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a b s t r a c t

There has been relatively little work on privacy preserving techniques for distance based
mining. The most widely used ones are additive perturbation methods and orthogonal
transform based methods. These methods concentrate on privacy protection in the average
case and provide no worst case privacy guarantee. However, the lack of privacy guarantee
makes it difficult to use these techniques in practice, and causes possible privacy breach
under certain attacking methods. This paper proposes a novel privacy protection method
for distance based mining algorithms that gives worst case privacy guarantees and protects
the data against correlation-based and transform-based attacks. This method has the fol-
lowing three novel aspects. First, this method uses a framework to provide theoretical
bound of privacy breach in the worst case. This framework provides easy to check condi-
tions that one can determine whether a method provides worst case guarantee. A quick
examination shows that special types of noise such as Laplace noise provide worst case
guarantee, while most existing methods such as adding normal or uniform noise, as well
as random projection method do not provide worst case guarantee. Second, the proposed
method combines the favorable features of additive perturbation and orthogonal transform
methods. It uses principal component analysis to decorrelate the data and thus guards
against attacks based on data correlations. It then adds Laplace noise to guard against
attacks that can recover the PCA transform. Third, the proposed method improves accuracy
of one of the popular distance-based classification algorithms: K-nearest neighbor classifi-
cation, by taking into account the degree of distance distortion introduced by sanitization.
Extensive experiments demonstrate the effectiveness of the proposed method.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

With the explosive growth of data and their shared and distributed sources, the need for cooperative and profitable anal-
ysis of the data has become increasingly high across organizations. Associated to this, however, are the concerns of privacy
breaches of the shared data which might have important legal and strategic consequences for organizations. Information like
salary, age, or credit ratings of individuals might turn out to be important data items to be mined and shared across
companies to extract knowledge but cannot be directly shared for the concerns of privacy breaches. A typical scenario is
as follows. Suppose a company A has a huge volume of home/car loan related data of a big customer pool. Based on this
data, company B wants to classify some new individuals who applied for loans from company B as eligible or not. Clearly
A cannot share the entire data directly with B without some scheme that will protect individual information yet allow
the classification task of B to proceed with minimum error.
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There has been a rich volume of work on privacy preserving data mining which focuses on accurate mining while at the
same time preserving privacy of the data [5,4,45,6,21,20,30,38,11,28,50,51,58]. However, there has been relatively little work
on privacy preserving techniques for distance based mining methods. One of the most commonly used privacy preserving
methods is additive perturbation approach which adds random noise to the data such that individual data values are dis-
torted while the underlying distribution can be reconstructed with fair degree of accuracy [5,4,6,58]. However there are
two major flaws for additive perturbation methods. First, Euclidean distances between individual data points are distorted.
Thus the accuracy of distance based mining methods may drop. Second, additive perturbation methods are vulnerable to
attacks based on data correlations. For example, [25] has shown that for highly correlated datasets, simply doing a Principal
Component Analysis and reconstructing the data based on first few components can filter substantial amount of noise. [29]
presented an even more sophisticated method of attacking additive perturbation through eigen analysis of random matrices
and utilizing inherent correlations of datasets.

Of the very few works on privacy preserving techniques for distance based mining, most apply orthogonal transforms on
the data so that distances between data points are preserved. Thus distance-based mining methods will achieve high accu-
racy over transformed data. Oliveira and Zaane [42] proposed several types of geometric transforms such as rotation, trans-
lation, and scaling that preserve Euclidean distance. Chen and Liu proposed a method that applies a random rotation [10] to
the data. A random projection method has been proposed in [36]. This method projects original data of m dimensions to
smaller number of k dimensions by multiplying the data with a random matrix of size m� k. It is observed that Euclidean
distance is often distorted to a great extent using this method when k is small [41]. Mukherjee et al. [41] have proposed a
method using discrete cosine transform for distance-based mining. As shown in [41], the DCT method achieves a better pri-
vacy versus accuracy trade off than either the random projection method or the additive perturbation method for K-nearest
neighbor classification and K-means clustering. To prevent attacks that do a reverse DCT, the selected coefficients are
permuted column-wise and the permutation is concealed. Mukherjee et al. [40] further proposed a coefficient selection
method using Fuzzy Linear Programming to achieve a tradeoff between privacy and accuracy of mining over the transformed
data.

However the next section will show that none of the existing methods provide any worst-case privacy guarantee and this
causes serious problems.

1.1. Problem of lack of worst-case privacy guarantee

Most existing studies consider some form or other of average privacy breach measures such as the confidence interval
measure [5] or the entropy based measure discussed in [4]. However a privacy protection technique that works in the aver-
age case may not provide enough protection in the worst case. In the next few paragraphs, this paper will show that existing
techniques are vulnerable to a number of attacking techniques. Further, without worst case guarantee, it is difficult to mea-
sure the extent to which an attacker can recover the data. In consequence, it will be difficult to apply such privacy preserving
methods in real life because it is hard to convince users that these methods provide enough privacy protection.

As mentioned earlier, most existing privacy protection methods for distance-based mining are transform based. In the
worst case, the transform may be recovered by attackers and the original data will be compromised. For example, for the
DCT based methods proposed in [41], the transform will be compromised if the attacker somehow knows the permutation
of DCT coefficients. For the random projection method, the random projection matrix will be compromised if the seed to gen-
erate this matrix is revealed.

Further, Liu et al. [35] proposed a method that can recover the transformation when attackers know a small sample of the
original data or a sample of data that follows the same distribution of the original data. This attacking method uses the fact
that eigen values of the covariance matrix of the sanitized data are the same as eigen values of the covariance matrix of the
original data. This allows the attacker to infer the transform from the perturbed data and the known sample. Thus using
transform based method alone is not safe in the worst case (e.g., when some sample points are known) because the trans-
formation may be recovered in the worst case.

Since using transformation methods alone is not safe, one could certainly try to use an additive perturbation method or
combine an additive perturbation method with a transform method to provide more privacy protection. However, as men-
tioned earlier, additive perturbation methods alone are also vulnerable to attacks using inherent correlations of data [25].
Additive perturbation methods are also vulnerable to other type of attacks that are based on conditional probability [20].
An example will illustrate this.

Example 1.1. consider a data set that contains salary of employees and only one employee has salary of 150,000 and other
employees have a lower salary. Suppose a uniform noise ranging from [�100,000,100,000] has been added to the salary of
employees. The ranges are known to an attacker.

Let X be a random variable representing original data value and Y be a random variable representing randomized data
value. Suppose the attacker observes a randomized salary of 250,000 (i.e., Y ¼ 250;000). The conditional probability of
the original salary being 150,000 (i.e., P½X ¼ 150000jY ¼ 250000�) is 1 because otherwise the perturbed salary will be lower
than 250,000. Thus the original salary can be inferred as 150,000. This attacking method is called q1 to q2 privacy breach
where q1 here is the probability of the salary being 150,000 in the original data, and q2 is the conditional probability of salary
being 150,000 after observing a perturbed value of 250,000.
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1.2. Contributions

This paper proposes an approach that will provide worst case privacy guarantees for distance-based mining algorithms.
This approach combines additive perturbation and Principal Component Analysis [26] to provide better privacy protection.
The basic idea is to apply PCA first to the data set, and then add a special type of noise such as Laplace noise (the reason will
be explained in Section 4) to the principal components. PCA removes correlations in data. Thus unlike existing additive per-
turbation methods, the noise added by proposed approach cannot be filtered out using attacking methods such as the one
proposed in [25] that use data correlations.

The noise addition step provides two additional privacy protections. First, it protects against attacking methods such as
[35] that can recover the transform and thus can recover the original data. Such attacking methods can recover the PCA
transform, but cannot remove the added noise. Second, the noise addition step protects against the q1 to q2 privacy breach
discussed in [20].

The contributions of this work are the follows:

� This paper extends the worst case privacy guarantee model proposed in [20] to continuous data. It also proposes necessary
and sufficient conditions for additive noise distributions to provide worst case privacy guarantees. Interestingly, this paper
also shows that many existing methods such as additive perturbation with normal or uniform noise, as well as random
projection method which are secure in the average case do not provide worst case guarantee. This paper shows that noise
following Laplace distribution will give worst case privacy guarantees.

� This paper proposes a data sanitization method for distance-based mining. This method combines PCA and additive per-
turbation method, and guards against several existing attacking methods, including the method that recovers transforma-
tion [35], the method that filters noise using data correlation [25], and the method that uses q1 to q2 privacy breach [20].
To the best of our knowledge, our method is the first that guard against all these three attacking methods.

� This paper proposes modification to the well known K-nearest neighbor classification algorithm to make it perform more
accurately over the perturbed data. To the best of our knowledge, no effort has been made so far to make additive pertur-
bations suited for distance based algorithms. The major challenge is that data points are scattered after noise addition.
This paper modifies the nearest neighbor-search space of the ordinary K-nearest neighbor algorithm by taking into
account the distance distortion introduced by the added noise. This modification improves the accuracy of K-nearest
neighbor classification over sanitized data.

