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ABSTRACT 
This paper describes the iCare Interaction Assistant, an 
assistive device for helping the individuals who are visually 
impaired during social interactions. The research presented 
here addresses the problems encountered in implementing 
real-time face recognition algorithms on a wearable device. 
Face recognition is the initial step towards building a 
comprehensive social interaction assistant that will identify 
and interpret facial expressions, emotions and gestures. 
Experiments conducted for selecting a face recognition 
algorithm that works despite changes in facial pose and 
illumination angle are reported. Performance details of the 
face recognition algorithms tested on the device are 
presented along with the overall performance of the system. 
The specifics of the hardware components used in the 
wearable device are mentioned and the block diagram of 
the wearable system is explained in detail. 

Categories and Subject Descriptors 
J.0 General 

General Terms 
Design, Experimentation, Performance. 

Keywords 
Face Recognition, Wearable Computing, Assistive Device 
for Visually Impaired, Social Interaction Aide.  

INTRODUCTION 
Humans, knowingly or unknowingly, participate in social 
interaction in their day-to-day life. Social interactions are 
the acts, actions, or practices of two or more people 
mutually oriented towards each other. Such interactions 
come in many forms - blinking, eating, reading, writing, 
dancing and walking. Vision plays such an important role in 
establishing and maintaining social interactions that it is 
sometimes challenging for individuals who are visually 
impaired to interact readily with their sighted counterparts. 
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Studies have shown that a significant portion of any 
information exchange between two humans is accomplished 
not with words, but with non-verbal-communication. 
Furthermore, most of these non-verbal-communications are 
facial gestures – though other bodily gestures also 
constitute a large portion.  
As easy as it is for humans to understand body gestures, it 
has become the testing ground for intelligent machines. 
Assistive devices designed to facilitate social interactions 
are a good example of a type of machine intelligence that is 
still a long way from reality. In this paper, we discuss the 
smaller, but indispensable, problem of face recognition in 
the context of building a social interaction assistant to aide 
people who have visual impairments.  
Face recognition has been an active area of research for the 
last decade, due to the availability of fast computing 
systems and increased security requirements in public 
places. This research has led to the development of 
improved algorithms, as well deployment of access control 
and identity verification systems, based on face recognition. 
Although there are numerous algorithms today that can 
achieve an acceptable level of recognition when face 
images are captured in a controlled environment, there are 
no algorithms capable of recognizing people reliably in 
real-world situations. Face recognition for any assistive 
device would require algorithms that are more robust than 
what is being achieved today by training algorithms on 
controlled face datasets.  
Research focused on developing face recognition 
algorithms for security purposes tends to focus on finding 
methods that can achieve good recognition even when the 
person under surveillance wears disguises, such as facial 
hair, sun glasses and head gear. This requirement greatly 
limits the features that can be used to by face recognition 
algorithms, and tend to make them less than suitable for 
practical use in wearable devices. Contrast this with face 
recognition algorithms for assistive devices, which do not 
generally assume that the face being recognized is 
disguised.  This allows any stable facial feature to be used 
for recognition – potentially providing a much more robust 
recognition.  For example, the presence of a pair of 
eyeglasses could be regarded as an impediment to face 
recognition for security purposes, while the same eyeglasses 
could be used a cue for identifying an individual in a social 

