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Data mining techniques have been widely used in many research disciplines such as medicine, life
sciences, and social sciences to extract useful knowledge (such as mining models) from research
data. Research data often needs to be published along with the data mining model for verification
or reanalysis. However, the privacy of the published data needs to be protected because otherwise
the published data is subject to misuse such as linking attacks. Therefore, employing various
privacy protection methods becomes necessary. However, these methods only consider privacy
protection and do not guarantee that the same mining models can be built from sanitized data.
Thus the published models cannot be verified using the sanitized data. This article proposes
a technique that not only protects privacy, but also guarantees that the same model, in the
form of decision trees or regression trees, can be built from the sanitized data. We have also
experimentally shown that other mining techniques can be used to reanalyze the sanitized data.
This technique can be used to promote sharing of research data.
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1. INTRODUCTION

Data mining techniques have been widely used in many research disciplines
such as medicine, life sciences, and social sciences to extract useful knowledge
from research data in the form of data mining models [Grossman et al. 2001].
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These models can then be published and used by others. For example, decision
trees have been used to predict adverse drug reactions using clinical trial data
[Hammann et al. 2010]. These trees can be used as guidelines for doctors to
decide whether to prescribe a drug to a patient.

In addition to publishing mining results, researchers often need to publish
research data that is used to create these models. There are important reasons
to publish the underlying research data.

First, research data, if published, can be used by other researchers to verify
the published research results. This can significantly add credibility to the
results and alleviate some of the problems about scientific misconduct and
research fraud. In a survey participated by 1389 researchers in the European
Union [Kuipers and Hoeven 2009], around 90% of the participants considered
that publishing research data was very important or important for validation
of research results.

There has been an increasing trend of fraud in medical research recently
[Black April 18, 2006]. Another recent example is “climate gate,” where a group
of researchers working on climate change was accused of scientific misconduct.
An independent panel cleared most accusations but pointed out that the re-
searchers should have made data more accessible to the public and used better
statistical tools in their analysis [House of Commons Science and Technol-
ogy Committee Parliament of the United Kingdom 2010]. Clearly, publishing
research data would reduce the chance of potential frauds or controversies.

Second, other researchers may conduct secondary analysis over the pub-
lished research data in their own research. This has been widely used in dis-
ciplines such as social science and medical research. In these disciplines, data
collection is often very expensive and secondary analysis saves resources that
would otherwise be spent on collecting data. For example, in the medicine field,
the cost of clinical trials conducted in the U.S. for new drugs was $25 billion
at 2006 (Fee March 01, 2007). Social science studies also often use census
data, which is impossible to be collected by individuals. Thus researchers often
conduct secondary analysis on existing data if they are made available. For
example, secondary analysis was used to discover the causes of some diseases
from medical records that were not collected with the intention of detecting
such a causal relation [Dale et al. 1988]. As of April 30, 2009, a search of the
phrase “secondary analysis” in PubMed (a commonly used citation database
of medical research) returns 3601 research articles. In the European Union
survey mentioned before [Kuipers and Hoeven 20091, 91% of participants con-
sidered that publishing research data was very important or important for
reanalysis of existing data.

Secondary analysis can be also divided into two categories: (1) reanalysis,
which is the analysis of the data on the same research problem and (2) analysis
that is used to solve a different research problem. For example, decision trees
have been used to predict adverse drug reactions [Hammann et al. 2010]. Sup-
pose that a researcher publishes the research data along with the decision tree.
Other researchers may try the same or different mining methods for various
educational or research purposes. This would be an example of first category
because the research problem, that is, to predict adverse drug reactions of the
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(a) original data, accuracy=0.73 (b) Sanitized by (LeFevre et al. 2006b),
accuracy=0.59

Fig. 1. Decision trees built from original cancer data and sanitized data.

drug, remains the same. A third group of researchers may want to use the
published data to discover behavioral patterns (e.g., smoking) among patients
with a certain type of disease, regardless of whether they have adverse reac-
tions to the drug. This is the case of the second category because the research
problem is different from the problem in the original research.

Third, many people argue that if a research project is publicly funded, the
results of the study including the research data should become public property;
therefore, the data should be made accessible to the public. For example, the
National Program of Cancer Registries (NPCR) is funded by the U.S. govern-
ment. It collects data on the occurrence of cancer as well as initial treatment
[National Center for Chronic Disease Prevention and Health Promotion 2010].
The data is available to the public and has been used for numerous research
purposes such as for discovering patterns of cancer in different population
groups [McDavid et al. 2004]. According to the European Union survey men-
tioned earlier [Kuipers and Hoeven 2009], 87% of participants consider that
publishing research data is very important or important due to public funding.