Although this work primarily focuses on distance-based mining, the first contribution also applies to any additive pertur-
bation methods, regardless of the mining methods. For example, one can add Laplace noise to data and apply the same dis-
tribution reconstruction techniques proposed in [5,4] for decision tree mining. The second contribution is also applicable to
any distance-based mining method. As reported in [17], most existing work on privacy preserving mining only targets one
type of mining methods, and there is a great need for methods that can work for multiple mining methods. The first and
second contribution of this work is one step in the right direction and we plan to investigate privacy preserving methods
that can provide worst case privacy guarantee for multiple mining methods as future work.

The rest of this paper is organized as follows. Section 2 describes the related work. Section 3 provides necessary back-
ground to distance-based mining and the worst-case privacy protection model proposed in [20]. Section 4 extends the model
to continuous data and proposes necessary and sufficient conditions for an additive noise distribution to provide worst case
privacy guarantees. This section also analyzes whether several commonly used noise distributions give such guarantees. The
results for random projection method is also investigated. Section 5 presents the details of the proposed method and the
modification to K-nearest neighbor classification. Section 6 reports the results of extensive experiments over real-life and
synthetic data. The results demonstrate the superiority of the proposed method over existing ones. Section 7 concludes
the paper and discusses future work.

2. Related work

Existing research on privacy can be divided into two categories. The first category tries to hide the data values while the
second category tries to hide the identity of entities when publishing data [47,34,2,8,22,46,37,55]. This paper focuses on the
first type of privacy problem.

2.1. Privacy preserving work for distributed mining

The first type of research can be further divided into two subcategories. The first one considers a distributed environment
where multiple parties want to do data mining jointly but at the same time keep their own data private. There has been a
rich body of work in this field. Since many data mining algorithms generate learning models which are essentially functions,
existing work in this field applies techniques called secure multi-party computations (SMC) [23]. SMC allows different parties
to share information securely and jointly calculate some function over datasets of all parties. [16] discussed many of the pro-
tocols developed so far in the field. [44] discussed some applications of these methods in privacy preserving data mining.
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Most proposed methods use various modifications of secure multi-party protocols in different kinds of mining techniques
and scenarios. [27,51] proposed methods for secure computation of association rules over horizontally and vertically parti-
tioned data. [19,9] addressed the issue of building decision trees for heterogeneous distributed data while [28] proposed a
method to build Naive Bayes classifier over horizontally partitioned data. [32] reported the use of Fourier representation of
decision trees on horizontally partitioned data. Methods for secure K-nearest neighbor classification and k-means clustering
over distributed data were also discussed in [57,31,50], respectively. [52] gave a survey of research in this area. However, this
paper considers the case that data is sanitized and then shipped to a third party for mining.

2.2. Privacy preserving methods for non-distributed mining

The second subcategory considers non-distributed environment. Unlike the work for distributed environment, work in
this area typically does not use intermediate results of mining, thus the mining is completely done by the receiver of the
data. The work for non-distributed environment typically sanitizes data through randomization of values. Additive pertur-
bation is probably the first and simplest method in this category. [5] used the scheme to sanitize data and developed a meth-
od of building decision tree classifiers over the sanitized data. [58] discussed issues of optimal randomization. However, as
mentioned in Section 1, additive perturbation is vulnerable to attacks based on data correlations [25,29]. Kim and Winkler
[33] proposed a Multiplicative perturbation method that multiplies a random number with mean 1 to the original data. Note
that multiplicative perturbation is the same as adding a random noise to the log of original data values. Thus this method is
as vulnerable as additive perturbation under attacks based on data correlations.

As mentioned in Section 1, a few transform-based methods have been proposed for distance-based mining
[36,42,41,40,10]. As described in Section 1, these methods are vulnerable to attacks that can recover the transform [35].

A data swapping approach was proposed in [13]. It randomly swaps the values of different data points. This method is not
safe because there is no guarantee that the swapped values will be much different from the original values.

A condensation approach was proposed in [1]. The method first divides data into size k clusters, and then replaces data
points in each cluster with a random sample generated based on the distribution of the original data in that cluster. This meth-
od may work for some distance-based mining algorithms because the distance between clusters are likely preserved. How-
ever, it has no guarantee in terms of privacy because the generated sample values may be very close to the original data values.

A randomized response approach was also proposed [18] for decision tree mining. It is unclear whether it will be appli-
cable to distance-based mining.

Further, as mentioned in Section 1, all above methods only consider average case privacy and do not give any worst case
privacy guarantee. This paper proposes a method that gives worst case privacy guarantees and guards against several exist-
ing attacking methods mentioned in Section 1.

Evfimevski et al. first proposed a worst-case privacy model and used it for association rule mining in [20]. [6] further
developed an optimal matrix theoretic scheme for random perturbations of categorical data and provided guarantees
through amplification. However both [20,6] suggest some specific randomization schemes suited for discrete data and only
consider mining of association rules from the perturbed data. This paper extends the model to continuous data. This paper
also proposes necessary and sufficient conditions for an additive perturbation method to give privacy guarantee under this
model. It also proposes a method for preserving privacy for distance-based mining. To the best of our knowledge, this paper
is the first to use amplification to provide worst case privacy guarantees for additive perturbation methods.

3. Background

This section gives the necessary background to distance based mining (Section 3.1) and to the worst case privacy model
over discrete data (Section 3.2).

3.1. Distance based mining

Distance-based mining is a class of mining methods that use distance between data points. The basic assumption of these
methods is that if two data points x and y are close to each other, they should have similar properties (e.g., having the same
class label). Two of the most popular distance based mining methods are K-Nearest Neighbor (KNN) classification [12] and
K-means clustering [39]. The basic KNN algorithm works as follows. Given a training data set and a test data point x, the k
closest training data points to x are selected. The class label of x is set to the class label that appears most frequently in the
K-nearest neighbors. There also has been a lot of research on efficient algorithms to classify a test data point using KNN,
including using index structures [3,56] and optimizing the KNN search using cost models [49].

3.2. Worst case privacy model for discrete data

This section describes a worst case privacy model first proposed in [20]. This model is called the amplification model be-
cause it uses a concept called amplification to compute the degree of worst case privacy protection for a type of attack called
q1 to q2 privacy breach. This model was developed for discrete data. Section 4 will extend this model to continuous data.
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Below is the formal definition of q1 to q2 privacy breach. Let X be a random variable that represents an attribute in the
original data. Let x be an instance of X. x will be randomized to y using a randomization operator RðxÞ (i.e., RðxÞ ¼ y). Let
Y be the random variable represent the result of RðXÞ, i.e., the results after randomization. Let y be an instance of Y. Let
VX and VY be the domain of X and Y, respectively. Let QðXÞ be a property of X, for example, whether the value of X falls
in a certain range.

Definition 1. There is a q1 to q2 privacy breach with respect to property QðXÞ if for some y 2 VY

P½QðXÞ� 6 q1 and P½QðXÞjY ¼ y�P q2;

where 0 < q1 < q2 < 1; P½Y ¼ y� > 0:

This definition is called upward q1 to q2 privacy breach. Here QðXÞ is the property of the original data (could be the values
of the original data). The definition states that if Q(X)’s probability is very low (below q1) in the original data, but its condi-
tional probability given the observed randomized value of y is very high (over q2), then a third party can infer that the ori-
ginal data satisfies QðXÞ if he sees the perturbed value of y. A q2 to q1 downward privacy breach is defined similarly in [20]
which depicts a situation vice versa to the one stated above. Example 1.1 in Section 1 illustrates a case of upward privacy
breach, where QðXÞ is the property that salary of an employee equals 150,000.

A randomization operator provides a certain degree of worst case privacy if it does not allow any q1 to q2 or q2 to q1 pri-
vacy breach. [20] introduces the definition of amplification to provide such guarantees.

Definition 2. A randomization operator R(x) is at most c-amplifying for y 2 VY if

8x1; x2 2 VX :
P½x1 ! y�
P½x2 ! y� 6 c:

Here P½x! y� represents the probability of mapping a value x 2 VX to a value y 2 VY . It is important to note that as ex-
plained in [20], this probability does not depend on the distribution of X (only the domain of X is needed). Intuitively, ampli-
fication defines the maximal ratio between probabilities of any two original data values being randomized to some same y
value, and thus limits the possibility of inferring the original value based on y value. In [20] the authors proved a very useful
bound relating to the amplification and q1 to q2 privacy breach.

Theorem 3. Let R be a randomization operator, y 2 VY be a randomized value such that 9x : P½x! y� > 0 and 0 < q1 < q2 < 1 be
the two probabilities from Definition 1. Suppose R is at most c-amplifying for y. Revealing RðXÞ ¼ Y will cause neither an upward q1
to q2 privacy breach nor a downward q2 to q1 privacy breach with respect to any property if

q2ð1� q1Þ
q1ð1� q2Þ

> c: ð1Þ

Based on Theorem 3, a randomization operator will provide the worst case privacy guarantee if it has a bounded ampli-
fication value. The degree of the guarantee is determined by the amplification value as the way stated in this theorem. Con-
sidering an upward privacy breach, if q1 is fixed, after some arrangement of Eq. (1), there will be no upward privacy breach if

q2 P
cq1

1þ ðc� 1Þq1
: ð2Þ

For example, suppose c ¼ 20, q1 ¼ 0:001, then for any q2 P 0:02, it is guaranteed that no q1 to q2 privacy breach will occur.