106



occasion. Recognizing this, our approach to face 
recognition is based on finding facial details that are unique 
to a particular face, even though they might be very 
vulnerable to deliberate disguise.   
Irrespective of the differences between applications, one 
problem faced by all face recognition algorithms, results 
from changes in pose angle and changes in the illumination 
angle on the face. During group social interactions it is 
quite common to see frequent extreme changes in pose 
angle.  (See the Theory section). The human brain deals 
with these problems by projecting a 2D retinal projection of 
a face into a pose angle and light invariant space, making it 
possible for us to recognize people despite such variations. 
Research [17] [18] [19] along such directions of thought 
have yielded promising results but not satisfactory.  
This paper describes the research that we have conducted in 
pursuit of building a robust face recognition system for 
aiding people who are visually impaired or blind. The paper 
is divided into two major parts. The first part deals with the 
algorithmic side of the problem, describing the experiments 
conducted towards selecting a face recognition algorithm 
for a wearable face recognition system. The second part of 
the paper deals with the hardware aspects of the issue, 
detailing the choice of the different components that make 
up the wearable device, along with their performance 
details.  
The rest of the paper is organized as follows. The Related 
Works section deals with the research that has gone into 
face recognition, and into building wearable devices for 
assisting the people who are visually impaired. The Theory 
section follows this, with a description of our approach to 
selecting the particular face recognition algorithm to be 
implemented on our wearable device, along with the 
hardware details. The Results section provides some insight 
into the performance of the device in a real world scenario, 
and the Future Work section offers a glimpse into possible 
extensions of the device, towards becoming a complete 
social interaction assistant.    
RELATED WORK 
Face recognition has been an active area of research for the 
past three decades. Biometrics and law enforcement have 
been the most researched application areas for face 
recognition [1]. Researchers have used static images [2]-
[5], video sequences [14] [15], infrared images [13] [16] 
and 3D range data [12] for achieving face recognition. 
While some researchers worked with the face image as a 
whole [2]-[5], many others have explored the possibility of 
analyzing face images by modeling the local characteristics 
of the face [7].  
Among the most widely used and researched face 
recognition algorithms, five algorithms, namely Principle 
Component Analysis (PCA) [2], Linear Discriminant 
Analysis (LDA) [3], Bayesian Intrapersonal Classifier 
(BIC) [4], Hidden Markov Model (HMM) [5] and Elastic 

Bunch Graph Matching (EBGM) [7], are probably the best 
known. In fact, these five algorithms have formed the basis 
for most of the research in the area of face recognition. The 
statistical approaches (including PCA, LDA and BIC) work 
on the face image as a whole, treating each face image as a 
point in a multidimensional space. The recognition rates of 
these algorithms depend heavily on the capture conditions, 
and slight changes in those conditions can result in a drastic 
reduction in the performance of the algorithms. HMM and 
EBGM are classified as network-based approaches, where 
the face image analysis is carried out by modeling the 
statistical and positional characteristics of the facial features 
into connected networks. The performance of such 
algorithms is dependent on the positional accuracy of 
feature extraction algorithms whose output can change 
drastically with slight changes in pose.   
Parallel to the development of face recognition algorithms, 
the systematic empirical evaluation of these algorithms has 
resulted in FERET [8]-[10] and XM2VTS [11] protocols 
that have provided a basis for comparing and testing face 
recognition algorithms. Both of these protocols include a 
set of color or gray scale face images that are used to test 
algorithms. Detailed procedures are provided for analyzing 
the results of the experiments, in order to compare the 
performance of the algorithms. Though these protocols 
provide a basis for evaluating face recognition algorithms, 
no effort has been made to accurately record the two very 
important parameters of pose angle and illumination angle 
in the face images during the capture of the images.  In this 
paper, we describe our work in establishing a new 
methodology for comparing the performance of face 
recognition algorithms, using a novel face database whose 
face images are very accurately calibrated with respect to 
pose and illumination angle. 
Assistive devices for people who are blind have been of 
interest to both academia and industry. Most of the research 
has focused on developing navigational aides for the people 
who are blind, based on Global Positioning Systems (GPS) 
and infrared based proximity sensors. The decreasing size 
of navigational devices and computing elements has guided 
the technological advances in this area. Small form factor 
high definition cameras have also entered mass production 
recently, and this has motivated many developers to migrate 
towards the development of vision-based technologies for 
assisting people who are blind or visually impaired. Some 
of the noticeable ongoing projects include the iCare project 
[20] which is developing a Reader, an Information 
Assistant, an Interaction Assistant, and a Haptic Interface 
for the people who are blind, vOICe [21], which is a video-
to-sound interface that translates video input into auditory 
excitations for the people who are blind, and EyeTap [22] 
which is a set of Personal Imaging Lab projects focused on 
personal imaging, mediated reality, and wearable 
computing. Researchers at Kyoto Institute of Technology 
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(http://www.kit.ac.jp/english/index.html) have created a 
wearable device to help people who are blind navigate 
along streets. Among all of these research projects, iCare 
Interaction Assistant is unique in being the only vision-
based device specifically for helping people who are 
visually impaired involve more easily in social interactions.  

