large amount of ground-truth labels is dif-

ficult and costly [7]. Deep learning mitigates both limitations

by automatically finding a good hierarchical representation of

the sensor data (as part of the pre-training procedure). Pre-

training also helps to initialize the model parameters in a

unsupervised manner, thereby decreasing the requirement of

large ground-truth information [22]. Therefore, we use only

a generic representation and compute frequency banks from

each window that then acts as the input layer. The RBM is

left to learn more discriminative representations from the data.

C. Restricted Boltzmann Machine

A RBM can be represented as an undirected bipartite graph,

consisting of a set of stochastic visible units v ∈ {0, 1}d and a

set of stochastic hidden units h ∈ {0, 1}k. Each visible unit is

connected to all the hidden units with an weighted edge Wij .

The energy function E : 0, 1d+k �→ R associated with a RBM

model is given as:

E(v, h; Θ) = −
d∑

i=1

k∑

j=1

viWijhj −
d∑

i=1

bivi −
k∑

j=1

ajhj (1)

where Θ = {a,b,W} represents the set of model parameters

(a and b are the biases for the hidden and input layers

respectively). The joint distribution over all the visible and

hidden units are given as:

P (v, h; Θ) =
1

Z(Θ)
exp(−E(v, h; Θ) (2)

where Z(Θ) is the normalizing function. In case of Gaussian

RBMs, the visible units accept real-valued measurements (i.e.,

v ∈ Rd) and the hidden units are binary stochastic as before

(i.e., h ∈ {0, 1}k). The energy function for the Gaussian RBM

can then be given as:

E(v, h; Θ) = −
d∑

i=1

k∑

j=1

vi
σi

Wijhj −
d∑

i=1

(vi − bi)
2

2σ2
i

vi

−
k∑

j=1

ajhj (3)

where Θ = {a,b,W, σ} are the model parameters.

D. Model Inference

Although obtaining an exact solution for Equation 3 is non-

trivial, efficient Markov Chain Monte Carlo (MCMC)-based

stochastic approximation techniques have been proposed to

estimate the expected sufficient statistics of the model [31]. In

line with common approaches to RBM training, we initialize

the model parameters using greedy layer-wise pre-training

before performing backpropagation using available labeled

data. Training a RBM is a computationally heavy task and

can be efficiently done offline, e.g., using cloud infrastructure

equipped with GPUs. Once the RBM is trained, the model can

be transferred to the smartwatch platform for online inference.

III. PIPELINE EVALUATION AND COMPARISONS

To understand the potential benefits of our RBMs within an ac-

tivity recognition pipeline, we examine 3 diverse multi-sensor

recognition tasks relevant to smartwatches (and by extension

other wearables). For each task we compare RBM pipeline

performance against task-specific state-of-the-art baseline clas-

sifiers. The key result from these experiments is that our

generic RBM classification pipeline is able to outperform all

baselines for all 3 tasks; although this result is still preliminary,

we believe this is a clear sign of the power and importance

that this form of machine learning will have for wearables and

mobile sensors in the years ahead.

Recognition Task Classifier Baselines
Transportation & Physical JigSaw [23], Wang [33]
Indoor/Outdoor IODector [34], Radu [28]
Gestures Plötz [26]

TABLE I: Mapping of Baseline Classifiers to Recognition Task

A. Experiment RBM Setup

We report RBM performance assuming the same model archi-

tecture across all recognition tasks. Specifically, each model

uses 3 hidden layers each of which contain 256 nodes. Models

diverge in architecture only in terms of their input and output

layers. While baseline classifiers use a custom set of features

for the respective task, our RBM pipeline simply uses a set

of frequency banks for virtually all sensor inputs; the only

exception to this are low-dimensional inputs for which we

simply use those features proposed by comparison classifiers.

B. Comparison Baseline Models

In total, 5 different baselines are compared with RBM pipeline

performance. Each classifier is customized to a specific recog-

nition class and so none of them are used for multiple recog-

nition tasks. Table I summarizes the mapping of classifiers to

recognition task.

Wang. [33] proposes a set of accelerometer features that is

highly optimized for inferring transportation modes on users’

personal devices. Transportation mode inference is then carried

out with a C4.5 decision tree based on user annotated data.

JigSaw. [23] uses a range of sensors including audio (which

we do not consider in this work). We focus on its treatment of

inertial sensors and its general approach that has been widely

adopted since publication. The classifier pipeline after some

initial calibration and allowances for gravity has a series of

time and frequency domain features over which a Gaussian

Mixture Model is fit. Data is processed in 1.28 sec frames

and classifications are smoothed with a Markov Model.