Despite its numerous benefits, sharing research data is difficult because such
data often contains privacy-sensitive information such as patients’ medical
conditions. Therefore, it becomes necessary to prevent or reduce privacy risks
before releasing research data. Otherwise, an adversary can link the quasi-
identifiers in the published datasets with other data sources available in order
to reveal patients’ identity. At the current state of the practice, privacy concerns
often prevent many companies or researchers from sharing raw data. According
to the EU survey [Kuipers and Hoeven 2009], only 25% of researchers publish
their data. The survey also shows that the major barriers of sharing research
data are legal issues (41% of responses) and potential misuse of data (41% of
responses), both of which are closely related to privacy concerns.

There has been a rich body of work on privacy protection techniques [Vaidya
et al. 2005]. The existing techniques only consider privacy protection and usu-
ally do not guarantee that the same mining model can be built from sanitized
data. Thus, other researchers cannot verify the published models using the
sanitized data.

For example, Figure 1(a) shows a decision tree built from a dataset about
cancer patients to predict whether a patient will survive more than 30 months.
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There are three attributes in the dataset: tumor grade, age, and survival status
(whether the patient survives more than 30 months). We used a sanitization
method proposed in LeFevre et al. [2006b]. Figure 1(b) shows the decision tree
built from the sanitized data. Clearly, the tree in Figure 1(b) is different from
the original one in Figure 1(a). Thus, other researchers cannot use the sanitized
data to verify the published original decision tree.

The decision tree model is not preserved because the decision tree building
algorithm needs to compute information gain (or other splitting criteria) for all
possible splits in the data. Since data values have been distorted during the san-
itization process, the information gain computed in the sanitized data is often
different from that in the original data. Thus different splits are selected in the
sanitized data. For example, in the original data, the split on tumor grade =
2.5 generates the highest information gain. However, after sanitization, the
values of tumor grade attribute have been distorted and the best split becomes
tumor grade = 1.6.

In addition, the accuracy (using 10-fold cross-validation) for the original
tree is 0.73 while the accuracy of the tree built from sanitized data is only 0.59.
Thus, the sanitized data also leads to inferior models being built. This also has
negative impact on researchers who want to reanalyze the published research
data.

In this article, we focus on two primary uses of research data: (1) verification
of the published mining models; (2) reanalysis of the research data to solve
the same research problem (i.e., the first category of secondary analysis). This
work makes the following contributions:

— We propose a technique that both protects privacy and guarantees that the
decision tree and regression tree, two popular data mining models, will be
preserved, that is, the decision tree or regression tree built from the sanitized
data will be exactly the same as that built from the original data.

— We conducted comprehensive experiments to compare our approach with
existing privacy protection techniques. The results favor our approach.

The rest of the article is organized as follows. Section 2 reviews the related
work. Section 3 describes our approach. Section 4 shows the experimental
results and Section 5 concludes the article.

2. RELATED WORK

In this section, we first discuss the risks to privacy and the general categories
for the privacy models. Next we discuss privacy protection techniques and
briefly mention the work about hiding sensitive patterns. Finally, we place our
study in the context of the related work.

Privacy risks and models. There are two types of privacy risks.

— Identity disclosure when the identity of a specific person in the dataset is
revealed.

—Value disclosure when the values of some sensitive attribute values are
revealed.
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The two most popular privacy models are K-anonymity [Sweeney 2002] and L-
diversity [Machanavajjhala et al. 2007]. K-anonymity prevents identity disclo-
sure caused by linking attacks, which link attributes (called quasi-identifiers)
such as birth date, gender, and ZIP code with publicly available datasets. This
can be done by generalization, that is, replacing specific values with more
general ones. For example, the exact age of a patient can be replaced with
a range. Records with the same quasi-identifier values form an equivalence
class. K-anonymity ensures that there are at least K people with the same
quasi-identifier such that the risk of identity disclosure is reduced to 1/K.

L-diversity prevents value disclosure by further requiring that the people
with the same quasi-identifier contain at least L well-represented sensitive
values such that attackers cannot discover the values of sensitive attributes
easily. A more advanced model called t-closeness tries to make sure the distri-
bution of sensitive attributes in each equivalence class is similar to the global
distribution [Li et al. 2007].

Privacy protection techniques. There has been a rich body of work to enforce
privacy protection models [Aggarwal et al. 2008]. These techniques can be di-
vided into random perturbation [Agrawal and Srikant 2000], generalization, or
suppression [LeFevre et al. 2006a], random permutation (e.g., randomly per-
mute the values of sensitive attributes) [Xiao and Tao 2006], and synthetic
data generation [Aggarwal and Yu 2004]. There also exists work on secure
multiparty computation [Vaidya et al. 2005], which is useful for the distributed
mining case. In this article we will only consider the case when the research
data is published along with mining models. Next we will discuss several tech-
niques related to data publication.