THEORY 
Choosing the Face Recognition Algorithm: 
The Database: 
As mentioned in the Related Works section, face 
recognition algorithms have always been tested on publicly 
available databases, such as the AT&T Database, The Oulu 
Physics Database, The XM2VTS Database, the Yale Face 
Database, the MIT Database, the CMU Pose, Illumination 
and Expression Database, The FERET Database, and the 
Purdue AR Database. In order to provide robust face 
recognition, an algorithm must be sensitive to subtle 
differences in image content that are useful for 
distinguishing between faces. However, equally important 
is its ability to disregard image content that is particular to 
the environment in which the image was captured, such as 
the illuminant. If the development of such an algorithm is 
based on a face database that was not captured with a range 
of pose angles and illumination angles, and if each image is 
not annotated with a precise set of values for those 
environmental variables, it is difficult to correlate face 
recognition failure (or success) with changes in these 
variables, and to refine the face recognition algorithm to be 
more tolerant of changes in these particular environmental 
variables. A face database that does not include a range of 
images to represent the values of each independent variable 
also complicates comparisons between different face 
recognition algorithms because two algorithms might have 
similar failure rates, even though they have failed for totally 
different reasons.  
Some of the databases mentioned above have face images 
with a wide variety of pose angle and illumination angle 
variations. However, none of them use a precisely 
calibrated mechanism for acquiring these images. To 
address this issue (and to achieve a precise measurement of 
recognition robustness with respect to pose and illumination 
angle) we put together a database called FacePix [6], which 
contains face images with pose and illumination angles 
annotated in 1-degree increments. Figure 1 shows the 
apparatus that is used for capturing the face images. A 
video camera and a spot light are mounted on independent 
annular rings that can be rotated independently around a 
subject seated in the center. The angle markings on the 
platform and the face images are captured simultaneously 
into the frames of a video sequence, from which frames can 
be extracted as individual calibrated images. 
The FacePix(30) database contains two sets of images for 
each of 30 different people.  Each set contains (1) a set of 

181 images with pose angles between –90 and +90 degrees, 
and (2) a set of 181 images with illumination angles 
between –90 and +90 degrees. The entire FacePix(30) 
database can be conceptualized as a 2D matrix of face 
images with 30 rows (representing the 30 different people), 
and 181 columns (representing all the angles from -90° to 
+90° at 1 degree increments).   

 
Fig. 1: The face image capture setup. 

All the face images (elements) in each matrix are 128 pixels 
wide and 128 pixels high. These face images are 
normalized, such that the eyes are centered on the 57th row 
of pixels from the top, and the mouth is centered on the 87th 

row of pixels. The pose angle images appear to rotate such 
that the eyes, nose, and mouth features remain centered in 
each image. Also, although the images are down sampled, 
they are scaled as much horizontally as vertically, thus 
maintaining their original aspect ratios. Figure 2 provides 
examples extracted from the database, showing pose angles 
and illumination angles ranging from -90° to +90° in steps 
of 10°. 

 
Fig. 2: A subset of one face set taken from the FacePix(30) 

database, with Pose and Illumination angles ranging from +90 
degrees to –90 degrees, in steps of 10 degrees. 

Comparative Study of Face Recognition Algorithms: 
Having built a database that captures the variations in pose 
and illumination, we selected four of the most widely used 
face recognition algorithms – PCA, LDA, BIC and HMM 
and plotted their recognition rate as the pose and 
illumination angles were varied over a range from –90 to 
+90 degrees, to produce a pair of “robustness curves”. (The 
robustness is the ability of the algorithm to learn a person’s 
face from a given set of pose or illumination images, and 

108



then recognize that same person from a never-before-seen 
pose angle or illumination angle.  
We ran several experiments on the FacePix(30) database, 
and combined the results of all these experiments to gauge 
the overall robustness of four different face recognition 
algorithms. Each experiment measured the degradation in 
recognition rate as an algorithm attempts to recognize probe 
(test) images that are farther and farther (in terms of pose or 
illumination angle) from the gallery (training) set. Each 
such experiment may be conceptualized as a function, with 
the following inputs: 

1. Algorithm to test: PCA, LDA, BIC, or HMM 
2. Database set: Pose angle, or Illumination angle 
3. The Gallery (training) set list: One or more 

columns from a given database set, e.g., all the 
images at pose angles -90, 0, and +90 (NOTE: In 
this scheme, each gallery set contains only one 
image of each subject. However, some of the 
algorithms we tested needed multiple versions of 
each pose angle or illumination angle image.  To 
satisfy these algorithms, we artificially 
manufactured 3 additional versions of each gallery 
image. One of these images was a low-pass filtered 
version of the original image, and two of these 
images were noisy versions of the original image. 