4. Worst case privacy model for continuous data

This section describes a worst case privacy model for distance-based mining. Since Euclidean distances are computed
over continuous data but the amplification model described in Section 3.2 only applies to discrete data, Section 4.1 extends
this model to continuous data. Section 4.2 identifies the necessary and sufficient conditions for additive noise distributions to
give bounded amplification values. Section 4.3 examines whether several commonly used noise distributions as well as
random projection method give bounded amplification values and hence provable privacy guarantees.

4.1. Extension to continuous data

This section extends the amplification model for continuous data and additive perturbation. Let X be a bounded contin-
uous random variable defining data, following a distribution having finite support. In most real life scenarios, the assumption
that the data is bounded is quite justified. Further, let D be a random variable that represents the additive noise and follows a
continuous probability density distribution fDðdÞ, where d is a specific value of D.

Note that for continuous data, the probability at each value is zero. Thus it is natural to consider the probability of map-
ping a small range of values of X to a certain y. The equation below represents the probability of mapping an x value in the
range of ½x1; x1 þ dx� to y

Pð½x1; x1 þ dx�Þ ! y:
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Similarly one can define a probability of Pð½x2; x2 þ dx�Þ ! y. Based on the definition of probability density function, we have

lim
dx!0

Pð½x1; x1 þ dx�Þ ! y=dx ¼ lim
dx!0

Pðxþ d ¼ yjx 2 ½x1; x1 þ dx�Þ=dx ¼ lim
dx!0

Pðd ¼ y� xjx 2 ½x1; x1 þ dx�Þ=dx

¼ lim
dx!0

Pðy� x1 � dx 6 d 6 y� x1Þ=dx ¼ fDðy� x1Þ since f DðdÞ is continuous:

Let A denote the limit of the ratio of Pð½x1; x1 þ dx�Þ ! y=Pð½x2; x2 þ dx�Þ ! y as dx! 0. Then amplification can be defined for
continuous data as follows:

Amax ¼ max
x1 ;x22Vx ;y2Vy

lim
dx!0

Pð½x1; x1 þ dx� ! yÞ
Pð½x2; x2 þ dx� ! yÞ ¼ max

x1 ;x22Vx ;y2Vy
lim
dx!0

Pð½x1; x1 þ dx� ! yÞ=dx
Pð½x2; x2 þ dx� ! yÞ=dx

¼ max
x1 ;x2 ;y

fDðy� x1Þ
fDðy� x2Þ

: ð3Þ

Here y� x1 and y� x2 are essentially the amount of noise added to points x1 and x2. Similarly Theorem 3 can be extended to
continuous data using the amplification defined for continuous data.

4.2. Necessary and sufficient conditions for bounded amplification

As mentioned earlier, a bounded amplification provides the worst case privacy guarantee. However, not all types of noise
will give bounded amplifications. This section presents the necessary and sufficient conditions for the probability density
function of added noise ðfDðdÞÞ to give bounded amplification ðAmaxÞ.

Theorem 4. Amplification for an additive noise distribution is bounded if and only if the following three conditions hold:

1. The density distribution of noise, fDðdÞ, should have infinite support, that is D 2 ð�1;þ1Þ.
2. fDðdÞ should not have a zero value for any value of D in �1 < D < þ1.
3. fDðy�x1Þ

fDðy�x2Þ
should be bounded as y! �18x1; x2 2 Vx.

Proof. Necessity:

Condition 1. This condition can be proved by contradiction. Fig. 1a gives the intuition of proof. Let the density distribution of
D be supported in a finite interval a 6 D 6 b. This paper assumes that x is bounded. Let xL 6 x 6 xUðxL < xUÞ, and ymax be the
maximum possible value of y. Thus, ymax ¼ xU þ b. By the definition of amplification, amplification is bounded only if xL can
be also mapped to ymax with non zero probability. However, this is impossible because the maximal noise is b, and xL < xU,
thus the maximal value xL can be mapped to is xL þ b, which is less than xU þ b (i.e., ymax).

Condition 2. To prove the necessity of this condition, consider the following lemma.

Lemma 5. If the density function fD can have zero values, then there exists a pair of d1, d2 such that fDðd2Þ ¼ 0; jd2 � d1j 6 xU � xL,
and fDðd1Þ > 0.

This lemma basically states that it is possible to find a pair of d1 and d2 that are close enough (within xU � xL) and have a
positive and zero fD values respectively.

If this lemma is true, then it is quite straightforward to prove the necessity of Condition 2. Fig. 1b shows the intuition of
proof. Simply take the pair of d1 and d2 described above, and assume without loss of generality that 0 < d2 � d1 6 xU � xL. Let
x2 ¼ xL; x1 ¼ xL þ d2 � d1. Clearly, x1 also falls in the range of xL and xU because x1 ¼ xL þ d2 � d1, and 0 < d2 � d1 6 xU � xL.
Note that x1 þ d1 ¼ xL þ d2 � d1 þ d1 ¼ xL þ d2, and x2 þ d2 ¼ xL þ d2. Thus x1 þ d1 ¼ x2 þ d2 as shown in Fig. 1b.

Let y ¼ x2 þ d2, thus y ¼ x1 þ d1 too. Now fDðy� x1Þ ¼ fDðd1Þ > 0, but fDðy� x2Þ ¼ fDðd2Þ ¼ 0. Thus the amplification which
equals the ratio of fDðy� x1Þ to fDðy� x2Þ is infinite. Hence fD has positive value at all points is necessary for finite amplifi-
cation. The remaining task is to prove the lemma.

This lemma can be proved by contradiction. Let us assume fDðd2Þ ¼ 0. The intuition of the proof is given in Fig. 1 (c). If the
lemma is not true, there is no d1 within distance xU � xL to d2 and has positive fD value. Thus fDðd1Þmust be 0 for any d1 such
that jd2 � d1j 6 xU � xL, i.e., fD ¼ 0 within the interval of ½d2 � ðxU � xLÞ; d2 þ xU � xL�. Note that the density function fD is zero at
the two boundaries d2 þ xU � xL and d2 � xU þ xL as well. Thus the above deduction can be applied again at these two bound-
aries (i.e., consider d2 be one of the two boundary points). Now the zero density interval can be expanded to
½d2 � 2ðxU � xLÞ; d2 þ 2ðxU � xLÞ� as shown in Fig. 1c. This process can be repeated forever. Thus all points in ð�1;þ1Þ have
zero density. This contradicts with the fact that fD is a density function and should have some points with positive density.
Hence the lemma must be true.

Condition 3. By Condition 1, fDðdÞ is supported in d 2 ð�1;þ1Þ. Thus if Condition 3 does not hold true, then A!1 for
either of y! �1 and amplification becomes unbounded.

Sufficiency: The proof of sufficiency is straightforward. By Conditions 1 and 2, clearly for any x2; y; fDðy� x2Þ > 0. Thus for
any finite x1; x2; y, the amplification is finite and bounded. Since x1 and x2 are always bounded, we only need to consider the
case y tends to infinity. Since Condition 1 allows y to be in ð�1;þ1Þ, Condition 3 makes sure that as y tends to þ1 or �1,
the amplification is still finite and bounded. h
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4.3. Examination of commonly used noise distributions

Based on the necessary and sufficient conditions defined in previous section, this section investigates amplification for
additive perturbation using some common density distributions considered in literature.

4.3.1. Uniform noise
In this case the support of the distribution is not infinite. Thus Condition 1 is violated leading to unbounded amplification.

Example 4.1. consider a data set with an attribute X, which varies from 0 to 1. Suppose uniform noise in the range of 0–1 is
added. Let a property of X be X P 0:99. If an attacker observes a perturbed value of 1.99, he is 100% sure that the original
value must satisfy this property (otherwise the perturbed value will be less than 1.99). However, the probability of this
property in the original data may be very low. Thus an upward privacy breach occurs.

4.3.2. Normal noise
Let the density distribution of noise be Nð0; rÞ. In this case fD is defined in �1 < d < þ1 and is not 0 for any value in the

support domain. Thus Conditions 1 and 2 are both satisfied. However

A ¼ fDðy� x1Þ
fDðy� x2Þ

¼ e
fðy�x2 Þ

2�ðy�x1 Þ
2g

2r2 ¼ e
fð2y�x2�x1 Þðx1�x2 Þg

2r2 :

The above equation is unbounded for either of y! �1 depending on the sign of ðx1 � x2Þ. Thus Condition 3 is violated and
there is no bounded amplification for additive perturbation with normal noise. Below is an example of privacy breach when
normal noise is added.