An additive perturbation technique was proposed in [Agrawal and Srikant
2000]. A reconstruction technique was also proposed to reconstruct the
marginal distribution from perturbed data. A tree-based approach was pro-
posed to sanitize data [Li and Sarkar 2006b]. The proposed approach used a
KD-tree to divide data into groups and then generalize data in each group.
A workload-aware anonymization approach was proposed in LeFevre et al.
[2006b], where the anonymization process is optimized for specific mining
tasks. For example, the anonymization tries to maximize information gain
(which is used in decision tree building) for classification. Another perturba-
tion approach was proposed in Li and Sarkar [2006a] for categorical data. This
approach randomly swaps sensitive attribute values in records that have high
disclosure risks and at the same time tries to preserve both the marginal dis-
tribution of the sensitive attribute and the correlation between nonsensitive
attributes and the sensitive attribute.

However, such techniques do not provide any guarantee on model preserva-
tion. Next we discuss two of them. Let us first consider the information-gain-
based method in LeFevre et al. [2006b]. As shown in Figure 1, this method
does not preserve decision trees because the information gain computed over
the sanitized data is often different from the information gain computed over
the original data.

Now let us consider the method proposed in Li and Sarkar [2006a]. This
method tries to preserve the marginal distribution of sensitive attributes and
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the correlation between sensitive and nonsensitive attributes. This method
has two problems. First, there is no guarantee that the aforesaid statistical
information will be 100% preserved (the solution only tries to preserve it as
much as possible). Second, preserving such statistical information may not be
sufficient to preserve the decision tree patterns. For example, in Figure 1, the
class label (survival status) cannot be sensitive because otherwise attackers
can simply use the published decision tree to predict its values. Suppose the
sensitive attribute is “age” and other attributes are nonsensitive. The method
proposed in Li and Sarkar [2006a] tries to preserve the correlation between
age and tumor grade as well as the correlation between age and survival
status. However, the decision tree also depends on the correlation between
tumor grade and survival status, which may not be preserved by the preceding
method.

The only work we are aware of that preserves data mining models is to
publish the contingency table for naive Bayesian classifiers [Mozafari et al.
2009]. However, it is unclear how that method can be applied to other mining
models such as decision trees because decision trees use more information than
the contingency table.

There also exists work on hiding sensitive patterns such as frequent item
sets in data. Several approaches were proposed in Menon and Sarkar [2007]
and Menon et al. [2005] to hide sensitive frequent item sets and at the same
time minimize information loss.

Comparison of our approach with the related work. All the existing work on
privacy protection does not guarantee that the decision tree or regression tree
models are preserved. The approach proposed in this article preserves these
two tree models and at the same time protects data privacy. This article is
also an extended version of our preliminary work [Fu et al. 2009a; 2009b]. The
extensions include: (1) more comprehensive experiments, (2) extension of our
approach to satisfy given privacy requirements, (3) efficiency improvement of
our approach.

3. OUR APPROACH

In Section 3.1, we first specifically formulate the problem tackled in this
article. Then, we briefly describe the decision tree and regression tree building
algorithms. In Section 3.2 we prove a theorem that describes the conditions
under which a tree model can be preserved. Finally, in Section 3.3, we present
a method that preserves both privacy and the decision or regression tree
model.

3.1 Background

Problem definition. Let T be a data table with attributes A; to A,,. These
attributes can be divided into sensitive attributes (whose values need to
be protected) and nonsensitive attributes. We also assume that all nonsen-
sitive attributes are quasi-identifier attributes. We assume that attribute
A, is the response variable (which needs to be predicted). Let K and L be
two integers, and B be a decision tree or regression tree building algorithm.
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The goal is to create a sanitized table T’ such that T’ satisfies K-anonymity
and L-diversity, and at the same time, B can build the same decision tree or
regression tree P from T or T to predict the value of A,,.

Decision tree and regression tree building algorithms. The structure of a deci-
sion tree or a regression tree is as follows. Each internal node of a decision tree
or regression tree contains a test condition and several branches representing
test outcomes. For example, in the root node of the tree seen in Figure 1(a), the
patients with a tumor grade less than 2.5 are assigned to the left child, and
those with a tumor grade greater than or equal to 2.5 are assigned to the right
child. A leaf of a decision tree predicts a class label; a leaf of a regression tree
predicts a numerical outcome.

Most existing tree building algorithms create the tree in a top-down fash-
ion [Han and Kamber 2000]. They start with a single node that represents
the whole training dataset. Next, they recursively expand the current tree by
partitioning the records in the tree nodes. At each step, an attribute A; other
than the response variable A,, is chosen to optimize a splitting criterion. If A;
is numerical, a value v (typically as the average of two consecutive A; values)
is selected such that the records with A; values less than v go to left child, and
those with values greater than or equal to v go to right child. If A; is categorical,
either a binary split is used where A;’s values will be divided into two disjoint
sets, or a multiway split is used, where each value of A; will become a child
node. These algorithms stop when a certain stopping criterion is met during
the successive splitting actions.