IODectector. [34] takes the approach of building hand

engineered data processing components for each sensor. Each

component has the objective of determining if the environ-

ment is either indoors or outdoors. The authors integrate this

information using a Hidden Markov Model that captures also

temporal patterns between these two environment types.

Radu. [28] evaluates dozens of potential classifier designs but

ultimately selects a co-training approach that interleaves data

from 7 sensor types. The approach uses very thin features,

that include often raw data as well as simple statistics such as

variance. However, the approach does exceed prior work that

examines indoor/outdoor detection (including IODetector).

Plötz. [26] proposes a series of statistical features with high

discriminative power for tasks like recognizing gestures from

accelerometer data. These features are designed for use with

any classifier; therefore in our experiments we combine these

features with 3 well-known learning algorithms (viz. SVM,

Decision Trees, Random Forests) to compare against RBMs.

C. Experiment Results

We now detail the comparison of RBM performance under

each recognition task. For each task we also describe the un-

derlying dataset used for analysis. In all experiments accuracy

is calculated assuming 5-fold cross validation.

Gestures. Our first experiment is based on the Opportunity

dataset [30]. This dataset is popular within the wearable and

ubiquitous computing research community and perfectly suited

to examine a number of smartwatch-relevant activities. Oppor-

tunity contains human physical activities from 4 users recorded

in an intelligent environment, combining measurements from

72 different sensors across 10 different sensing modalities. In

this paper we only focus on the gesture recognition task (B2)

as part of the publicly available challenge dataset. The task

involves recognizing right-hand gestures, such as ‘opening

a door’, ‘cleaning table’ and ‘toggling a switch’, from mea-

surements of an Inertial Measurement Unit (IMU) attached to

the right lower arm (RLA). The sampling frequency of IMU

sensor was 30 Hz. We compare the RBM against the feature-

engineering approach of Plötz, which was shown to work well

on Opportunity previously [25]. We extract windows, where

wd = 2 sec and lp = 50%, and test the same set of Plötz

features using 3 well-known classifiers.

Accuracy of the baseline algorithms for the gesture recog-

nition tasks, together with that of the RBM, are shown in

Figure 1(a). The accuracy of the SVM classifier, while using

domain specific and handcrafted features, is found to be at

the level of 43.7% (lowest). C4.5 decision tree-based gesture

recognition shows a much improved accuracy of 67.7%.

The performance is further improved by the random forest

classifier, which achieves an accuracy of 68.9%. However, the

best performance for gesture recognition is shown by the RBM

algorithm, achieving an accuracy of 72.1%.

Transportation & Physical. For the next experiment, we

collect ≈ 8 hours of data from 4 users as they perform 3

types of physical activities (walking, running, standing) and

a transportation mode (motorized). The dataset also contains

a large null class. Tracking these activities and transportation

mode from noisy sensor data has been performed frequently

in the literature to enable health, fitness and environmental

applications [32].

Figure 1(b) shows overall accuracy for our technique against

those of Wang and JigSaw. The figure shows that the RBM is

able to exceed the accuracy of these two techniques by 27%

(Wang) and 12% (JigSaw). Wang specializes in transportation

mode, but includes support for physical activities. JigSaw in-

stead, aims at broad behavioral inference support. Even though

our model is general purpose and does not include inference-

specific techniques, we still observe significant performance

improvement.

Indoor/Outdoor. Our final scenario is based on a dataset

provided by the authors of [28], it includes ≈ 3 hours of sensor

measurements collected by users as they perform routine activ-

ities in either indoor or outdoor environments. It also includes

(a) (b) (c)

Fig. 1: Comparisons of the general-purpose RBM pipeline performance against task-specific baseline classifiers for 3 recognition tasks;
these include: (a) Gestures, (b) Transportation and Physical, (c) Indoor/Outdoor. All baselines correspond to those described in Table I; the
exception being in (a) generic classifiers are shown that all use domain specific features (Plötz).

Fig. 2: Experimental setup, including: Snapdragon 400 development
board, power monitor and additional sensors as required.

a number of transition events between the two situations. We

use 7 modalities present in this dataset, but ignore sensor types

that are not typically present in wearable devices, such as

cellular signals and the microphone. This particular task is

not common in the literature, but is increasingly being found

to be a useful contextual signal.

Figure 1(c) compares our RBM model against IODetector

and Radu when attempting to distinguish indoor environments

from outdoor ones. Again, the deep learning pipeline achieves

higher (relative) accuracy levels of 31% (IODetector) and

5.6% (Radu) respectively. As always, this is the same pipeline

design and RBM architecture performing a completely differ-

ent inference task. We do not alter the features, layer depth

or any other model parameter within our approach. Yet, RBM

accuracy is again higher.