Example 4.2. consider a data set with one attribute X with following distribution:

X ¼
0 with probability 0:99;
1 with probability 0:01:

�

Fig. 1. Proof of necessity conditions. (a) Condition 1; (b) Condition 2; (c) Lemma 5.
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Now suppose a normal noise with zero mean and unit variance is added to the data. Let Y be the perturbed attribute. Let
property QðXÞ be X ¼ 1. PðQðXÞÞ ¼ 0:01. Suppose an attacker observes a large perturbed value of y (e.g., y = 1000), then

PðX ¼ 1jY ¼ yÞ ¼ PðX ¼ 1;Y ¼ yÞ
PðY ¼ yÞ :

Since the noise is added independent of the value of X, we have

PðX ¼ 1jY ¼ yÞ ¼ PðX ¼ 1ÞPð1! yÞ
PðY ¼ yÞ ¼ 0:01

Pð1! yÞ
PðY ¼ yÞ : ð4Þ

Similarly, we have

PðX ¼ 0jY ¼ yÞ ¼ PðX ¼ 0;Y ¼ yÞ
PðY ¼ yÞ ¼ PðX ¼ 0ÞPð0! yÞ

PðY ¼ yÞ ¼ 0:99
Pð0! yÞ
PðY ¼ yÞ : ð5Þ

Divide Eq. (4) by Eq. (5), we have
PðX ¼ 1jY ¼ yÞ
PðX ¼ 0jY ¼ yÞ ¼

Pð1! yÞ
99Pð0! yÞ :

Let c ¼ Pð1!yÞ
Pð0!yÞ. Since PðX ¼ 0jY ¼ yÞ ¼ 1� PðX ¼ 1jY ¼ yÞ, the above equation can be rewritten as
PðX ¼ 1jY ¼ yÞ

1� PðX ¼ 1jY ¼ yÞ ¼
c

99
:

PðX ¼ 1jY ¼ yÞ is the only variable in the equation. Solving this equation will get

PðX ¼ 1jY ¼ yÞ ¼ c
99þ c

: ð6Þ

Next we compute c. Pð1! yÞ is the probability of mapping 1 to y, i.e., the probability of noise being y� 1. Thus

Pð1! yÞ ¼ e
�ðy�1Þ2

2 . Similarly, Pð0! yÞ ¼ e
�y2

2 . Thus

c ¼ e
y2�ðy�1Þ2

2 ¼ e
2y�1

2 ;

c becomes infinity as y goes to infinity. According to Eq. (6), PðX ¼ 1jY ¼ yÞ will increase and converge to 1. Note that
PðX ¼ 1Þ ¼ 0:01, thus an upward privacy breach occurs and the attacker can infer that the value of X is 1 with high proba-
bility if he sees a large Y value in perturbed data.

4.3.3. Laplace noise
f ðdÞ ¼ 1

2b e�jd�lj=b
� �

. It will be shown that for this distribution, amplification is finite. Clearly Condition 1 and 2 are satisfied
because the density function is supported at �1 < d < þ1 and the density function is always positive. Now consider a
Laplace distribution with location parameter l ¼ 0 and scale parameter b (amplification is still bounded if l 6¼ 0, however this
paper consider the l ¼ 0 case just for simplicity of mathematical calculation)

A ¼ fDðy� x1Þ
fDðy� x2Þ

¼ e
fjy�x2 j�jy�x1 jg

b :

There are four possible cases.

(a) x1 6 y 6 x2

A ¼ e
fjy�x2 j�jy�x1 jg

b

¼ e
fx2þx1�2yg

b ;

max
x1 ;x2 ;y

A ¼max
x1 ;x2

e
fx2þx1�2x1g

b

¼ e
fmaxðx2 Þ�minðx1Þg

b

¼ e
fmaxðxÞ�minðxÞg

b :

(b) x2 6 y 6 x1.
A similar calculation as case (a) leads to

max
x1 ;x2 ;y

A ¼ e
fmaxðxÞ�minðxÞg

b :

(c) x2; x1 6 y

A ¼ e
fjy�x2 j�jy�x1 jg

b

¼ e
fx1�x2g

b ;

max
x1 ;x2 ;y

A ¼ e
fmaxðx1 Þ�minðx2 Þg

b

¼ e
fmaxðxÞ�minðxÞg

b :
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(d) x2; x1 P y.
A similar calculation as case (c) leads to

max
x1 ;x2 ;y

A ¼ e
fmaxðxÞ�minðxÞg

b :

Thus in all cases amplification is bounded by the support bounds of data distribution and has the value of

Amplification ¼ e
fmaxðxÞ�minðxÞg

b ð7Þ

If Laplace noise is added to the data set in Example 4.2, a worst case privacy guarantee will be provided. The reasoning is the
same as in Example 4.2 until we reach Eq. (6)

PðX ¼ 1jY ¼ yÞ ¼ c
99þ c

:

Here c ¼ Pð1!yÞ
Pð0!yÞ. Since Laplace noise is added, Pð1! yÞ ¼ 1

2b e�ðy�1Þ=b, and Pð0! yÞ ¼ 1
2b e�y=b. Thus c ¼ eðy�yþ1Þ=b ¼ e1=b. Note that

when normal noise is added, the value of c tends to infinity if y tends to infinity. But for Laplace noise, c is bounded as y tends
to infinity and this will limit the probability q2 (in this case, PðX ¼ 1jY ¼ yÞ). For example, if a Laplace noise with b ¼ 0:5 is
added, c ¼ e1=0:5 ¼ 7:4, and PðX ¼ 1jY ¼ yÞ ¼ 0:069 using Eq. (6). More generally, if q1 ¼ 0:01, it is guaranteed that no upward
privacy breach with q2 over 0.069 will occur in this case.

4.3.4. Random projection method
Although not directly related to additive perturbations, it is interesting to see why random projection method does not

provide worst case privacy. Let D denote the dataset and xi
!
¼ ðxi1; xi2; . . . ; xinÞ be a row in the data. Further, let

rj
!
¼ ðr1j; r2j; . . . ; rnjÞ be the jth column vector in the random matrix. Let y

!
be the data vector mapped from xi

!
in the sanitized

data. Then the jth attribute of y
!

equals the inner product of rj
!

and xi
!

.

Example 4.3. Consider a very sparse data set where most data points are all-zero vectors. Let a property Qðxi
!
Þ be ‘xi

!
is not an

all-zero row vector’. Probability of this property is very low in the original data. An important observation is that if xi
!

is an all
zero vector, it will be projected to an all zero vector in the sanitized data because the inner product of an all zero vector and
any rj

!
equals 0. Now if the attacker observes a sanitized data vector y

!
which is not all zero, then he can infer that the original

data vector must not be an all-zero row vector because otherwise it will be projected to an all zero vector. Thus the probability
of Qðxi

!
Þ given a non all zero vector in the sanitized data is one. An upward privacy breach has occurred in this case.

It can be verified that some other density distributions such as the Student’s t-Distribution also gives bounded
amplification. However, Laplace distribution will be used in this paper because it is easy to be dealt with mathematically.

5. Proposed method

This section describes the proposed method. The method consists of two steps. The first step is the data sanitization step
and the second step is the data mining step. Section 5.1 describes the first step and Section 5.2 discusses privacy protection of
this method. Section 5.3 describes the second step.

5.1. Data sanitization

The overview of the proposed method is given in Fig. 2. Table 1 summarizes the symbols used in this algorithm. The
method takes the original data set D as input. Here D is represented by a n�m matrix where n is the number of records
and m is the number of attributes. A noise parameter b and the number of selected principal components s are also given
at input. s is selected such that only principal components with large values are retained. b determines the magnitude of
noise and in turn determines the amplification and degree of worst case privacy guarantees. A larger b leads to a higher de-
gree of privacy but at the same time may lead to less accurate mining results. Section 6 will show that in the experiments
conducted, a wide range of value s and b = 0.2–0.3 lead to still accurate mining results and at the same time provide reason-
able degree of worst case privacy guarantees.

The method starts with taking the principal component transform of the dataset D to produce a set of principal compo-
nent values DP . Noise from a Laplace distribution with location parameter 0 and scale parameter bi is then added individually
to each of the elements of the first s columns of DP to produce DNP . To scale the noise properly to suit the magnitude of values
of the PC values, bi is set to b � ðmaxfDi

Pg �minfDi
PgÞ. Section 5.2 will show this will lead to uniform amplification for all

columns. Di
P represents the ith principal component values (i.e., the ith column of DP) (Table 2).

The first s columns of the noisy principal component values (called PCs) are then sent to the party asking for the data to be
used as training set.

Complexity analysis: The noise addition process (steps 2–10) takes time OðmnsÞ. PCA takes Oðm2nÞ if exact results are
needed. However there exists efficient algorithms that compute approximate PCA [43]. The complexity of such algorithms
is OðmnsÞ. Thus the complexity of the proposed data sanitization method is OðmnsÞ.
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5.2. Privacy of proposed method

The proposed method combines PCA with additive perturbation. PCA completely decorrelates the data thereby guards
additive perturbation against the typical noise filtering attacks based on data correlations [25]. The additive perturbation
step guards against attacks that can recover the PCA transform (e.g., the attacking methods described in [35]) because such
attacks cannot remove the added noise.