There are three commonly used splitting criteria for decision trees: informa-
tion gain, gain ratio, and Gini index. Here we just describe information gain
while our approach also applies to the other two. Let S be the set of records at
an internal node in P, ¢ be the number of child nodes, S;(1 < j < t) be the set of
records in child j, A; be the split attribute, v be the split value, and Cy, ..., C,
be the g classes. Let f{C;,S) be the frequency of class C; in S. The information
gain equals

CL,S S
InfoGain(S,v) = Z f = ) log, f((|j'|S)
t q
|SJl f(CLaS) |SJ|
_ 1 . )
; S| ;( 1S;| 062 f(Ci,Sj)) @

For regression trees, the commonly used splitting criterion is the reduction of
deviance of response variable. Let A,, be the response variable. The reduction
of deviance equals

IS;l

DevGain(S, v) = Var(S, A,,) — Z S|

—ar Var(S;, An), (2)

where Var(S, A,,) is the variance of response variable A,, in set S.
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3.2 Conditions for Preserving Tree Models

In this section, we will describe conditions under which tree models will be
preserved. Note that the first sum in Eq. (1) is constant for all splits, thus the
splitting criterion only depends on |S;| and f(C;, S;), that is, the size of each
child node and the distribution of class labels in each child node. This property
also holds for gain ratio and Gini index. Similarly, in Eq. (2), the first term is
constant for all possible splits, so the splitting criterion only depends on |S;|
and Var(S;, Ay), that is, the size of each child node and the variance of response
variable in each child node.

TurEOREM 1. If the privacy protection algorithm satisfies the following three
conditions, the decision tree or regression tree generated from the sanitized data
will be the same as that generated from the original data.

(1) It leaves the values of response variable A,, unchanged.!

(2) Let A; be a categorical attribute that appears in the tree.
(a) If a multiway split is used, A; cannot be generalized.
(b) If a two-way split is used, let VS and V Sy be the sets of A; values in
the child nodes S1 and Ss. Let V S'(v) be the set of values (including v)
that will be generalized to the same value v'. Then all values in V.S'(v)
must belong to the same branch as v. That is, if v € VS; (or V.Sy), then
VS'(v) € VS; (or VSy).
(8) Let A; be a numerical attribute that appears in the tree. Both of the following
two conditions need to be satisfied.
(a) The order of values of A; is preserved, that is, if vi < ve in original data,
v] < vy in the sanitized data where vj(j = 1, 2) is a value of A; and v is
the sanitized value of v;.
(b) Let v be a split value and v1(vg) be the maximal (minimal) value of A; in
the left (right) child after the split, respectively. The sanitized values v}
and vj, must satisfy that vi + vy = v} + vj.

Proor. For decision trees, these conditions ensure that both the child record
sets (S;) and the distribution of class labels in each S; for all possible splits
remain unchanged in the sanitized data. According to Eq. (1), keeping the
child record sets and the distribution of class labels the same ensures that
the decision tree model will be preserved. Similarly, for regression trees, these
conditions will ensure that S; and variance of response variable in each S;
remain unchanged. Thus, according to Eq. (2), the regression tree model will
be also preserved. Next, we illustrate the case for decision trees. The same
reasoning applies for regression trees. O

Condition (2) ensures that, when the sanitization process generalizes a cat-
egorical attribute, the generalization will preserve the set of records in each
branch. When a multiway split is used, each value of A; forms a branch so
A; cannot be generalized because otherwise some branches in the decision
tree will be merged after sanitization (Condition (2a)). When two-way split

1Normalization of 4,, is allowed.
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is used, we use an example to illustrate Condition (2b). Suppose that an at-
tribute called education level contains five values: high school, 2-year college,
Bachelor, Master, and PhD. Suppose a split puts the records with high school
and 2-year college into the left child and the remaining records into the right
child. In the sanitization process, we can generalize high school and 2-year
college into at-most-2-year-College, and generalize Bachelor, Master, and PhD
into at-least-4-year-college. Clearly, if a record belongs to left (or right) child
in the original data, its generalized value still belongs to the left (or right)
child.

Condition (3a) ensures that the order for a numerical split attribute A;
is preserved. The decision tree algorithm will check all possible splits on A;,
thus preserving the order of A; will ensure that the same set of child record
sets (S;) will be generated. Since condition (1) also preserves the class labels,
the distribution of class labels in S; remains unchanged. Thus, the decision
tree algorithm will select the same best split as in the original data.

Example 1. For example, suppose there are six recordsry, ..., and rg. r1, 13,
and r5 in class Cq and rs, r4, and rg in class Cs. Let A; be a numerical attribute.
Suppose that in the original data, the sorted order of A; is ry, ro, rs, r4, s,
and rg. The class labels in the order of A; are thus Cy, Cs5, Cq, Co, C1, and Cs.
The best split in the original data generates two S;: {r1(Cy), r2(Ca), r3(C1)} and
{r4(Csq), r5(C1), r¢(Cy)}. If the order on A; is preserved in the sanitized data, the
class label in the order of A; is still Cy, Cy, C1, Cs, Cq, and Cs. Thus, the best
split will remain unchanged (between r3 and ry).

