
Proposing Regulatory-Driven Automated Test
Suites for Electronic Health Record Systems

Patrick Morrison, Casper Holmgreen, Aaron Massey, Laurie Williams
Department of Computer Science
North Carolina State University

Raleigh, NC
{pjmorris, cmholmgr, akmassey, lawilli3}@ncsu.edu

Abstract—In regulated domains such as finance and health
care, failure to comply with regulation can lead to financial,
civil and criminal penalties. While systems vary from
organization to organization, regulations apply across
organizations. We propose the use of Behavior-Driven-
Development (BDD) scenarios as the basis of an automated
compliance test suite for standards such as regulation and
interoperability. Such test suites could become a shared asset
for use by all systems subject to these regulations and
standards. Each system, then, need only create their own
system-specific test driver code to automate their compliance
checks. The goal of this research is to enable organizations to
compare their systems to regulation in a repeatable and
traceable way through the use of BDD. To evaluate our
proposal, we developed an abbreviated HIPAA test suite and
applied it to three open-source electronic health record
systems. The scenarios covered all security behavior defined
by the selected regulation. The system-specific test driver code
covered all security behavior defined in the scenarios, and
identified where the tested system lacked such behavior.

Keywords- Behavior-Driven-Development; Healthcare IT;
Regulatory Compliance; Security; Software Engineering;
Software Testing

I. INTRODUCTION
In regulated domains such as finance and healthcare,

organizations must ensure their software systems comply
with applicable laws and regulations. Failure to comply often
carries financial, civil and even criminal penalties. While
systems vary widely among organizations, they must all
check compliance against the same regulatory requirements.

Approaches to compliance vary across industries, but
typically include elements such as staff training, manual and
automated monitoring, internal and external audits, and
software certification. Compliance is also a concern over the
entire software lifecycle, from requirements [1] [2] to
ongoing maintenance [3].

The goal of this research is to enable organizations to
compare their systems to regulation in a repeatable and
traceable way through the use of Behavior-Driven-
Development (BDD) [4]. A test suite built from standard
scenarios that depict behavior specified by a regulation can

help to confirm that important issues have been addressed.
An organization can obtain indications of how their system
will respond to external audits through use of the test suite.
At an industry level, a common test suite of these standard
scenarios provides a target for implementers and a basis for
comparison among systems. Such a test suite can be shared
among all organizations that must adhere to a regulation.

BDD is a software development practice that organizes
development effort around the creation of scenarios that
illustrate desired system behavior in terms of the vocabulary
used by system stakeholders [4]. Scenarios are descriptions
of system behavior expressed in system user vocabulary.
These scenarios are then automated through the creation of
system-specific test driver code that binds each scenario to
the system. Each scenario, combined with the system-
specific test driver code, serves as a test of the system’s
behavior. The collection of scenarios forms an acceptance
test suite for the system. They can be automatically executed
to verify system behavior. Frameworks that support this style
of development include FIT [5], FitNesse1, JBehave2 and
Cucumber [4]. The typical use case for BDD is in custom
software system development. The scenarios and the system-
specific test driver code are both associated with a single
custom software system [6][7].

We propose the use of BDD scenarios as the basis of an

automated compliance test suite for standards such as
regulation and interoperability. Such test suites could
become a shared asset for use by all systems subject to these
regulations and standards. Each system, then, need only
create their own system-specific test driver code to automate
their compliance checks. System owners and auditors can
gain confidence in the compliance of a system by running
the compliance test suite on the system. This paper presents
our proposal for using BDD technology to implement
reusable test suites for regulations by demonstrating a
partial HIPAA test suite on three electronic health record

1 http://fitnesse.org/
2 http://jbehave.org/

(EHR) systems; iTrust3, OpenEMR4 and Tolven5, and gives
an overview of our initial evaluation of this proposal.