Next we compute the amplification for the proposed method. The result will show that the proposed method also pro-
vides worst case privacy guarantee for q1 to q2 privacy breach.

One could certainly compute amplification using the original data values. However this paper computes the amplification
using the principal component values, not the original data values. The reason is that in the worst case, attackers can find out
the PCA transform (e.g., if the attacker learns the covariance matrix of original data) and will be able to infer the original data
values from the principal component values.

To compute amplification for the combined framework, let ai
!
¼ ðai1; . . . ; ainÞ denote the ith eigen-vector of the covariance

matrix and x1
!
¼ ðx11; x12; . . . ; x1nÞ and x2

!
¼ ðx21; x22; . . . ; x2nÞ be two arbitrary row vectors in the original data. Also let X1 and

X2 denote the ith PC scores to which the two data vectors are mapped respectively (i.e., X1 and X2 equal the dot product of ai
!

with x1
!

and x2
!

, respectively). Let Di
P and Di

NP denote the ith column of DP and DNP , respectively. Using the results from Eq. (3),
amplification for the ith PC can be computed directly over these principal component values as follows:

Fig. 2. Pseudo-code of the proposed method.

Table 1
Symbols

D Dataset
n Number of rows
m Number of attributes
DP Data after PCA (principal component matrix)
Di

P The ith principal component values (ith column of DP)
DNP Sanitized data after PCA and noise addition (the results of adding noises to DP)
s Number of principal components selected (appeared in DNP)
b Scale parameter for Laplace Noise
bi Scale parameter for the ith principal component

Table 2
Properties of datasets

Data set Number of attributes Number of records Number of classes

Wine 13 178 3
Pendigits 16 7494 10
Wisconsin diagnostic breast cancer 30 569 2
Magic04 10 19,020 2
Ionosphere 34 351 2
Iris 4 150 3
Waveform 21 5000 3
Synthetic 100 100,000 10
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Amax ¼ max
X1 ;X2 ;y

lim
dx!0

Pð½X1;X1 þ dx� ! yÞ=dx
Pð½X2;X2 þ dx� ! yÞ=dx

8X1;X2 2 Di
P ; y 2 Di

NP

¼ max
X1 ;X2 ;y

fDðy� X1Þ
fDðy� X2Þ

by Eq: ð3Þ:

If the noise follows Laplace distribution with zero mean, using Eq. (7) which computes the amplification for this kind of
noise, the amplification equals

Amax ¼ e
fmaxðDi

P
Þ�minðDi

P
Þg

bi ¼ e
fmaxðDi

P
Þ�minðDi

P
Þg

b�fmaxðDi
P
Þ�minðDi

P
Þg ¼ e1=b; ð8Þ

where bi is the scale parameter of the Laplace noise added to the ith PC scores. The bounds of Di
P are computed from the PC

scores of the data. Note that bi is proportional to the range of the ith principal components, thus the amplification for each
column is the same and dependent only on b. Further the PCs being independent, amplification is calculated on each column
individually since one cannot infer values of a column from another column.

5.3. Modifications to K-nearest neighbor

This section first describes the problem introduced by distance distortion, and then proposes modifications to KNN to
improve accuracy.

Problem of distance distortion: the major challenge remaining is that distances between data points are distorted after the
additive perturbation step. Thus a nearest neighbor in the original data may not remain a nearest neighbor in the sanitized
data (called false negative in this paper). Similarly, a point that is not a nearest neighbor in the original data may become a
nearest neighbor in the sanitized data (called false positive in this paper). Typically, a K-nearest neighbor algorithm uses a
small value of k to define the nearest neighbor search space. Thus the probability of false negative and false positive could
be pretty high for a small k value. This may lead to a substantial drop of the accuracy of K-nearest neighbor algorithm.

For example, Fig. 3a shows the points in the original data having two well defined clusters while Fig. 3b shows the per-
turbed data points. Let points in class 1 be represented with crosses and points in class 2 be represented with circles. Now
suppose A and B denote two data points in the test data falling in the two clusters, respectively. In the original data shown in
Fig. 3a, the two circles around point A and B represent the nearest neighbor search space for KNN when k ¼ 5. For point A,
four of the five nearest neighbors belong to class 1. Thus KNN will correctly predict point A belong to class 1. Similarly, KNN
will correctly predict point B belong to class 2. In the sanitized data shown in Fig. 3a, the two inner circles represent the near-
est neighbor search space when k ¼ 5. Now for point A, only 2 of the nearest neighbors still belong to class 1, thus KNN will
predict point A belong to class 2, which is wrong. Similarly, KNN’s prediction of point B’s class is also wrong. The accuracy of
KNN drops because the distances between data points are distorted.

While in general, a bigger value of k makes the ordinary KNN classification more resistant to noise, the approach can be
problematic in this case. First, an ordinary k-nearest neighbor algorithm with a big k value will pick up too many false
positives in perturbed data, resulting in poor classification. Second, the usual way to determine the right k is through cross
validation, which is extremely expensive.

There has also been work on locally adaptive KNN methods where the value k is selected locally (i.e., different k values
may be used for different test cases) [54]. The selection of k for each test case also depends on some form of cross validation.
For example, one such method stores for each training data point a list of values of k that correctly classify the training point
under leave-one-out cross validation. When a test data point is classified, M nearest neighbors of the test point are com-
puted, and that k which classifies correctly most of these M neighbors is used to classify the test data. However, [54] shows

A B A
B

Fig. 3. K-nearest neighbor algorithm over original and sanitized data.
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that there is no significant improvement using locally adaptive KNN methods for most commonly used data sets. Further, in
our setting, the degree of noise (e.g., the scale parameter b of Laplace noise) is known, thus we can infer some properties of
distance distortion introduced by noise. None of the existing methods considers such properties because in their settings, the
statistics of noise is typically unknown. This paper investigates a few modifications to the basic KNN that take into account
the properties of the added noises.

Modified KNN algorithm: the proposed algorithm uses two heuristics to improve the basic KNN algorithm over the sani-
tized data. The first heuristics tunes the search space for nearest neighbors according to the distance distortions. The second
heuristics uses distance-based weighing when selecting the class label for the test data point. Fig. 4 shows the pseudo-code
of the proposed algorithm. The algorithm assumes the data sender has computed the mean and variance of distance distor-
tion. The detail of computation will be described in Section 5.3.1. In lines (1)–(3), distances from the test point t to training
data are computed.

Adjusting nearest neighbor search space based on distance distortions: the new search space is a circle around the test data
point Y where the radius is computed based on mean and variance of distance distortion. The circle has the property that
most scattered data points will fall in this circle, thus false negative points will be included in the circle. The two outer circles
in Fig. 3b are the modified search space based on distance distortion statistics. It is clear that now KNN will give accurate
prediction.

Now we explain how to compute the radius of the search circle. Let d2 be the initial squared distance between a test point
Y and one of its neighbors X in the training set. Also let d02 denote the square of the distance between Y and X0 where X 0 is
distorted X. Let distance distortion bD be d02 � d2. Let lbD and r2bD be the mean and variance for bD, respectively, then Chebychev’s
inequality [53] for n standard deviations from mean gives

PðbD 6 lbD þ nrbDÞP PðlbD � nrbD 6 bD 6 lbD þ nrbDÞP 1� 1
n2 : ð9Þ

If bD can be further assumed to have unimodal distribution, then Vysochanskij Petunin’s inequality [53] gives

PðbD 6 lbD þ nrbDÞP PðlbD � nrbD 6 bD 6 lbD þ nrbDÞP 1� 4
9n2 8n P

ffiffiffiffiffiffiffiffi
8=3

p
: ð10Þ

For a well-behaved data set, distances between members of the same class should be negligible compared to distances be-
tween points of different classes. Thus ideally d2 will have a small value compared to inter-class distances. With a compar-
atively negligible d2, it can be assumed that the original nearest neighbors are scattered by the noise with high probability to
a zone with distance no more than lbD þ nrbD . This becomes the new search zone for neighbors in the noisy training set.

n ¼ 2 is used in this paper because the probability of bD 6 lbD þ 2rbD is greater than 0.75 from Eq. (9) and is greater than
0.9 from Eq. (10). Thus using the radius with n = 2 will include most nearest neighbors in the original data, and thus greatly
reduces false negatives.

Distance-based weighing: in lines (5)–(7), the algorithm uses a distance-based weighing scheme to reduce the impact of
false positives. The search space based on distance distortion is typically larger than the search space of the basic KNN algo-
rithm to include more false negatives. However, this may increases chances of including more false positives. For example, in
Fig. 3b, some of the points in the two outer circles (the new search space) are not nearest neighbors in the original data.

This paper solves the problem by a distance weighted voting scheme [39]. Let di be the square of distance of the training
point to the testing point. Let NN be the set of points falling in the new search space. For a training data point l falling in the

Fig. 4. Modified KNN for perturbed data.
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search zone, it is assigned the following weight which is inversely proportional to the square of distance to the testing data
point.

wi ¼
1
dl

X
i2NN

1
di
: ð11Þ

Here
P

i2NN
1
di

is a normalizing factor that makes sure the total weight
P

i2NNwi equals 1. This weight will be added to the vote
for the class that the training data point belongs to. The rationale of the weighing scheme is that, in an originally well-be-
haved dataset, inter-class distances are generally greater than intra-class distances. Thus, if such a dataset is perturbed with
additive noise, a point in the outer periphery of the search space are more likely to be a false positive because a false positive
point is not a nearest neighbor in the original data and is likely to be far from the testing data point.