However, suppose the order of A; in sanitized data is changed to ry, rs, re, s,
rs, and rg, the class label in the order of A; becomes C1, C1, Co, Cs, C1, and Cs.
The best split in the sanitized data becomes {ri(Cy1), rs(C1)} and {ra(Csq), r4(Cs),
r5(C), re(C2)}, which is different from the best split in the original data.

Condition (3b) further ensures that for a numerical split attribute A;, the
split value in the transformed data equals the split value in the original data,
which equals the average of the maximal value of A; in left right and the
minimal value of A; in the right child.

3.3 Proposed Data Sanitization Procedure

Figure 2 describes the Tree-Pattern-Preserving Algorithm (TPP). The input
of the algorithm includes original data T, a decision tree or regression tree
building algorithm B, and privacy parameters K and L. The output is a tree
model P and a sanitized dataset 7" that satisfies both K-anonymity and L-
diversity. The same tree P can be built from 7"’ as well.

Step 1 of the algorithm builds a decision tree with one node. Steps 2 to 4 try
to sanitize the data. We will show shortly that these steps satisfy all conditions
in Theorem 1 and thus preserve the current decision tree or regression tree.
Step 5 will check whether privacy requirements are satisfied. If so, we will
repeatedly expand the decision tree or regression tree and rerun steps 2 to 5 to
sanitize the data. Otherwise, we return the latest tree that satisfies the privacy
requirements along with the sanitized data.
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—

Run tree building algorithm B to generate a tree P with only one node.

2. For each attribute A4; that is not the response variable and is not used in P, replace
its value with a single value (for categorical attribute, use ALL; for numerical
attribute, use mean of 4;).

3. For each numerical attribute 4, that appears in the tree, do the following:

a) For each node x in P that uses 4; as split attribute, collect boundary values as
the maximal A4; value in the left child and the minimal A4; value in the right
child.

b) Sort values of A4; and divide them into intervals using boundary values
collected in step 3a)

c) If an interval contains two boundary values, split it into two equal size
intervals such that each contains only one boundary value. Compute the mean
of each new interval, let them be u;, u>, ...

d) For each node x in P that uses A4; as split attribute, let v; (v,) be the maximal
(minimal) A4; value in the left (right) child of x. Let /; (1) be the intervals with
v; (v,) as the right (left) boundary. Compute d = min{v; - u;, u, -v,}. Replace
values in /; with v;-d, and values in 1, with v,+d.

4. For each categorical attribute 4; that appears in P, if two-way split is used, divide
values of 4; into groups such that the values in the same group appear in the same
branches in P (this can be done by sorting values on the branches they appear).
Replace values of 4; in the same group with the same generalized value.

5. Group all records on quasi-identifier attributes. For each group, check whether it
satisfies K-anonymity and L-diversity.

6. If privacy requirements are satisfied, call tree building algorithm B to expand P
once more and rerun step 2 to 5 until the stopping condition of B is met.

7. Otherwise, return the last tree that satisfies the privacy requirements and the data

sanitized based on that tree.

Fig. 2. Tree-Pattern-Preserving algorithm (TPP).

Next, we show how steps 2 to 4 satisfy conditions in Theorem 1. First,
these steps do not change the values of response variables. Thus, Condition
(1) is satisfied. Step 4 sanitizes categorical attributes and it is easy to verify
it satisfies Condition (2). Step 3 sanitizes numerical attributes. We will use an
example to show how it satisfies Condition (3).

Figure 3 shows how step 3 works for Example 1. Suppose the tree building
algorithm selects a numerical attribute A; as the split attribute. The best split
in original data is between rs and ry. Thus step (3a) will pick the A; values
of r3 and r4 as boundaries (let them be v; and ve, respectively). In step (3b),
two intervals get created: I; containing r; to r3 and I3 containing r4 to r¢. Each
interval only contains one boundary value. Step (3¢) computes the mean of each
interval. Step (3d) computes the gap between vy (vg) and the mean of I (I3). Let
8 be the smaller of these two gaps. It then generalizes the values in I to v; —d,
and values in I to vs 4+ d. Clearly, the new split value in the sanitized data
(v1 —d + vy +d)/2 is the same as the old split value (v; + v2)/2. Thus Condition
(3b) is satisfied. The order is also preserved because v; < vy and v; —d < ve +d.
Thus Condition (3a) is satisfied.
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Fig. 3. Sanitizing numerical attribute.