4. The Probe set: The entire 2D matrix of the 
database set. 

The output of this function is the “distance” of each probe 
image to the “nearest” image in the gallery set(s). Using 
these distances, we produced a rank ordering of the 30 
people for each probe image. (The person with a rank of 0 
was computed to be the “closest” to that probe image). 
These ranking numbers then provided a basis for computing 
the robustness (R) for an algorithm trained with the chosen 
gallery sets.   
The robustness at a particular angle θ is given by 
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Where, N is the number of subjects in the database. 

i
rθ  is the rank that is assigned for the ith subject at the pose 

or illumination angle θ  (this rank value ranges from 0 to N 
- 1). 
A Robustness value of 1 means that the recognition was 
accurate; while a value of 0 means that the recognition was 
no better than guessing randomly. 
Figure 3 shows the robustness curves for all four face 
recognition algorithms, as a function of pose and 
illumination angles. The solid line shows the pose angle 
robustness, while the dotted line shows the illumination 
angle robustness. Each row in Figure 3 corresponds to one 
face recognition algorithm, and each column corresponds to 
a different training set. The first column shows the results 

when the algorithms were trained with just the 0 degree 
(frontal) images, while the second column shows the results 
when trained with –90 degree (left profile), 0 degree 
(fontal), and +90 degree(right profile) images. The third 
column shows the results when trained with –90 degree, –
45 degree, 0 degree, +45 degree, and +90 degree. Table 1 
and Table 2 show the average robustness across all pose 
angles and all illumination angles respectively, while Table 
3 and Table 4 show the average recognition rate across all 
pose angles and illumination angles. 
 
It is clear that HMM is the poorest performing algorithm. 
From the roll off regions of the robustness curves, it is clear 
that the two subspace methods (PCA and LDA) have a 
more gradual roll off than the probabilistic methods (HMM 
and BIC).  Accordingly, they have a better recognition rate 
across changes in both pose and illumination angles. The 
roll off rate is higher near 0 degrees (i.e. frontal views) than 
at the edges (i.e. profile views). This suggests that better 
overall robustness might be achieved by using a more 
densely spaced gallery set around the frontal region than 
towards the profile regions.   

 
 

Fig. 3: Robustness curves for four widely used face recognition 
algorithms. 

Table 1: Average Robustness for Pose 

 0º -90º, 0º, 90º -90º, -45º, 
0º, 45º, 90º 

PCA   
LDA    
BIC  

HMM 

0.4306 
0.3485 
0.3003 
0.4391 

0.8039 
0.7985 
0.6250 
0.5764 

0.9178 
0.9245 
0.8443 
0.8317 
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 0º -90º, 0º, 90º -90º, -45º, 
0º, 45º, 90º 

PCA   
LDA    
BIC  

HMM 

0.7715 
0.7820 
0.3278 
0.8108 

0.9136 
0.949 

0.5483 
0.9388 

0.9735 
0.9888 
0.7735 
0.9740 

Table 2: Average Robustness for Illumination 
 

 0º -90º, 0º, 90º -90º, -45º, 
0º, 45º, 90º 

PCA   
LDA    
BIC  

HMM 

20.74% 
20.70% 
31.68% 
18.42% 

50.53% 
56.92% 
41.27% 
45.19% 

71.66% 
78.67% 
63.50% 
69.47% 

Table 3: Overall recognition rate for Pose changes 
 

 
 

0º -90º, 0º, 90º -90º, -45º, 
0º, 45º, 90º 

PCA   
LDA     
BIC   

HMM 

48.84% 
53.04% 
19.26% 
49.80% 

71.71% 
79.52% 
37.38% 
79.10% 

90.33% 
94.92% 
59.37% 
93.54% 

Table 4: Overall recognition rate for Illumination changes 
 

Comparing the results from each of the algorithms with 
respect to pose angle variance, LDA ranks first, followed 
by PC.  Close behind is BIC, with HMM being the last. For 
illumination angle variance, LDA performs the best, 
followed by BIC, PCA and HMM, respectively.  

These results were used as the basis for selecting algorithms 
that were tested on the wearable device. The performances 
of the tested algorithms are presented in the latter part of 
this paper.  

