
Data & Knowledge Engineering 60 (2007) 283–302

www.elsevier.com/locate/datak
Index structures for matching XML twigs
using relational query processors

Zhiyuan Chen a,*, Johannes Gehrke b, Flip Korn c, Nick Koudas d,
Jayavel Shanmugasundaram b, Divesh Srivastava c

a Information Systems Department, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
b Department of Computer Sciences, Cornell University, 4105B Upson Hall, Ithaca, NY 14853, United States

c AT&T Labs–Research, 180 Park Ave, P.O. Box 971, Florham Park, NJ 07932-0971, United States
d Department of Computer Science, Bahen Center for Information Technology, University of Toronto,

40 St. George Street Rm BA5240, Toronto ON M5S 2E4, Canada

Received 14 March 2006; received in revised form 14 March 2006; accepted 14 March 2006
Available online 18 April 2006
Abstract

Various index structures have been proposed to speed up the evaluation of XML path expressions. However, existing
XML path indices suffer from at least one of three limitations: they focus only on indexing the structure (relying on a sep-
arate index for node content), they are useful only for simple path expressions such as root-to-leaf paths, or they cannot be
tightly integrated with a relational query processor. Moreover, there is no unified framework to compare these index struc-
tures. In this paper, we present a framework defining a family of index structures that includes most existing XML path
indices. We also propose two novel index structures in this family, with different space–time tradeoffs, that are effective for
the evaluation of XML branching path expressions (i.e., twigs) with value conditions. We also show how this family of
index structures can be implemented using the access methods of the underlying relational database system. Finally, we
present an experimental evaluation that shows the performance tradeoff between index space and matching time. The
experimental results show that our novel indices achieve orders of magnitude improvement in performance for evaluating
twig queries, albeit at a higher space cost, over the use of previously proposed XML path indices that can be tightly inte-
grated with a relational query processor.
� 2006 Elsevier B.V. All rights reserved.

Keywords: XML; Index; Relational database
0169-023X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2006.03.003

* Corresponding author.
E-mail addresses: zhchen@umbc.edu (Z. Chen), johannes@cs.cornell.edu (J. Gehrke), flip@research.att.com (F. Korn), koudas@

cs.toronto.edu (N. Koudas), jai@cs.cornell.edu (J. Shanmugasundaram), divesh@research.att.com (D. Srivastava).

mailto:zhchen@umbc.edu
mailto:johannes@cs.cornell.edu
mailto:flip@research.att.com
mailto:koudas@cs.toronto.edu
mailto:koudas@cs.toronto.edu
mailto:jai@cs.cornell.edu
mailto:divesh@research.att.com


(a)

(b)

(c)

Fig. 1. (a) An XML database fragment, (b) tree representation, (c) query twig pattern.

284 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
1. Introduction

XML employs a tree-structured model for representing data. Quite naturally, queries in XML query lan-
guages (see, e.g., [24]) typically specify patterns of selection predicates on multiple elements that have some
specified tree-structured relationships. For example, the XQuery path expression:
1 ID
=book½title ¼ 0XML0�==author½fn ¼ 0jane0 and ln ¼ 0doe0�

matches author elements that (i) have a child subelement fn with content jane, (ii) have a child subelement
ln with content doe, and (iii) are descendants of (root) book elements that have a child title subelement
with content XML. This expression can be represented naturally as a node-labeled twig pattern with elements
and string values as node labels as shown in Fig. 1(c).1

Finding all occurrences of a twig pattern in an XML database is a core operation in XML query processing,
both in relational implementations of XML databases [6,7,21], and in native XML databases [8,11,18]. Prior
solutions to this problem use a combination of indexing [3,4,9,12,17], link traversal [10,16] and join techniques
[1,15,28].

The focus of this paper is on developing index structures that can support the efficient evaluation of XML
ad hoc, recursive, twig queries using a relational database system. By efficient, we mean that every fully spec-
REFs are encoded and queried as values in XML. Hence, we do not consider IDREFs as part of the twig pattern.



Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 285
ified, single-path XML query (without any branches and arbitrary recursion) should be answerable using a
single index lookup; in particular, potentially expensive join operations should be avoided. By ad hoc que-
ries, we mean that the index structures should be able to perform well even if the expected query workload is
unknown; we believe that this feature is especially important for semi-structured databases, where user que-
ries may be exploratory. Support for recursive queries means that the index structures should support que-
ries having ‘‘//’’ (i.e., ancestor–descendant relationships) efficiently (though not necessarily in a single
lookup). Support for twig queries means that the index structures should be able to process branching path
queries without significant additional overhead compared to single-path queries. Finally, since XML data
may often be stored in relational database systems in the future, we also require that the index structures
be easily implemented in existing relational database systems, and tightly integrated with relational query
processors.