IV. SMARTWATCH PERFORMANCE EXPERIMENTS

We now examine the viability of our RBM pipeline on real

smartwatch hardware. After first detailing the implementation,

we provide energy and execution time performance results.

A. Prototype Implementation

The heart of this prototype is the Qualcomm Snapdragon

400 SoC [5]. This SoC is widely found in many existing

smartwaches, such as the LG G smartwatch R [4]. Internally,

the Snapdragon has a quad-core ARM Cortex CPU and 1 GB

of memory, though when shipped in smartwatches the RAM is

often reduced to 512 MB. Figure 2 shows the Snapdragon 400

development board used, as well as the experimental setup.

Sensors Sampling Rate
accelerometer, gyroscope 32.00 Hz
barometer, magnetometer 2.00 Hz
light, temperature
WiFi 0.03 Hz

TABLE II: Sensors present in our smartwatch prototype, grouped
by their respective sampling rates

The RBMs within our pipeline are implemented in the

Torch [2] deep learning framework, which we cross-compile

to run directly on the Snapdragon. Any relatively standard

algorithms such as feature extraction routines used in some of

the previously discussed scenarios (such as FFT) are ported

from Matlab or the HTK Speech Recognition Toolkit [1]. All

model training occurs off-line; training occurs on Amazon

EC2 instances with GPU-enabled machines, after which model

parameters are transfered to the smartwatch.

The design of prototype device (seen in Figure 2) assumes a

400 mAH battery, this is similar to those seen in current gener-

ation smartwatches. Table II lists all 7 sensors we incorporate

into the system, the sampling rates for each sensor are based on

values successfully used either the MSP device [11] or JigSaw

framework [23]. All sensor inference and feature extraction

is performed by the CPU of the Snapdragon as a periodic

batch process. We select this period so that inference results

remain reasonably fresh, while also keeping energy demands

at reasonable levels. Most existing wearable-targeted personal

sensing applications (e.g., tracking exercise routines or sleep

patterns) can tolerate such delays in inferences. During any

profiling experiments, we replay traces of actual sensor data

and measure the energy usage through a Monsoon power

measurement device. Note, our prototype does not include

a smartwatch screen and so the energy demands of such a

component are not considered by our experiments.

B. Experiment Results

We begin by examining the system performance of the com-

plete RBM pipeline, and the model architecture assumed for

the sensing tasks studied in Section III. All RBM models

Memory Battery Execution Time Execution Time
Life (whole pipeline) (RBM model-only)

1066KB 32 hrs 5.00 msec 0.94 msec.

TABLE III: Average smartphone resource use for all 3 forms of our
RBM-based activity recognition pipeline (viz. gestures, transportation
mode & physical activities, indoor/outdoor detection).

(across the 3 inference types) have the same basic architecture

of 3 hidden layers, with each hidden layer containing 256

nodes. The only difference being minor variations in the input

and output layers depending on the number of activity classes

and the range of sensor inputs used. We assume inference is

repeated 3 times per second, until the battery is exhausted;

but with sensor sampling fixed to rates provided in Table II.

Table III presents the average result for each model we test.

(We find only minor variations in the results of all three

models). The key observation is that the resource usage of the

RBM-based activity pipeline is well within acceptable levels of

performance in terms of memory, energy and execution time.

Given the ease with which the pipelines and models func-

tion on the smartwatch prototype, we next examine system

behavior as the complexity of the RBM-models within the

pipeline are increased. Table IV summarizes the architecture of

8 different RBM models; 2 models are smaller and 5 are larger

than the model in the previous experiment (3 hidden layers of

256 nodes each). Execution times required by these models on

smartwatch prototype are also summarized in Table IV. The

largest model in this experiment has 50 hidden layers (each

with 256 nodes each), and this results in the model having

more than 3 million parameters (i.e., sum of all weight and

bias parameters across layers) and footprint of ≈ 13 MB. But

even at this size execution time for inference on the model

remains just ≈ 20 msec. Similarly because Snapdragon 400s

in smartwatches have between 500MB and 1GB of RAM, this

model footprint is not a concern.

Finally, we estimate the overall battery life of the smart-

watch prototype assuming each of the 8 RBM model varia-

tions (considered in the previous experiment) are incorporated

within the overall activity recognition pipeline. In estimating

battery life we also consider 3 batching periods that determine

how often inference is performed over the collected sensor

data (i.e., how often is the model executed); specifically these

periods are 2, 3 and 5 Hz respectively. Figure 3 shows the

results of this experiment. For the smallest model (single

hidden layer with 256 nodes) the overall battery life spans

between 52 and 21 hours (for 2 to 5 Hz inference frequency).