The Wearable Face Recognition Device: 
The hardware used for building the assistive device 
essentially consists of three components.  

1. An analog CCD camera used for acquiring the video. Fig 
4 shows the camera glasses that are used for the assistive 
device. The camera has a 1/3" CCD with a light sensitivity 
of 0.2 Lux. The 92 degrees Field of View (FoV) provides a 
good coverage of the space in front of the user. The camera 
is powered using a 9V battery and the output is in NTSC 
video format.   

 
Fig. 4: Glasses used for the wearable face recognition system 

2. Since the camera provides an analog video output, a 
digitizer is required to convert the composite video into a 
digital video format that can be used inside a computer for 
analysis. We used an Adaptec® video digitizer which 
converts the input signals into compressed AVI and 
transmits the AVI stream over a USB cable. The device 
driver is based on the standard Windows Driver Model 
(WDM) and appears to the programmer as a generic video 
capture device on the Windows® operating system.  
3. A portable computing element (in our case a laptop) was 
used to execute the face recognition algorithm. We used a 
tablet PC with an Intel® Centrino 1.5 GHz processor and 
512 MB of RAM. The choice of this particular laptop 
device was based on its small form factor. Fig 5 shows the 
frames acquired from the wearable device. The block 
diagram of the wearable assistive device is shown in the Fig 
6. 

 
Fig. 5: Frames from a video sequence obtained from the wearable 

device. 

 
Fig. 6: Block Diagram of the wearable face recognition system. 
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(a) The Face Detection Algorithm: 
The first step towards face recognition is to isolate the 
regions of the video frames where a human face exists. To 
this end, we used a face detection algorithm based on 
adaptive boosting [23]. A video frame acquired from the 
camera is divided into a number of overlapping regions of 
predetermined size. Each of these regions is analyzed for 
the presence of human face by using a bank of known filters 
(In this case, rectangular filters which together are 
representative of the intensity variations on a typical human 
face image. For example: the eye sockets on the face tend to 
be low intensity regions when compared with the forehead. 
A rectangular filter looking for such an intensity change in 
an image would have a width about equal to the width of 
the face, and a height divided into a white region 
(corresponding to the forehead), and a black region, 
(corresponding to the eye sockets). Analyzing every region 
extracted from the video frame is time consuming. To 
reduce the processing time, each region extracted from the 
video frame is passed through a cascade of filter banks. The 
filter bank in the beginning of the cascade has fewer filters, 
resulting in higher number of false positives, but a faster 
processing time. A filter bank at the end of the cascade has 
a large number of filters, and is capable of detecting a face 
with a better accuracy, but requires more processing time. 
The advantage is that the regions of the frame that have no 
resemblance to a face (a plain wall for example) is dropped 
at the beginning of the cascade as a non-face region, with 
very little lost processing time. On the other hand, a region 
with a face has to be accepted by all the filter banks to the 
end of the cascade. As expected, a region that somewhat 
resembles a face (but is not a face) will be dropped by a 
filter bank in the middle of the cascade. This results in very 
good processing time per frame, and makes face detection 
possible in real time. Fig 7 shows a video frame with a 
region marked as face. Fig 8 shows an example set of face 
images cropped out of a video sequence from the wearable 
device.  

 
Fig. 7: Output from the face detection algorithm with the face 

region marked. 

 
Fig. 8: Example set of face images from the wearable device 

(b)The Face Recognition Algorithm for the assistive device: 
Once a region in a video frame is identified as a face, it is 
analyzed in more detail, in an attempt to recognize the 
person. Inspecting the video frames in Fig 8, it can be seen 
that changes in pose angle are common, when compared to 
changes in the illumination. From Table 3, it is evident that 
LDA is the best performing algorithm with varying poses, 
followed by PCA. Since our Robustness results were 
obtained using a tightly controlled and calibrated face 
database, we tested both these algorithms on the face 
images that were extracted out of the video frames coming 
from the camera on the wearable device.  
For testing the performance of our wearable device, 450 
images of 10 different individuals were collected in an 
office environment (See Fig. 8). These images were then 
divided into two equal groups – one for training and the 
other for testing. Two experiments were carried out to 
compare the performance of PCA and LDA for face 
recognition on the wearable device. 
Experiment 1:  

1. The training set images were used for deriving the 
PCA and LDA subspaces, as described in [2] and 
[3] respectively.  

2. The projection weights for all the training images 
were obtained by projecting them on to the 
subspaces that were derived in the Step 1. 