While previously proposed XML path indices (see, e.g., [3,4,9,12,17,19,23]), relational join indices [22], and
object-oriented path indices (see, e.g., [2,14,25]) do address some of these aspects in isolation, we are not aware
of any index structure that handles all of these issues within a unified framework (see Section 2 for more
details). Further, some existing index structures [4,15] require either special index structures or join algorithms
not available in today’s systems, while others [19,23] use existing relational access methods in unconventional
ways that cannot be tightly integrated with relational query processors.

In this paper, we develop index structures that address the above requirements and can be tightly integrated
with a relational query processor, and provide orders of magnitude improvement in performance over the use
of existing indices, for evaluating twig queries and recursive queries, while remaining competitive for fully
specified, single-path queries. Specifically, the contributions of this paper are:

• A unified framework for XML path indices including most existing ones.
• Two novel index structures ROOTPATHS and DATAPATHS that are effective for the evaluation of ad hoc,

recursive, twig queries.
• Techniques for implementing the family of index structures using the access methods of a relational data-

base system, to support tight integration with relational query processors.
• An extensive experimental evaluation to compare our proposed indices with existing XML path indices,

and to understand the performance tradeoff between index space and twig matching time.

The rest of this paper is organized as follows. We first review related work in Section 2. We then formally
define the indexing problems we address in Section 3. In Section 4, we define the family of indices and propose
two novel index structures. We discuss lossless and lossy compression techniques for these indices in Section 5.
We present our experimental results in Section 6 and conclude in Section 7.

2. Related work

The works in [3,10,9,12,13,17] focus on indexing XML paths, excluding the data values at the ends of the

paths. Thus they require a potentially expensive join operation or multiple index lookups because the data
value is indexed separately from the path. The Index Fabric [4] indexes XML paths and data items
together. However, if precise information about the query workload is not available, the Index Fabric can-
not support branching queries efficiently. Moreover, the Index Fabric does not support recursive queries
efficiently.

Recently, the ViST [23] and PRIX [19] techniques have been proposed which encode XML documents and
queries as sequence patterns, and perform sub-sequence matching to answer twig queries. A consequence of
the sub-sequence matching is that ViST and PRIX require multiple index lookups even for fully-specified sin-
gle-path expressions. Further, since sub-sequence matching is not directly supported in a relational database
system, the authors propose implementing these sophisticated strategies using special-purpose application
logic that is opaque to the relational query engine and query optimizer. Thus, unlike our proposed approach,
these techniques cannot be tightly integrated with a relational query processor.

XML path indexing is also related to the problem of join indexing in relational database systems [22] and
path indexing in object-oriented database systems [2,14,25]. These index structures are targeted at workloads



286 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
consisting of single path queries without recursion, and assume that the schema is fixed and known. These
assumptions do not hold for XML queries, and we show the limitations of these previous approaches exper-
imentally, especially for recursive queries, in Section 6.

There are also recent approaches for indexing XML paths using a relational database [20,27]. The ToXin
approach [20] builds XML indices similar to Access Support Relations (ASR) [14] and Join Indices [22], thus
have the same problem as ASR/Join Indices. The XRel approach [27] stores the actual paths in a different
table, thus recursive queries require multiple index lookups: one to look up the path ids of the paths, and more
to look up the results for each path id.

3. Preliminaries

3.1. Query twig patterns

An XML database is a forest of rooted, ordered, labeled trees, each node corresponding to an element,
attribute, or a value, and the edges representing (direct) element–subelement, element–attribute, element–
value, and attribute–value relationships. Non-leaf nodes correspond to elements and attributes, and are
labeled by the tags or attribute names, while leaf nodes correspond to values. For the sample XML document
of Fig. 1(a), its tree representation is shown in Fig. 1(b). Each non-leaf node is associated with a unique
numeric identifier, shown beside the node.

Queries in XML query languages like XQuery [24] make fundamental use of (node-labeled) twig patterns
for matching relevant portions of data in the XML database. The node labels include element tags, attribute
names, and values; and the edges are either parent–child edges (depicted by a single line) or ancestor–descen-
dant edges (depicted by a double line).

For example, the XQuery path expression in the introduction can be represented as the twig pattern in
Fig. 1(c). In this paper, we assume all values are strings and only equality matches on the values are allowed
in the query twig pattern.