The remainder of the paper is organized as follows;
Section 2 provides background for BDD, Regulation,
Certification and test suites. Section 3 describes our
development process. Section 4 presents our evaluation and
Section 5 presents a summary and next steps.

II. BACKGROUND
A growing body of research examines how to link

regulations and software requirements [8][1][9]. Within that,
there has been some focus on how to measure the
performance of running systems [1][10] against a
requirements baseline by implementing a custom monitoring
system. Our approach treats the BDD test suite as the
monitoring system, based on commonly available BDD
technology. Each BDD scenario is written in terms of the
applicable regulation rather than a requirements
specification. For each EHR system, system-specific driver
code implements the scenario.

Given the significant consequences of not addressing
regulatory compliance issues, attention has been paid by the
requirements engineering community to eliciting
requirements from legislation [9], [11].

In the United States, healthcare organizations must
comply with the HITECH and Health Insurance Portability
and Accountability Act (HIPAA) Acts, among others.
HITECH regulations stipulate that failure to protect personal
health information can lead to fines of up to $50,000 per
violation and imprisonment for up to one year. A successful
test suite implementation could provide assistance in
evaluating systems for this high stakes regulatory concern.

Two sources of guidance in the EHR domain are the
Certification Commission for Health Information
Technology (CCHIT) 6 , and the National Institute of
Standards and Technology (NIST)7. NIST has published a
suite of test procedures targeting the regulations and
guidelines established by HITECH 8. CCHIT provides
certification of EHR systems according to a set of internally
developed criteria and test scripts. CCHIT makes these
criteria and test scripts available on the web 9 . This
certification process requires significant manual effort to
execute each time, and further effort to review the results.
The scripts exercise a wide range of functionality, however
they do not necessarily cover all aspects of EHR security
[12]. The NIST-developed test procedures form the basis of
our BDD scenarios, as there are explicit, documented links

3 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
4 http://www.oemr.org/
5 http://home.tolven.org/
6 http://www.cchit.org/ CCHIT is a federally chartered certification
bureau in the US..
7 http://www.nist.gov NIST develops and publishes standards across a
wide range of industries and topic areas in the US.
8 http://healthcare.nist.gov/use_testing/index.html
9 https://www.cchit.org/cchit-certified

made between the NIST procedures and the regulations they
are designed to check. Test suites are collections of test cases
organized around some unifying purpose.

Morgan Stanley built a BDD test framework for
validating financial time series data [13], although the test
suite was applied to a single application rather than the
multiple applications we propose. In the telecomm domain, a
set of test suites for various network interoperability
standards was built based upon TTCN-3, a telecomm
industry standard for test specification.10

In the domain of programming languages, validation
suites consisting of executable acceptance tests establish
conformance for a given language implementation to its
specification. For example, Plum Hall 11 builds compiler
validation test suites for C and C++. RubySpec is an open-
source executable specification for the Ruby programming
language. Java’s Technology Compatibility Kit 3 serves a
similar function for the Java language.

III. DEVELOPMENT PROCESS
To build a BDD test suite with which multiple

organizations can evaluate their systems against a regulation
in a repeatable and traceable way, we must, at a minimum,
perform the following tasks:
1. Identify Regulations - Identify the regulation(s) for

which BDD scenarios will be built. In general,
identifying requirements in regulatory texts is a difficult
problem that requires not only engineering expertise but
legal advice [11]. A readable test suite could assist in
interpretation of the regulations being addressed by
each test scenario.

2. Develop Scenarios - A scenario, a step-by-step test
procedure, must be associated with each tested
regulation to validate its achievement. Figure 1 shows
an excerpt from the scenario file that implements NIST
170.302(t), which is a test procedure for HIPAA
regulation, CFR section 170.302(t).

3. Automate Scenarios - Automate the scenarios as
executable tests by a combination of structured natural
language and system-specific files. Figures 2 and 3
show the system-specific details for executing the
scenario from Figure 1on two different EHRs.

Completing these tasks for all or part of a regulatory text

establishes a baseline for the development of the acceptance
test suite.