Privacy protection. The algorithm will ensure that the sanitized data satisfies
K-anonymity and L-diversity. One possible attack is when the attacker knows
the order of a numerical attribute (e.g., knowing P; has the smallest value).
TPP preserves the order for this attribute. However, all values in the same
interval are generalized to the same value (e.g., P; to P3 all have the same A;
values after sanitization). Thus, the attacker can only locate the group of rows
with smallest A; values, but cannot decide which one in the group is P;. Since
there are at least K people in each group, the probability of identifying P; is at
most 1/K.

Complexity analysis. Let n be the number of rows and m be the number of
attributes. Let | P | be the number of nodes in the final tree. Step (3a) costs
O(] P | ) because it needs to check every node in | P | . Step (3b) needs to sort
values of each numerical attribute and costs O(m n log n). Step 2, (3c), (3d), and
step 4 transform all data values and cost O(mn). Step 5 can be implemented by
sorting data on quasi-identifier attributes and costs O(mn log n). Step 6 needs
to rerun step 2 to 5 for an expanded tree. Thus the overall cost of TPP is O(m
n log n | P | ) because the tree can be expanded at most O( | P | ) times.

Efficiency improvement. Next we describe several ways to improve the effi-
ciency of the TPP algorithm.

First, we can delay the replacement of data values in steps 2, (3d), and 4.
Instead, we can keep for each numerical attribute the set of intervals generated
in step (3c), and keep for each categorical attribute the set of generalized values
(see step 4). We can then replace data values only for the final tree P.

Second, we can further reduce the cost of sorting in step 5. This sorting
step put records with the same values on quasi-identifier attributes into the
same group. We can presort all records on numerical attributes. Note that
our algorithm preserves the order of numerical attributes (Condition (3a) in
Theorem 1). Thus, records in the same group must be consecutive records after
presorting. Therefore, step 5 just needs to check whether consecutive records
belong to the same group and there is no need to resort data. As a result, the
cost of step 5 is reduced from O(mn log n | P | ) to O(mn log n).

Finally, the cost of rerunning steps 3 and 4 for an expanded tree P can be
reduced. The key observation is that the expanded tree has the same structure
as the original tree except the expanded nodes. Thus we only need to consider
the expanded part of tree in steps 3 and 4. Here we just illustrate the cost
for step 3. Step (3a) needs to collect boundary nodes in the expanded part of
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the tree. Since the values of A; are already sorted in previous round, there is
no need to resort them in step (3b). Instead, we just need to check whether
new intervals are generated by these additional boundary nodes. For example,
suppose in Example 1 the expanded tree has a new split between ry and rs.
We just need to collect two new boundary nodes: ry and rs. The old interval I3
(which contains r; to r3) is now split into two new intervals: {r1 re} and {rs}.
Thus the total cost of step 3 and 4 are also reduced from O(mn log n | P |) to
O(mn log n) because there is no need to resort data for an expanded tree. Hence
the overall cost of the algorithm is reduced to O(mn log n).

3.4 Extension to Preserve Multiple Tree Models

The TPP algorithm preserves one decision or regression tree model. However,
in practice researchers may use different tree building algorithms or change
the parameters of tree building algorithms to generate multiple tree models.
TPP can be extended to preserve multiple tree models. Suppose there are
By, Bs, ..., B, tree building algorithms (it could be the same algorithm with
different parameter settings), and they generate tree models P, Py, ..., P,.
Figure 4 shows the extended algorithm that preserves all these tree models. The
extended algorithm is very similar to the original TPP algorithm except that it
tries to preserve the conditions in Theorem 1 (which guarantees preservation
of tree models) for all the tree models. For example, at step (3a) of the extended
algorithm, we will collect boundary values in all the tree models rather than in
a single tree model for a numerical attribute A;. At steps (3b) and (3¢) intervals
of A; will be formed using all these boundary values. Later values of A; are
transformed in step (3d), which is in the same way as in TPP. This will ensure
that the split on A; in all these tree models will be preserved.

For example, consider the 6 points in Figure 3. Suppose tree P; splits between
r3 and r4 and tree Ps splits between ro and r3. Thus the extended TPP algorithm
will generate 3 intervals: rq to re, r3, and ry4 to rg. Clearly, both the split between
ro and rg and the split between r3 and r4 will be preserved.

The complexity of the extended algorithm is at most u (the number of tree
models) times the complexity of the TPP algorithm.

4. EXPERIMENTAL EVALUATION

Data. We used two real-life datasets: the Adult dataset from UCI Repository
of Machine Learning datasets [Hettich et al. 1998] and the Cancer dataset
obtained from University of Kentucky Cancer Research Center. The Adult data
contains census data and is also the de facto benchmark in the literature. It
contains 30717 records, 5 numerical attributes, and 7 categorical attributes. We
used “occupation” as the sensitive attribute and the rest as quasi-identifiers.
The Cancer dataset contains 3537 records. It has 3 numerical attributes and
3 categorical attributes. We used “histology” as the sensitive attribute. Our
method was implemented in R. The experiment was run on a desktop PC with
3.2G HZ CPU and 2GB RAM, running Windows XP.