In general, given a query twig pattern Q, and an XML database D, a match of Q in D is identified intuitively
by a mapping from nodes in Q to nodes in D, such that: (i) query node tags/attribute-names/values are pre-
served under the mapping, and (ii) the structural (parent–child and ancestor–descendant) relationships
between query nodes are satisfied by the corresponding database nodes.

3.2. Subpaths and PCsubpaths

A twig pattern consists of a collection of subpath patterns, where a subpath pattern is a subpath of any root-
to-leaf path in the twig pattern. For example, the twig pattern ‘‘/book[title = ‘XML’]// author[fn =

‘jane’ and ln = ‘doe’]’’ consists of the paths ‘‘/book[title = ‘XML’]’’, ‘‘/book//author
[fn = ‘jane’]’’, and ‘‘/book//author[ln = ‘doe’]’’. Each of these is a subpath pattern, as are
‘‘/book/title’’ and ‘‘//author[fn = ‘jane’]’’.

A subpath pattern is said to be a parent–child subpath (or PCsubpath) pattern if there are no ancestor–descen-
dant relationships between nodes in the subpath pattern (a ‘‘//’’ at the beginning of a subpath pattern is per-
mitted). Thus, among the above subpath patterns, each of ‘‘/book[title = ‘XML’]’’, ‘‘/book/title’’,
and ‘‘//author[fn = ‘jane’]’’ is a PCsubpath pattern. However, neither ‘‘/book//author[fn =
‘jane’]’’ nor ‘‘/book//author[ln = ‘doe’]’’ is a PCsubpath pattern. The importance of making this
distinction will become clear when we formally define the indexing problems addressed in this paper.

3.3. Problem: PCsubpath indexing

To answer a query twig pattern Q, it is essential to find matches to a set of subpath patterns that ‘‘cover’’ the
query twig pattern. Once these matches have been found, join algorithms can be used to ‘‘stitch together’’ these
matches. For example, one can answer the query twig pattern in Fig. 1(c) by finding matches to each of the
subpath patterns ‘‘/book[title = ‘XML’]’’, ‘‘//author [fn = ‘jane’]’’ and ‘‘//author[ln =
‘doe’]’’, and combining these results using containment joins [1,28]. Alternatively, if there are few XML



Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 287
books, one could first find all book ids matching ‘‘/book[title = XML]’’, then use the book ids to selectively
probe for authors that match the subpath patterns ‘‘//author[fn = ‘jane’]’’ and ‘‘//author[ln =
‘doe’]’’ rooted at each book id. Note that matches to the branching point book are needed, even though
this node is not in the result of the query twig pattern. It is easy to see that any query twig pattern can
always be covered by a set of PCsubpath patterns. This motivates the two indexing problems we address in this
paper:
3.3.1. Problem FreeIndex

Given a PCsubpath pattern P with n node labels and an XML database D, return all n-tuples (d1, . . . ,dn) of
node ids that identify matches of P in D, in a single index lookup.

An index solving the FreeIndex problem can be used to retrieve ids of branch nodes or nodes in the result.
For example, consider query ‘‘/book/allauthors /author [fn = ‘jane’ and ln = ‘doe’]’’. A
lookup for the PCsubpath ‘‘/book/allauthors/author [fn = ‘jane’]’’ in the database in Fig. 1 gives
the id lists ([1,5,6,7], [1,5,41,42]), and author-id is the penultimate id in each of the lists. Similarly, a
lookup on‘‘/book/allauthors/author[ln = ‘doe’]’’ gives the id lists ([1,5,21,25], [1,5,

41,45]). Since author id 41 is present in both cases, the selected author can be returned via merge or hash
join, both of which are commonly supported by relational query processors.
3.3.2. Problem BoundIndex

Given a PCsubpath pattern P with n node labels, an XML database D, and a specific database node
id d, return all n-tuples (d1, . . . ,dn) that identify matches of P in D, rooted at node d, in a single index
lookup.

BoundIndex problem is useful because it allows the index-nested-loop join processing strategy in rela-
tional systems to be used. For example, given query ‘‘/book[title = ‘XML’]//author[ln = ‘doe’]’’,
and suppose we have evaluated PCsubpath ‘‘/book[title = ‘XML’]’’ and found the book id d = 1. Then
an index that can solve the BoundIndex problem can be used in index-nested-loop join to return the
‘‘author’’ id under ‘‘book’’ id 1 and satisfying the PCsubpath pattern ‘‘//author[ln = ‘doe’]’’. The
FreeIndex problem can be seen as a special case of the BoundIndex problem when the root node id d is
not given.
4. A family of indices

In this section, we will present a unified framework defining the family of indices solving the FreeIndex and
BoundIndex problems. This framework covers most existing path index structures. We also propose two novel
index structures: ROOTPATHS and DATAPATHS.
4.1. Framework

We first introduce some notation. Data paths in the XML data consist of two parts: (i) a schema path, which
consists solely of schema components, i.e., element tags and attribute names, and (ii) a leaf value as a string if
the path reaches a leaf. Schema paths can be dictionary-encoded using special characters (whose lengths
depend on the dictionary size) as designators for the schema components.