However, for the largest model the battery lifetime is observed

between 15 and 6 hours (for 2 to 5 Hz). Although, it should

be noted this largest model contains 16× the number of

parameters than the models evaluated in Section III (the

performance of which is seen in Table III).

V. RELATED WORK

We briefly overview 3 core areas that our work touches upon:

activity recognition, deep learning and wearables.

Model Hidden Parameters Execution
ID Layers Time (msec.)
1 1 65, 792 0.25
2 2 131, 584 0.53
3 3 197, 376 0.94
4 5 328, 960 1.72
5 10 657, 920 3.98
6 15 986, 880 6.15
7 25 1, 644, 800 10.36
8 50 3, 289, 600 20.78

TABLE IV: RBM specification of 8 different models, and the
resulting execution time under the smartwatch prototype. Models vary
number of hidden layers, but all hidden layer have 256 nodes.

Fig. 3: Smartwatch battery Life under various sizes of RBM models
within the activity recognition pipeline. Model IDs (x-axis) shown
correspond to those listed in Table IV. For each model, the impact
of three batch periods are shown. Model ID 3 matches the default
RBM architecture evaluated in Section III.

Activity Recognition. There has been an enormous amount of

work on activity recognition, and it has been hugely successful

in demonstrating a wide variety of everday activities can be

detected [21]. Much of this work has focused on how the

accuracies of these techniques can be improved. Researchers

are attempting this in many ways; for example addressing how

differences between people can be overcome [20], searching

for new features [25], coping with device differences [32] or

exploring how unlabeled data can be incorporated [7]. Within

this direction our work contributes by exploring how a specific

type of deep learning can also contribute towards increasing

the accuracy of various activity recognition scenarios. There

has not previously been a study like this one focused on

RBMs, which both attempts to develop an RBM activity

recognition pipeline and understand how feasible it can be

on real hardware. A two-fold contribution missing from prior

activity recognition works.

Deep Learning. Only recently has the exploration into deep

learning methods for mobile sensing scenarios begun (e.g.,

[17], [15], [19]). To the best of our knowledge, the work

presented here is the first time that many of the sensing tasks

evaluated (such as indoor/outdoor context and transportation

mode) have been attempted with any form of deep learning.

There is still much to be understood in how such models

should be architected, and which variety of algorithms will

be most effective – our work adds to this knowledge, that

is still in a nascent stage. Similarly, none of the existing

RBM papers consider wearable sensor data types nor the

classification objectives we study here. Furthermore, none

consider a smartwatch platform as the operating environment

of their models. In fact, little study of this aspect of our work

exists – the best example being likely [9] that custom design

small-footprint deep models for classification goals of high-

value to mobiles.

Wearable Devices. Our RBM-based classification pipeline

and implementation, is – as far as we know – the first

time smartwatches inferences have been provided by locally

executing deep learning models. Typically such techniques

are thought too heavy for wearable hardware to support.

Existing wearables such as the Microsoft Band, Lumo Lift,

LG G Watch R [4] all use alternative modeling approaches.

As do earlier research prototypes like the MSP [11] and

SATIRE [14]. The closest academic work in this respect is

Zoe [18] that use one small scale DNN for spoken key-

word recognition, among a number of other classifiers that

are executed. Commercial smartphones systems from Baidu,

Amazon, Google use deep learning but these are not wearable-

class platforms, and most of the computation occurs remotely

in the cloud.

VI. CONCLUSION

This paper contains 3 core empirical contributions with impor-

tance to smartwatch design, and more broadly the field activity

recognition. First, we systematically demonstrate and evaluate

the benefits of the deep learning method of RBMs, when

applied to a variety of common forms of behavior and context

recognition. Second, we develop a full RBM-based activity

recognition pipeline and investigate key design considerations

of including representation, and feature usage. Third, we show

that these algorithms are in fact feasible for use on state-

of-the art smartwatch hardware; we empirically measure the

performance of our RBM-based activity recognition pipeline,

highlighting the limits of model complexity that are possible

with acceptable energy and execution time performance.

REFERENCES

[1] Hidden Markov Model Toolkit. http://htk.eng.cam.ac.uk/.
[2] Torch. http://torch.ch/.
[3] Intel Edison. https://software.intel.com/iot/hardware/edison.
[4] LG G Watch R. http://www.lg.com/mobile-phone-accessories/lg-W110.
[5] Qualcomm Snapdragon 400. https://www.qualcomm.com/products/

snapdragon/processors/400.
[6] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press,

2016.
[7] S. Bhattacharya, P. Nurmi, N. Hammerla, T. Plötz. Using Unlabeled

Data In A Sparse-coding Framework For Human Activity Recognition.
PMC, 15:242–262, 2014.