Methods. For the Adult dataset, we built a decision tree to predict whether
the annual household income is over 50K. For the Cancer dataset, we built
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1. Run tree building algorithm B, B0, B, to generate top level of trees P;, P,, O,
P..
2. For each attribute 4; that is not the response variable and is not used in any of P,
P,, ..., P, replace its value with a single value (for categorical attribute, use ALL;
for numerical attribute, use mean of 4;).
3. For each numerical attribute 4; that appears in at least one tree, do the following:
a) For each node x in P; that uses 4; as split attribute, collect boundary values as
the maximal A4; value in the left child and the minimal 4; value in the right
child.

b) Sort values of 4; and divide them into intervals using boundary values
collected in step 3a) from all trees

¢) If an interval contains two boundary values, split it into two equal size
intervals such that each contains only one boundary value. Compute the mean
of each new interval, let them be u;, u,, ...

d) For each node x in P that uses 4; as split attribute, let v; (v,) be the maximal
(minimal) A4; value in the left (right) child of x. Let /; (/;) be the intervals with
v; (vy) as the right (left) boundary. Compute d = min{v; - u;, u, -v,}. Replace
values in /; with v;-d, and values in 7, with v,+d.

4. For each categorical attribute 4; that appears in any of P, P, O, P,, if two-way
split is used, divide values of 4; into groups such that the values in the same group
appear in the same branches in P, P,, O, P, (this can be done by sorting values
on the branches they appear). Replace values of 4; in the same group with the
same generalized value.

5. Group all records on quasi-identifier attributes. For each group, check whether it
satisfies K-anonymity and L-diversity.

6. If privacy requirements are satisfied, call tree building algorithm B;, O, B, to
expand all trees once more and rerun step 2 to 5 until the stopping conditions are
met.

7. Otherwise, return the last trees that satisfy the privacy requirements and the data
sanitized based on these trees.

Fig. 4. Tree-Pattern-Preserving algorithm extended to preserve multiple trees.

a regression tree to predict the number of years a patient will survive after
diagnosis of cancer. We compare our method (TPP) to the InfoGain method
in LeFevre et al. [2006b] because it has the best prediction accuracy among
existing methods. InfoGain partitions data into groups such that information
gain is maximized. It then generalizes quasi-identifier attributes in each group.
It does not satisfy Condition 3 in Theorem 1 (preserving order and split values
for numerical attributes), thus it does not preserve decision trees or regression
trees.

Metrics. We reported the accuracy of mining models built from the sanitized
data using 10-fold cross-validation. We used K-anonymity and L-diversity to
measure the degree of privacy protection. Larger K and L mean more protection.
In terms of L-diversity, the sensitive attributes in both datasets are not used in
the decision tree or regression tree model and are thus suppressed by both TPP
and InfoGain. This is the best a privacy protection method can do. The best
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Fig. 6. R square of regression trees on Cancer data.

strategy for attackers is to assume that the sensitive attribute always has the
most frequent value, assuming that attackers know the most frequent value of
the sensitive attribute. We use the strong form of L-diversity where the fraction
of the most frequent values in each equivalence class must be less than 1/L
[Xiao and Tao 2006]. Thus the maximal probability of privacy breach is 1/L.

Accuracy of tree models. Since both the prediction accuracy and the degree
of privacy protection vary with the size of trees, we varied tree size (as the
number of leaf nodes) in our experiments. Figure 5 reports the accuracy of
decision trees built from sanitized data. The accuracy for trees built from the
original data is also reported as the baseline. The results show that the trees
built from data sanitized by TPP have higher accuracy than the trees of the
same size but built from data sanitized by InfoGain. More importantly, TPP
always preserves the decision tree model while InfoGain never preserves the
model in all experiments. The accuracy using data sanitized by TPP is the same
as that using original data because TPP preserves decision trees.

Figure 6 reports the R square of regression trees built from sanitized data.
Again, the trees built from TPP have the same mining quality (in terms of R
square) as the trees built from the original data. InfoGain does not preserve
regression trees and also leads to lower R square.

Privacy results. Figures 7 and 8 report K-anonymity results for the two
datasets, respectively. K decreases as the tree becomes larger because as
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Fig. 8. K-anonymity on Cancer data.

the tree grows, more intervals will be generated by TPP and the degree of
generalization becomes less. The K values for TPP are slightly worse than
those of InfoGain for trees with 4 or 5 leaves, because TPP preserves the tree
model and thus does less generalization. This is the price we pay for preserving
mining models.