IV. EVALUATION
We evaluated our test suite by measuring and reporting on
our execution of the methodology tasks against seven
regulations on three EHR systems (iTrust, OpenEMR and

10 http://www.ttcn-3.org
11 http://www.plumhall.com/

Tolven). We have tabulated our results for each task and
each system in Table I.

Each row represents one of the scenarios implemented for

the test suite, including the section of the regulation that is
addressed, the test procedure used, the name of the feature
file in which the scenario is implemented, and a score for
each EHR system. Systems receive one point each for
presence of the functionality tested in the scenario, step
code for executing the scenario, connection between the
feature file and the step files, and successful execution of
the step code testing the functionality.

V. SUMMARY AND FUTURE WORK

We propose the creation and use of BDD acceptance test
suites to support checking of regulatory requirements.

Two natural next steps would be to add the remainder of
the Meaningful Use regulations to the test suite, and to
pursue implementations of the test suite for other EHR
systems. A survey of testing procedures and experiences
among certification bureaus, developers of EHRs and user
organizations (e.g. hospitals, doctor’s practices) should be
conducted to form a basis for this comparison.

One possible expansion of the current effort would be to

 Given /^Using the Vendor\-identified EHR
function\(s\), the Tester shall create a new
user account and assign permissions to this new
account$/ do
 @user = default_hcp
 login(driver,@user)
 @new_user =

 create_new_patient(driver,ITrust
 ::User.new(first_name:'Ted',

 last_name:'Nugent',
 email:'ted@nugent.com'))
 driver.find_element(link:'Logout')
 .click
end

Given /^Using the new user account, the Tester
shall login to the EHR using the new account$/
do
 reset_password(
 driver,@new_user,
 'password')
 @user = @new_user
 login(driver,@user)
end

Given /^The Tester shall perform an action
authorized by the assigned permissions\.$/ do
 driver.find_element(
 link:'My Demographics')
 .click
end

Given /^The Tester shall verify that the
authorized action was performed$/ do
 driver.title.should
 == 'iTrust - Edit Patient'
end

Figure 2: iTrust step file excerpt, Authentication

Given /^Using the Vendor\-identified EHR
function\(s\), the Tester shall create a
new user account and assign permissions to
this new account$/ do
 login("admin","sysadmin")
 create_new_staff
 add_testaccount_to_chr
 logout
end

Given /^Using the new user account, the Tester
shall login to the EHR using the new account$/
do
 login("testaccount","twk27kox")
end

Given /^The Tester shall perform an action
authorized by the assigned permissions\.$/ do
 driver.get(base_url + "/Tolven")
 driver.find_element(:link,
 "Appointments").click
end

Given /^The Tester shall verify that the
authorized action was performed$/ do
 driver.title.should
 match /Appointments/
end

Figure 3: Tolven step file excerpt, Authentication

Feature: Authentication

NIST Â§170.302(t) Authentication

Background:
 * Using the Vendor-identified EHR function(s), the Tester shall create a new user
account and assign permissions to this new account

Scenario: Verify authorization

DTR170.302.t 1: Verify authorization evaluates the capability to verify that a person
or entity seeking access to electronic health information is the one claimed and is
authorized

* Using the new user account, the Tester shall login to the EHR using the new account
* The Tester shall perform an action authorized by the assigned permissions.
* The Tester shall verify that the authorized action was performed

Figure 1: Cucumber feature file excerpt, Authentication

define a domain-specific language for specifying EHR
compliance scenarios. These scenarios could illustrate
unclear points in the law and serve as guidelines for system
certifiers and implementers

ACKNOWLEDGMENT
The authors would like to thank the members of the

Realsearch group, the members of The Privacy Place, and
the students of CSC 591, section 01 Fall 2011 and CSC 591,
section 007, Spring 2012 for their efforts, reviews and
comments on early drafts of this work.