In Lines (8)–(10) of the algorithm, the class with the highest vote will then be selected as the class label for the testing
data. In Line (11), the test point will be assigned the label of the class with the highest vote.

Complexity analysis: Let n be the number of records and s be the number of principal components selected in data sani-
tization step. Let c be the number of classes. For a test case, lines (1)–(3) take OðnsÞ time to compute the distances between a
test case to training cases. Line (4) needs to sort the data points by their distances to the test case. The sort cost is Oðn log nÞ.
Lines (5)–(7) take OðnÞ time because there are at most n nearest neighbors. Lines (8)–(11) take OðcÞ time. The complexity of
the modified KNN is Oðnsþ n log nÞ. The mean and variance of the distance distortion can be computed in OðmnÞ time be-
cause the computation just requires some statistics about the principal components (please see the next section for details).
This computation only needs to be done once for all testing data points.

Further, there exist many techniques such as [7,3,56] to speed up KNN using auxiliary data structures. These methods do
not require computation of distances between the test data point to all training data points. Instead, an index structure will
be used to return a small set of training data points that are likely to be nearest neighbors of the test data point. Thus it is
only necessary to compute the distances between the test data point to these data points. The method proposed in this paper
can use such techniques as well. The complexity of the algorithm thus can be reduced to Oðn0sþ n0 log n0Þ where n0 is the
number of data points returned using the index structure and n0 � n in general.

5.3.1. Calculating mean and variance of distance distortion
This section computes the mean and variance of distance distortion. Let x be a row vector in a training set (the data to be

sanitized and shipped to another party). Let y be a row in the test set owned by the party who is trying to classify its in-
stances based on the sanitized training set shipped to it. Let X and Y be the corresponding principal component score vectors.
Xi and Yi denote the ith component of the score vectors X and Y. Also assume that S denotes the set of principal components
retained and additively perturbed and N, those that are neglected. Since PCA is an orthogonal transform and hence distance
preserving, the original squared distance between x and y can be written as

d2 ¼
X

i

ðxi � yiÞ
2 ¼

X
i2S

ðXi � YiÞ2 þ
X
i2N

ðXi � YiÞ2:

After retaining the coefficients in S only, each PC coefficient Xi in the training set is perturbed with a noise di following
Laplace distribution with location parameter 0 and scale parameter bi. The squared distance between the row vectors turns
out as

d02 ¼
X
i2S

ðXi þ di � YiÞ2:

From the above two expressions, the distortion in squared Euclidean-distance can be calculated as

bD ¼ d02 � d2 ¼
X
i2S

2ðXi � YiÞdi þ
X
i2S

d2
i �

X
i2N

ðXi � YiÞ2:

Let r2
i denote the variance of the ith principal component score of the data. The mean and variance of squared distance

distortion are given below. Please refer to Appendix for details:

EðbDÞ ¼ 2
X
i2S

b2
i � 2

X
i2N

r2
i ; ð12Þ

VarðbDÞ ¼ 16
X
i2S

b2
i r

2
i þ 20

X
i2S

b4
i þ 8

X
i2N

r4
i : ð13Þ

6. Experimental evaluation

This section presents experimental evaluation of the proposed method. Section 6.1 describes the setup of the experi-
ments. Section 6.2 compares the proposed method with existing methods. Section 6.3 reports the privacy of the proposed
method under correlation-based attacks [25] and transform-based attacks [35]. Section 6.4 reports the impact of modifica-
tions to KNN on accuracy.
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6.1. Setup

The experiments were conducted on a machine with Pentium 4, 3.4 GHz CPU, 4.0 GB of RAM, and running Windows XP
Professional. All algorithms were implemented using Matlab 7.0. Since noise was generated randomly, all experiments were
run 20 times and the average results were reported.

6.1.1. Datasets
The experiments were run over seven real datasets from the UCI Machine Learning Repository [24], and a synthetic dataset

generated using a program from [15]. The synthetic data contained 10 clusters, each generated using a multi-dimensional Nor-
mal distribution. The cluster centers were uniform randomly selected between the range of [�5,5] on each dimension. The stan-
dard deviations were varied at 2 and 8. Table 1 reports the properties of these data sets. Ten percent of data was randomly
selected as the testing data, and the rest was used as training data. The data values are also normalized to the range of [0,1].

6.1.2. Algorithms
The following algorithms were compared in the experiments.

(1) A PCA-radius algorithm was implemented based on the method described in Section 5. The search space is within

EðbDÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVarðbDÞq

Þ, where bD is the squared distance distortion.

(2) Rand-P: this is a transform-based method to protect privacy for distance-based mining [36]. The data (as a n�m
matrix) is multiplied by a m� k normalized random matrix with values chosen randomly from normal distribution.

(3) Rand-U: this method adds randomly generated uniform noise to the original data. There is no PCA step. This is one of
the widely used additive perturbation methods [5].

(4) Rand-N: this method is the same as Rand-U except that normal noise is added to the original data.

For Rand-P, Rand-U, and Rand-N, the distance weighed KNN with best k (found through cross validation) is used to eval-
uate the method.

6.1.3. Privacy measures
Three approaches have been proposed in the literature to measure privacy: the first using confidence interval [5], the sec-

ond using information theory [4], and the third using amplification to measure worst case privacy breach as mentioned.
However, the information theory approach is inappropriate because Euclidean distance is based on individual data values,
while information theory only considers the distribution of values [58].

This paper uses amplification to measure the worst case privacy breach and uses the confidence interval to measure the
average privacy. The confidence interval measure is as follows. If a transformed attribute x can be estimated with c% confi-
dence in the interval ½x1; x2�, then the privacy equals x2�x1

xU�xL
where xU is the maximal value of x and xL is the minimal value. 95%

confidence interval was used in experiments.
Average privacy is reported after applying all the attacking methods proposed in [35,?]. More specifically, since trans-

form-based methods (Rand-P and the PCA step of our method) are subject to attacks that can recover the transform matrix,
this paper assumes the attacker knows the transform matrix. In our method (PCA-Radius), this means the attacker can apply
a reverse PCA. For Rand-P, this means that the attacker can reconstruct the data by multiplying the modified data with the
pseudo inverse matrix of the random matrix.

Similarly, since additive perturbation methods (Rand-U, Rand-N, and the noise addition step of our method) are subject to
attacks based on data correlations, this paper also assumes such attacks have been applied. The attacking method first ap-
plies a PCA on perturbed data, selects the first few principal components, and then reconstructs the original data from these
components using a reverse PCA. The number of selected components is selected such that the recovered data is closest to
the original data.

6.2. Comparison of the proposed method with other methods

This section compares the performance of various privacy protection methods. These methods all have some parameters
that determine the degree of noise added. These parameters are summarized below.

� PCA-Radius: the scale b in the Laplace distribution determines the degree of noise being added. We set b = 0.1, 0.2, and 0.3
in the experiments. As b increases, the degree of noise increases. Thus the degree of privacy increases but the accuracy of
mining decreases. Another parameter is the number of principal components to select. Although there are many possible
choices, a wide range of values give similar results. Thus this number is set to half of the total number of attributes
(excluding the class label) in the data set.

� Rand-P: an important parameter is the number of columns (k) in the random matrix. Let m be the total number of attri-
butes in the data set (excluding the class label), k is set to m=4;m=2, and m� 1 (note that k must be less than m). As k
increases, the degree of privacy decreases but the accuracy of mining increases.
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� Rand-U and Rand-N: the two parameters that determine the degree of noise is the mean and standard deviation of the
noise added. The mean of noise is set to zero and the standard deviation is set to 0.1, 0.25, and 0.5. As the standard devi-
ation increases, the degree of noise increases. Thus the degree of privacy increases but the accuracy of mining decreases.

Average privacy and accuracy tradeoff: there are two important metrics for a privacy protection method: the degree of
privacy and the accuracy of mining methods. Thus Fig. 5a–i report both the average privacy and the accuracy of running
KNN mining algorithm on sanitized data. For synthetic data set, r represents the standard deviation used to generate cluster
centers. The x-axis is average privacy and the y-axis is accuracy of mining. PCA-Radius uses the modified KNN algorithm
described in Section 5.3. Other methods use the basic format of KNN, and use cross validation to find the best k value.

Each method has three different settings described above, thus there are three data points for each method. For each
method, the right most data point (the one with highest average privacy) is the one with the parameter that generates
the highest degree of noise. For example, in Fig. 5a, the right most point for PCA-Radius has b ¼ 0:3. The middle point of
PCA-Radius has b ¼ 0:2 and the left most point of PCA-Radius has b ¼ 0:1.