Figures 9 and 10 report L-values for the two datasets, respectively. In all
experiments, the values of L for both methods are quite close and are in the
range of 2 to 3 for the Adult data and are in the range of 3 to 4 for the Cancer
data. This means that the probability of privacy breach is at most 1/2 for Adult
and 1/3 for Cancer, assuming that the attackers know the most frequent values
of sensitive attributes. These probabilities are relatively high, largely due to
the skewed distribution of sensitive attributes. For example, the probability of
most frequent value of the sensitive attributes is 0.135 in the Adult dataset and
is 0.24 in the Cancer dataset. Thus even if we completely distort the dataset (by
making all nonsensitive attribute values identical), the probability of privacy
breach is still 0.135 in Adult and 0.24 in Cancer.
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Tree size can be decided by considering the trade-off between prediction ac-
curacy and the degree of privacy protection. For example, for the Adult dataset,
the tree with 4 leaves seems to give the best trade-off. A smaller tree size is
usually preferred because it is less likely to overfit the data. It also leads to
better privacy protection. Thus, a rule of thumb is to use the smallest tree that
provides sufficient accuracy.

Accuracy of other mining methods. We also conducted experiments simu-
lating the cases when other researchers reanalyze the published data using
different mining methods. We assumed that other researchers would use two
other classification methods: naive bayesian and support vector machine for the
Adult dataset. They would also use another prediction method: linear regres-
sion for the Cancer dataset. Figure 11 reports the accuracy of naive Bayesian
using the Adult dataset sanitized by TPP or InfoGain as training data. Figure
12 reports the results for SVM. Figure 13 reports the R square of linear re-
gression on the Cancer dataset sanitized by TPP or InfoGain. All results show
that TPP leads to better mining quality than the InfoGain method. Further,
the mining quality using data sanitized by TPP is also quite close to that of the
original data when tree size reaches 4.
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Fig. 13. R square of linear regression on Cancer data.

A possible explanation is that when different mining methods are used for
the same mining task (e.g., to predict the class label), they all rely on similar
patterns in the original data. For example, decision trees, naive Bayesian,
and SVM all rely on the correlation between other attributes and the class
label attribute to predict class labels. By preserving decision tree models, our
approach already largely preserves such correlations. Thus our approach also
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Table I. Accuracy and K Values when Preserving Two Tree Models

K-value Accuracy
Only Tree 1 preserved 154 0.8051568
Only Tree 2 preserved 120 0.7471107
Both Tree 1 and Tree2 preserved 64 0.8051568 (for treel)
0. 7471107 (for tree2)

leads to good mining results for naive Bayesian and SVM. Therefore, when
researchers try a different mining method on the sanitized data, our proposed
method (TPP) is still very likely to give better mining results than existing
methods.

Preservation of two tree models. Figure 14 shows two trees we want to pre-
serve in the sanitized Adult dataset. These trees are built using two different
tree building algorithms in R: “class” and “anova”. Though both trees try to
predict the same attribute “income”, they have different tree structure since
the second level of splits.

We used the extended TPP algorithm (described in Section 3.4) to produce
the sanitized data based on two trees. Table I shows the accuracy as well as
K values for three cases: (1) when the first tree was preserved, (2) when the
second tree was preserved, (3) when both trees were preserved. The results
show that our method does preserve both trees as well as the accuracy of
both tree models. However, the degree of privacy protection (i.e., value of K)
decreases due to extra sanitization that is needed to preserve both trees.

Execution time. The execution time of our method was less than 2.5 seconds
in all experiments. We also ran an experiment to examine the scalability of our
algorithm. We generated 10 datasets containing 6.25%, 12.5%, 25%, 50%, 100%
of the records in the Adult dataset. Figure 15 reports the execution time of TPP
over these datasets. We also generated 10 datasets containing 3, 4, 5,.., to all
12 attributes. Figure 16 reports the execution time of TPP over these datasets.
The results show that TPP scales almost linearly with both number of records
and number of attributes.

5. CONCLUSION

This article proposes a privacy protection technique that preserves decision
tree and regression tree models and at the same time protects privacy. We first
identify conditions that a privacy protection method must satisfy to preserve
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the mining models and then design an efficient algorithm that satisfies these
conditions.

Experimental results show that our approach not only preserves decision
tree and regression tree models, but also leads to better mining quality for
several popular mining methods over the sanitized data.

Researchers can use our approach to sanitize their research data and then
publish the sanitized data along with mining models. Other researchers can
verify the published models using the published data. They can also try other
mining methods on sanitized data to solve the same research problem. Applica-
tion of our approach may potentially reduce both research fraud and encourage
sharing of research data.

As future work, we will investigate whether our approach can be extended
to preserve other types of data mining models. Further, it will be interesting to
study whether a privacy protection method can preserve the relative order of
performance of different mining models. For example, suppose on the original
dataset a mining model A (e.g., a decision tree model) is superior to a different
mining model B (e.g., a naive Bayesian model), it will be desirable if model A
is still better than model B in the sanitized data.
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