REFERENCES
[1] S. Ingolfo, A. Siena, and J. Mylopoulos, “Establishing

Regulatory Compliance for Software Requirements,”
in Conceptual Modeling – ER 2011, vol. 6998, M.
Jeusfeld, L. Delcambre, and T.-W. Ling, Eds.
Springer Berlin / Heidelberg, 2011, pp. 47–61.

[2] T. D. Breaux and A. I. Anton, “Analyzing Regulatory
Rules for Privacy and Security Requirements,”
Software Engineering, IEEE Transactions on, vol. 34,
no. 1, pp. 5 –20, Feb. 2008.

[3] N. Chapin, “Software maintenance in complying with
IT governance: A report from the field,” in Software
Maintenance, 2009. ICSM 2009. IEEE International
Conference on, 2009, pp. 499 –502.

[4] M. Wynne and A. Hellesoy, The Cucumber Book:
Behavior-Driven Development for Testers and
Developers. Pragmatic Press, 2012.

[5] R. Mugridge and W. Cunningham, Fit for Developing
Software: Framework for Integrated Tests (Robert C.
Martin). Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005.

[6] B. Haugset and G. K. Hanssen, “Automated
Acceptance Testing: A Literature Review and an
Industrial Case Study,” in Proceedings of the Agile
2008, Washington, DC, USA, 2008, pp. 27–38.

[7] G. I. Melnik, “Empirical analyses of executable
acceptance test driven development,” University of
Calgary, Calgary, Alta., Canada, Canada, 2007.

[8] J. C. Maxwell and A. I. Antón, “The production rule
framework: developing a canonical set of software
requirements for compliance with law,” in
Proceedings of the 1st ACM International Health
Informatics Symposium, New York, NY, USA, 2010,
pp. 629–636.

[9] A. K. Massey, B. Smith, P. N. Otto, and A. I. Anton,
“Assessing the accuracy of legal implementation
readiness decisions,” in Requirements Engineering
Conference (RE), 2011 19th IEEE International,
2011, pp. 207 –216.

[10] W. N. Robinson, “Implementing Rule-Based
Monitors within a Framework for Continuous
Requirements Monitoring,” in Proceedings of the
Proceedings of the 38th Annual Hawaii International
Conference on System Sciences - Volume 07,
Washington, DC, USA, 2005, p. 188.1–.

[11] P. N. Otto and A. I. Antón, “Addressing Legal
Requirements in Requirements Engineering,”
Requirements Engineering Conference, 2007. RE
’07. 15th IEEE International, pp. 5–14, Oct. 2007.

[12] A. Austin, B. Smith, and L. Williams, “Towards
improved security criteria for certification of
electronic health record systems,” in Proceedings of
the 2010 ICSE Workshop on Software Engineering in
Health Care, New York, NY, USA, 2010, pp. 68–73.

[13] R. Salama, “A regression testing framework for
financial time-series databases: an effective
combination of fitnesse, scala, and kdb/q,” in
Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, New York,
NY, USA, 2011, pp. 149–154.

TABLE I. EVALUATION SUMMARY

Regulation Procedure Automation

Electronic Health Record System

iTrust OpenEMR Tolven 2.1
Access Control - CFR 170.302(o) NIST 170.302.o login.feature 3 3 4

Emergency Access – CFR 170.302(p) NIST 170.302.p emergency_access.feature 3 3 3

Automatic Logoff – CFR 170.302(q) NIST 170.302.q automatic_logoff.feature 4 3 4

Record actions – CFR 170.302(r) NIST 170.302.r audit_log.feature 4 3 4

Integrity – CFR 170.302(s) NIST 170.302.s integrity.feature 3 3 3

Authorization – CFR 170.302(t) NIST 170.302.t authentication.feature 4 4 4

Encryption – CFR 170.302(u) NIST 170.302.u general_encryption.feature,
transfer_encryption.feature

3 3 3

Totals: 7 7 7 24/28 22/28 25/28