[8] L. Breiman. Random Forests. Mach. Learn., 45(1):5–32, Oct. 2001.
[9] G. Chen, C. Parada, G. Heigold. Small-footprint Keyword Spotting

Using Deep Neural Networks. IEEE ICASSP’14.
[10] T. Chen, et al. Diannao: A Small-footprint High-throughput Accelerator

For Ubiquitous Machine-learning. ASPLOS ’14.
[11] T. Choudhury, et al. The Mobile Sensing Platform: An Embedded

Activity Recognition System. Pervasive Computing, 7(2):32–41, 2008.

[12] S. Consolvo, et al. Activity Sensing In The Wild: A Field Trial Of Ubifit
Garden. CHI ’08.

[13] L. Deng, D. Yu. Deep Learning: Methods And Applications. Now
Publishers, 2014.

[14] R. K. Ganti, P. Jayachandran, T. F. Abdelzaher, J. A. Stankovic. Satire:
A Software Architecture For Smart Attire. MobiSys ’06.

[15] N. Hammerla, et al. PD Disease State Assessment In Naturalistic
Environments Using Deep Learning. AAAI ’15.

[16] G. Hinton, et al. Deep Neural Networks For Acoustic Modeling In
Speech Recognition. Signal Processing Magazine, 2012.

[17] N. Lane, P. Georgiev. Can Deep Learning Revolutionize Mobile
Sensing? HotMobile ’15.

[18] N. Lane, P. Georgiev, C. Mascolo, Y. Gao. ZOE: A Cloud-less
Dialog-enabled Continuous Sensing Wearable Exploiting Heterogeneous
Computation. MobiSys ’15.

[19] N. Lane, P. Georgiev, L. Qendro. DeepEar: Robust Smartphone Audio
Sensing In Unconstrained Acoustic Environments Using Deep Learning.
UbiComp ’15.

[20] N. Lane, et al. Enabling Large-scale Human Activity Inference On
Smartphones Using Community Similarity Networks (CSN). UbiComp
’11.

[21] O. D. Lara, M. A. Labrador. A Survey On Human Activity Recognition
Using Wearable Sensors. IEEE Communications Surveys & Tutorials,
15(3):1192–1209, 2013.

[22] Y. LeCun, K. Kavukcuoglu, C. Farabet. Convolutional Networks And
Applications In Vision. ISCAS ’10.

[23] H. Lu, et al. The JigSaw Continuous Sensing Engine For Mobile Phone
Applications. SenSys ’10.

[24] E. Miluzzo, et al. Darwin Phones: The Evolution Of Sensing And
Inference On Mobile Phones. MobiSys ’10.

[25] T. Plötz, N. Y. Hammerla, P. Olivier. Feature Learning For Activity
Recognition In Ubiquitous Computing. IJCAI ’11.

[26] T. Plötz, P. Moynihan, C. Pham, P. Olivier. Activity Recognition And
Healthier Food Preparation. Activity Recognition in Pervasive Intelligent
Environments, pages 313–329, 2010.

[27] K. K. Rachuri, et al. Emotionsense: A Mobile Phones Based Adaptive
Platform For Experimental Social Psychology Research. Ubicomp ’10.

[28] V. Radu, P. Katsikouli, R. Sarkar, M. K. Marina. A Semi-supervised
Learning Approach For Robust Indoor-outdoor Detection With Smart-
phones. SenSys ’14.

[29] S. Reddy, et al. Using Mobile Phones To Determine Transportation
Modes. ACM TOSN, 6(2):13:1–13:27, Mar. 2010.

[30] D. Roggen, et al. Collecting Complex Activity Datasets In Highly Rich
Networked Sensor Environments. INSS ’10.

[31] R. Salakhutdinov, G. Hinton. Deep Boltzmann Machines. AISTATS,
volume 12, 2009.

[32] A. Stisen, et al. Smart Devices Are Different: Assessing And Mitigating
Mobile Sensing Heterogeneities For Activity Recognition. SenSys ’15.

[33] S. Wang, C. Chen, J. Ma. Accelerometer-based Transportation Mode
Recognition On Mobile Phones. APWCS ’10.

[34] P. Zhou, et al. IODetector: A Generic Service For Indoor Outdoor
Detection. SenSys ’12.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