When we compare the performance of two methods A and B, we can draw a line along the data points of method A using
linear regression. If the data points of method B lie to the lower and left to the line of method A (or line of method A is at the
right and upper side of points of method B), then method A has higher accuracy and higher average privacy than method B.
Thus method A has better tradeoff of accuracy and average privacy than method B.

Lines for proposed method (PCA-Radius) are drawn in these figures. The results show that almost all data points of other
methods lie at the lower and left side of the line of PCA-Radius. This shows that PCA-Radius either has higher average degree
of privacy or higher accuracy than the other methods. Thus PCA-Radius has similar and often better tradeoff of accuracy and
average privacy than the other privacy protection methods.

There are two exceptions for Pendigits (Rand-P with k ¼ m=4 in Fig. 5b) and Cancer (Rand-N with the standard deviation
of noise equals 0.1 in Fig. 5c). However, the average privacy of these two points is much lower than the average privacy of
PCA-Radius. Thus it is unlikely the user will use the two settings due to insufficient privacy protection.

For each method, the results also show that as more noise is added, average privacy increases but accuracy of mining de-
creases. For our method, when b ¼ 0:3 (the right most point) and b ¼ 0:2 (the second rightest point), the mining accuracy is
still pretty high. As b ¼ 0:3, the accuracy of our method is around 65–80% for real data sets and 100% for the two synthetic
data sets. As b ¼ 0:2, the accuracy of our method is around 70–85% for real data sets, and 100% for the two synthetic data
sets. This shows that our method still allows accurate mining over sanitized data. In practice, user may decide the appropri-
ate noise level by considering the accuracy-privacy tradeoff.

As b ¼ 0:3, PCA-Radius also achieves high degree of average privacy. The average privacy exceeds 100% of the range of
data (each column is normalized to 0–1) for 5 real data sets (Wine, Pendigits, Magic04, Ionosphere, Waveform) and the
two synthetic data sets. The average privacy for the remaining two real data sets (Cancer and Iris) is also around 80% of
the range of data. Note that the average privacy is computed after applying data transform attack [35] and correlation attack
[25]. Thus the proposed method (PCA-Radius) gives adequate privacy protection under the average case.

Worst case privacy: as shown in Section 4.3, the proposed method (PCA-Radius) is the only method that provides worst
case privacy for q1 to q2 privacy breach. Thus only the worst case privacy of proposed method is reported.

Fig. 6a reports the amplification for all data sets using PCA-Radius. Note that the amplification for all data sets are exactly
the same because as shown in Eq. (8) in Section 5.2, they depend only on noise scaling parameter b. Thus one figure is used
for all data sets. The results show that the amplification drops quickly (the closer the amplification value is to unity, the
better the privacy) as noise increases, and is around 50 when b ¼ 0:25 and 28 when b ¼ 0:3.

Eq. (2) in Section 3.2 describes the relationship of amplification (c) and the maximal value of q2 in q1 to q2 privacy breach.
Suppose q1, the probability of a privacy sensitive property in the original data, is 0.1%. Fig. 6b reports the maximal possible
value of q2 (the probability of the privacy sensitive property given sanitized data) for various values of b. For example, for
b ¼ 0:3, the maximal possible value of q2 is 2.8%. This means for b ¼ 0:3, the probability of this privacy sensitive property
will not exceed 2.8% given the sanitized data. Typically most privacy-sensitive data properties (can be the data values
themselves) in real life appear in original data with low probabilities. The results show that the proposed method does
not increase the conditional probabilities of such properties too much thus effectively restricting worst case privacy breaches.

6.3. Privacy under correlation-based and transform-based attacks

This section investigates the effect of correlation-based attacks [25] and transform-based attacks [35] on proposed meth-
od PCA-Radius. The focus is on the correlation-based attacks because it is assumed that attackers know the PCA transform.
The basic assumption of the correlation-based attacking method is that after a PCA, data variances are concentrated on the
first few principal components while noise is spread more or less evenly over all principal components. Thus simply recon-
structing the data using the first few principal components can keep most of the data variances and at the same time filter
most of the noise.

Fig. 7 shows the steps in PCA-Radius and the steps of applying correlation based attack along with the transform-based
attack described in [35]. PCA-Radius sanitizes data by first applying a PCA, and then adds noise to the first s principal com-
ponents (the remaining ones are discarded). The attacking process takes two steps. At the first step, the attacker discovers
the transform matrix for PCA, and applies an inverse PCA over sanitized data to reconstruct the original data. Note that all
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columns in the sanitized data are used in reconstruction, thus this step does not filter out the noise added in the second stage
of PCA-Radius. At the second step, the attacker applies the correlation based attack to filter out the added noise. This step
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applies a PCA over the reconstructed data, and selects the first s2 principal components, and uses them to reconstruct the
original data using inverse PCA. s2 must be less than s because we want to filter out noise added to the remaining s� s2 prin-
cipal components. s2 is selected such that the reconstructed data is closest to the original data (i.e., with the lowest degree of
privacy).

Three different scenarios are considered:

(1) No-Filtering: this is the average privacy computed over PCA-Radius without the correlation based attack. Transform-
based attack [35] is still applied over sanitized data by a reverse PCA.

(2) PCA + Filtering: this is the average privacy computed over PCA-Radius with the correlation based attack and the
transform-based attack described above. This is also the number reported in Section 6.2. Comparing the results of this
scenario with the results of No-Filtering will indicate whether the noise filtering method can break privacy for
PCA-Radius.

(3) No-PCA + Filtering: In this case, data is sanitized by adding Laplace noise directly to original data (not the principal
components). The correlation based attack is then applied over the sanitized data. The results of this scenario shows
that whether the correlation based attack will be effective if the data sanitization method does not use PCA to decor-
relate the data.

Fig. 8a–i reports the average privacy for three different scenarios over all data sets. The results show that the average
privacy of PCA + Filtering is very close to that of the No-Filtering. The biggest drop is about 10% and in most cases the drop
is no more than 5%. This means that if the data is sanitized by PCA-Radius, the degree of privacy drop is negligible after
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Fig. 7. Steps of PCA-Radius and filtering noise.
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correlation-based attack. This is apparent because PCA + Radius applies PCA to decorrelate the data, thus the noise filtering
method which uses data correlation is not effective. As described in Section 5.1, PCA-Radius also adds a larger amount of
noise (with bigger b values) to principal components with large values. Thus the basic assumption of the noise filtering
method that noise is distributed evenly to all principal components no longer holds.

The results also show that if the data sanitization step does not include a PCA (No-PCA + Filtering), the noise filtering
method does significantly reduce the average degree of privacy. The drop is more than 20% for more than half of all cases,
especially when noise level is high (b ¼ 0:2 or 0.3). The drop is also always larger than the difference between PCA + Filtering
and No-Filtering. This is expected because without a PCA step, the data is correlated and the noise filtering method can actu-
ally filter out a large amount of noise based on data correlations. Therefore, the results show that our proposed method (PCA-
Radius) is not vulnerable to correlation-based attack and the protection is due to the PCA step.

6.4. Impact of modifications to KNN

This section investigates the impact of proposed modifications to KNN in Section 5.3 on the accuracy of KNN miming. The
proposed method (PCA-Radius) is compared with two methods below:

(1) PCA-Best-K: this algorithm is the same as PCA-Radius in the PCA and noise addition step, but uses cross-validation to
find an optimal k values in KNN. This k value is used for all test cases.

(2) PCA-K = 5: this algorithm is the same as PCA-Radius in the PCA and noise addition step, but uses a fixed k value of 5.

All three methods use distance-weighted KNN because it gives higher accuracies than using normal KNN in all the
conducted experiments. Fig. 9a–i report the accuracy of classification for the three methods. The results on original data
(i.e., b ¼ 0 and no noise is added) are also shown as a baseline. As b ¼ 0, no noise is added, thus PCA-Radius uses k ¼ 5 in
this case.

The results show that PCA-Radius has achieved accuracy slightly lower than using the optimal k. The drop in accuracy is
less than 5% in all cases and is less than 2% for most cases. This demonstrates that using a distance radius inferred from the
degree of noise achieves similar accuracy as using more expensive cross validation to find the optimal k value.

There are also a few cases when the accuracy of PCA-Radius exceeds the accuracy using the optimal k value for Waveform
and Ionosphere data sets. The reason is that PCA-Radius uses a distance radius to identify nearest neighbors. This may in-
clude different number of nearest neighbors for different test cases. On the other hand, the k value selected using cross val-
idation is used for all test cases. Thus in some cases PCA-Radius may outperform using the same k value selected by cross
validation for all test cases.

The results also show that fixing k ¼ 5 (PCA-K = 5) leads to much lower accuracy than PCA-Radius, especially when a lar-
ger amount of noise is added (b ¼ 0:2 or 0.3). The drop in accuracy when compared to the PCA-Radius exceeds 5% for many
cases, and exceeds 10% for some cases. For example, the drop is 18% and 21% for Waveform data when b ¼ 0:2 and 0.3, and is
30% and 45% for Synthetic data with standard deviation equals 8. This is because distance gets distorted after noise addition
and many of the nearest neighbors in the original data for k ¼ 5 are no longer the nearest neighbors after noise addition.
PCA-Radius avoids this problem by adjusting the radius of search space based on noise distortion.