3. For each subject in the training set, an average 
PCA or LDA projection weight vector was 
computed and stored as the individuals 
“identification vector”, i.    

4. When a face image had to be recognized, it was 
projected on to the PCA or LDA subspace that was 
derived in Step 1 and a weight vector, w, was 
obtained.  

5. The distance between the weight vector, w, and all 
the individual identification vectors, i, obtained in 
Step 3 were computed. The identification vector 
closest to w, was chosen as the guess for the 
person in the test image.   

Experiment 2: 
1. The training set images were used to derive the 

PCA and LDA subspaces, as described in [2] and 
[3] respectively.  
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2. The projection weights for all the training images 
were obtained by projecting them on to the 
subspaces that were derived in the Step 1. 

3. All the projection weights obtained in the previous 
step were labeled with the person to whom the 
image belonged, and were stored as the 
“identification vectors”. 

4. When a face image had to be recognized, it was 
projected on the PCA or LDA subspace that was 
derived in the Step 1, and a weight vector, w, was 
obtained. 

5. The distance between the weight vector, w, and all 
the “identification vectors” were computed. The 
label corresponding to the identification vector 
closet to w was chosen as the guess for the person 
in the test image. 

(c)Text-to-speech Converter: 
When the system produces a guess for the person in the 
video frame, the user is notified with an audio signal. Here, 
we used the Microsoft Speech Engine to convert the name 
of the identified individual from text to speech. This was 
fed to the headphones that the user wears. Upon further 
experimentation, we noticed that the face recognizer learnt 
the face images based on the environment where they were 
captured. Thus the face recognizer would sporadically 
recognize a certain person as some one else because the 
lighting conditions on the face changed momentarily. To 
accommodate for such a situation, the text-to-speech 
converter waits for the face recognizer to recognize the 
same individual in five consecutive frames before the name 
of the person is spoken out.  

RESULTS 
Fig. 9 and Fig. 10 show the performance of PCA and LDA 
face recognition algorithms on the images that were 
captured from the wearable device. Experiments 1 and 2 
were conducted five times, with the training and testing 
images shuffled between trials. Fig. 11 shows the 
comparison of PCA and LDA for the same trails.    

 
Fig. 9 Recognition Performance using PCA 

 
Fig. 10 Recognition Performance using LDA 

Table 5 shows the average time taken by PCA and LDA for 
recognizing a single face image, averaged over five trails. 

 Experiment 1 Experiment 2 
LDA 40.723 ms 12.656 ms 
PCA 85.832 ms 40.583 ms 

Table 5: Average time for recognizing single face image 

 
Fig. 11 Comparison of recognition performance between PCA 

and LDA 

DISCUSSION 
Looking at Fig. 9 and Fig. 10, it is evident that the 
performance in Experiment 2 is significantly higher than in 
Experiment 1, for both PCA and LDA. However, the 
average time for recognizing a single face is much higher in 
Experiment 2. This is due to the fact that N number of 
comparisons must be carried out, where N is the total 
number of face images in the training database. On the 
other hand, in case of Experiment 1, the total number of 
comparisons is equal to the number of subjects S in the 
database. For the experiments carried out here, S = 10 and 
N = (450/2). Though there is a significant difference in the 
execution times between the two, we chose Experiment 2 as 
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a model for our face recognition work, due to the higher 
accuracy of the face recognition.  
Inspecting Fig. 11, it can be inferred that the performance 
of PCA is better than (or similar to) that of LDA. Further, 
the implementation complexity of PCA is lower than that of 
LDA. Though LDA is twice as fast as PCA, we opted for 
PCA to be the face recognition algorithm on the wearable 
device, due to its higher recognition rate.  

CONCLUSION AND FUTURE WORK 
In this paper we have presented a wearable face recognition 
system and provided performance data for this device. 
Details of the method for selecting the most appropriate 
face recognition algorithm for this device were provided, 
along with a description of the hardware components that 
were used for the wearable system.  
Having studied the performance of face recognition 
algorithms that treats a face image as a whole, experiments 
are being conducted to understand the performance of face 
recognition algorithms that model the local facial features 
of individuals. Simultaneous efforts are being made to 
acquire better performing cameras and low form factor 
computing elements such as handhelds and PDAs for the 
wearable device.    
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