6.5. Execution time

This section reports the execution time of proposed method (PCA-Radius). We vary the number of attributes and the
number of records and use synthetic data with standard deviation of 2 in this experiment. The execution time can be also
divided into the time to sanitize the data and the time of mining.

Fig. 10a and b report the time of sanitizing data (the PCA and noise addition step) of PCA-Radius. In Fig. 10a, we fix the
number of records at 100,000, and vary the number of attributes from 20 to 100. In Fig. 10b, we fix the number of attributes
at 100 and vary the number of records from 20,000 to 100,000. The time of sanitization is broken down into the time to load
the data into main memory and save the sanitized data to a file, the time to apply principal component analysis, and the time
to add Laplace noise. The results show that the time of data sanitization increases about linearly with the number of records
and the number of attributes. The time to do PCA and add noise is also quite small compared to the time to load and save
data.

We also examine the average execution time of KNN mining for each test case. The time for our method (PCA-Radius with
modifications to KNN) is compared to the time for the basic KNN with k ¼ 5. The noise level b is set to 0.3. Fig. 11a and b
report the average mining time per test case. In Fig. 11a, we fix the number of records at 100,000, and vary the number
of attributes from 20 to 100. In Fig. 11b, we fix the number of attributes at 100 and vary the number of records from
20,000 to 100,000.

The results show that the mining time of PCA-Radius scales about linearly with the number of records and the number of
attributes. It is higher than the mining time of basic KNN with k ¼ 5 because PCA-Radius needs to examine more nearest
neighbors than basic KNN with k ¼ 5 to avoid false negatives. However, the mining time of PCA-Radius is still quite short,
taking about 2.6 s for the largest data set (with 100,000 records and 100 attributes). The results in Section 6.4 have shown
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Fig. 9. Classification accuracy for real data sets using three KNN variants.
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that the accuracy of PCA-Radius is much better than the accuracy of using k ¼ 5, thus the extra time spent by PCA-Radius is
justified. We may further reduce the mining time using techniques that use additional index structures [7].

7. Conclusion and future work

This paper proposes a method to provide worst case privacy guarantees for distance-based mining algorithm. It extends
the worst case privacy measure – amplification – to continuous data and additive perturbation, and proposes a set of nec-
essary and sufficient conditions for a noise distribution to give worst case privacy guarantees. It finds out that both uniform
and normal distributions, as well as the random projection method, do not provide worst case privacy guarantees. On the
other hand, noise following Laplace distribution does give worst case guarantee. This paper then proposes a method that
combines noise addition and transform methods to protect privacy for distance-based mining. It also proposes a method
to adjust the nearest neighbor search space based on the degree of noise added. Experimental results show that the proposed
method provides worst case privacy guarantee, and guards against correlation-based and transform-based attacks. Interest-
ingly, the results also show that the proposed method provides better or similar tradeoff between accuracy and average case
privacy compared to existing methods. Experimental results also demonstrate that dynamically adjusting nearest neighbor
search space achieves similar accuracy as using cross validation to find the optimal value of k.

Our future research plan is to study similar techniques to improve accuracy over other mining methods such as K-Means
clustering.
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Appendix A. Computation of mean and variance of distance distortion

A.1. Computation of mean distortion

As shown in Section 5.3.1, the distortion of square distances equals

bD ¼ d02 � d2 ¼
X
i2S

2ðXi � YiÞdi þ
X
i2S

d2
i �

X
i2N

ðXi � YiÞ2:

Here Xi and Yi denote the ith component for two data vector X and Y. S is the set of selected components and N is the set of
pruned components. di is a random variable representing the noise added to the ith component. di follows a Laplace distri-
bution with location parameter 0 and scale parameter bi.

To compute the mean of distance distortion, the mean of di, d2
i , and d4

i need to be computed. This can be computed using
the moment generating function of Laplace distribution. The MGF of a Laplace distribution with location parameter 0 and scale
parameter bi is given by MðtÞ ¼ 1

1�b2
i t2 [48]. Differentiating M with respect to t successively and plugging in t ¼ 0 gives the

following moments:

EðdiÞ ¼ 0;

Eðd2
i Þ ¼ 2b2

i ;

Eðd4
i Þ ¼ 24b4

i :

Note that Xi and Yi can be thought of being two i:i:d random variables following the same distribution as the ith principal
component scores of the data. The mean of Xi and Yi are 0 due to the PC transform. Let r2

i denote the variance of the ith prin-
cipal component score of the data (r2

i ¼ ki, the ith eigen value of the covariance matrix). Hence

EðX2
i Þ ¼ EðY2

i Þ ¼ r2
i :

Further, all Xi and Xj pairs (and Yi and Yj pairs as well) are perfectly uncorrelated for i 6¼ j because of the nature of PCA. Using
the above stated facts and the expression for bD developed earlier, the next few lines calculate the mean of bD.

EðbDÞ ¼ E
X
i2S

2ðXi � YiÞdi þ
X
i2S

d2
i �

X
i2N

ðXi � YiÞ2
( )

¼ E
X
i2S

2Xidi

( )
� E

X
i2S

2Yidi

( )
þ E

X
i2S

d2
i

( )
� E

X
i2N

ðXi � YiÞ2
( )

:

Removing the zero terms, the expected value of bD is as

EðbDÞ ¼X
i2S

Efd2
i g �

X
i2N

EfX2
i g �

X
i2N

EfY2
i g ¼ 2

X
i2S

b2
i � 2

X
i2N

r2
i :

A.2. Computation of variance of distortion

Let

Vi ¼ Varf2ðXi � YiÞdi þ d2
i g 8i 2 S;

V 0i ¼ VarfðXi � YiÞ2g 8i 2 N:

Thus

VarðbDÞ ¼X
i2S

Vi þ
X
i2N

V 0i:

The covariance terms vanish due to independence of Xi;Yi and di for different i values.

Vi ¼ Varf2ðXi � YiÞdi þ d2
i g

¼ 4VarfXidig þ 4VarfYidig þ Varfd2
i g � 2Covf2Xidi;2Yidig þ 2Covf2Xidi; d

2
i g � 2Covf2Yidi; d

2
i g:

Note that

Varðd2
i Þ ¼ Eðd4

i Þ � ½Eðd
2
i Þ�

2 ¼ 24b4
i � 4b4

i ¼ 20b4
i

and

VarðXidiÞ ¼ EðX2
i d

2
i Þ � fEðXidiÞg2 ¼ EðX2

i ÞEðd
2
i Þ � 0 ¼ 2b2

i r
2
i :
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Similarly VarðYidiÞ ¼ 2b2
i r

2
i . Also note that

Covf2Xidi;2Yidig ¼ Efð2Xidi � 2XidiÞð2Yidi � 2YidiÞg
¼ Efð2Xidi � 0Þð2Yidi � 0Þg ¼ 4EðXiÞEðYiÞEðd2

i Þ ¼ 0;

Covf2Xidi; d
2
i g ¼ Efð2Xidi � 2XidiÞðd2

i � d2
i Þg ¼ Efð2Xidi � 0Þðd2

i � 2b2
i Þg

¼ 2EfðXiÞðd3
i � 2b2

i diÞg ¼ 2EðXiÞEðd3
i � 2b2

i diÞ ¼ 0:

Similarly Covf2Yidi; d
2
i g ¼ 0. Thus

Vi ¼ 16b2
i r

2
i þ 20b4

i :

The coefficients belonging to set N are small with mean 0 and very small standard deviations due to the nature of PCA. Thus,
they are assumed to follow normal distributions with means 0 and small standard deviations ri. Now let V 0i denote
VarðXi � YiÞ2 where i 2 N. Expanding the expression

V 0i ¼ VarðX2
i Þ þ VarðY2

i Þ þ Varð2XiYiÞ þ 2CovðX2
i ;Y

2
i Þ � 2CovðX2

i ;2XiYiÞ � 2CovðY2
i ;2XiYiÞ;

VarðXiYiÞ ¼ EðX2
i Y2

i Þ � EðXiYiÞ2 ¼ r4
i ;

CovðX2
i ;2XiYiÞ ¼ EðX2

i � X2
i Þð2XiYi � 0Þ ¼ 2EðX3

i � r2
i XiÞEðYiÞ ¼ 0:

Similarly CovðY2
i ;2XiYiÞ ¼ 0. Thus

V 0i ¼ VarðX2
i Þ þ VarðY2

i Þ þ 4r4
i :

With the Normality assumption, X2
i

r2
i

as well as Y2
i

r2
i

becomes v2 distributed with DOF 1 having mean ¼ 1 and variance ¼ 2 [14].
Thus

V 0i ¼ r4
i Var

X2
i

r2
i

 !
þ r4

i Var
X2

i

r2
i

 !
þ 4r4

i ¼ 8r4
i :

Finally

VarðbDÞ ¼X
i2S

Vi þ
X
i2N

V 0i ¼ 16
X
i2S

b2
i r

2
i þ 20

X
i2S

b4
i þ 8

X
i2N

r4
i :
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