In order to solve the BoundIndex problem (which is a more general version of the FreeIndex problem), one
needs to explicitly represent data paths that are arbitrary subpaths (not just prefix subpaths) of the root-to-leaf
paths, and associate each such data path with the node at which the subpath is rooted. Such a relational rep-
resentation of all the data paths in an XML database is (HeadId, SchemaPath, LeafValue, IdList),
where HeadId is the id of the start of the data path, and IdList is the list of all node identifiers along the
schema path, except for the HeadId.

As an example, a fragment of the 4-ary relational representation of the data tree of Fig. 1(b) is given in
Fig. 2, where the element tags have been encoded using boldface characters as designators, based on the first
character of the tag, except for allauthors which uses U as its designator.



Fig. 2. The 4-ary relation.

288 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
We define the family of indices solving the FreeIndex and BoundIndex problems as follows:

4.1.1. Family of indices

Given the 4-ary relational representation of XML database D, the family of indices includes all indices that:

(1) store a subset of all possible SchemaPaths in D;
(2) store a sublist of IdList;
(3) index a subset of the columns HeadId, SchemaPath, and LeafValue.

Given a query, the index structure probes the indexed columns in (3) and returns the sublist of IdList
stored in the index entries.

Many existing indices fit in this framework, as summarized in Fig. 3. For example, the IndexFabric [4]
returns the ID of either the root or the leaf element (first or last ID in IdList), given a root-to-leaf path
and the value of the leaf element.

There are also many possible indices belonging to the family that have not been explored yet. For example,
all existing indices return the first or last IDs in the IdList, but do not return other IDs. Also, none of them
index both HeadID and SchemaPaths with length larger than one. Consequently, none of the existing index
structures can answer the FreeIndex or BoundIndex problem with a single index lookup. For example, con-



Fig. 3. Members of family of indices.

Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 289
sider the query ‘‘/book/allauthors/author[fn = ‘jane’ and ln = ‘doe’]’’. The FreeIndex prob-
lem requires the ‘‘author’’ ID given ‘‘/book/allauthors/author[fn = ‘jane’]’’. Using Index Fabric,
one can find all IDs of ‘‘fn’’ satisfying ‘‘/book/allauthors/author[fn = ‘jane’]’’, but the author ID
is not returned.

We now propose two novel index structures in this family, ROOTPATHS and DATAPATHS, which can
answer the FreeIndex and BoundIndex problems, respectively, with one index lookup.

4.2. ROOTPATHS index

ROOTPATHS is a B+-tree index on the concatenation of LeafValue and the reverse of SchemaPath, and
it returns the complete IdList. Only the prefixes of the root-to-leaf paths are indexed (i.e., only those rows
with HeadID = 1).

There are two main differences between ROOTPATHS and the Index Fabric. The first difference is that
ROOTPATHS stores the prefix paths in addition to root-to-leaf paths. This efficiently supports queries that
do not go all the way to a leaf (e.g., ‘‘/book’’). The second extension is to store the entire IdList, i.e.,
all node identifiers along the schema path,2 as opposed to storing only the document-id or leaf-id of the path
as is done in the Index Fabric. The IdList extension is key to evaluating branching queries efficiently using
relational query processors, at an additional space cost, because it gives the ids of the branch points in a single
index lookup.

We now show how a regular B+-tree index can be used to support PCsubpath queries with initial ‘‘//’’. We
need to permit suffix matches on the SchemaPath attribute (with exact matches on the LeafValue attri-
bute, if any). The key observation is that, although B+-trees are not efficient at suffix matches, they are very
efficient for prefix matches. Consequently, if we just reverse the SchemaPath values to be indexed (e.g., FAUB
instead of BUAF in Fig. 2), a regular B+-tree can be used to support suffix matches. This observation has also
previously been used in the string indexing community for matching string suffixes.

A B+-tree index on the concatenation LeafValueÆReverseSchemaPath in the ROOTPATHS relation
can be used to directly match PCsubpath patterns with initial recursion, such as ‘‘//title[.=‘XML’]’’
in a single index lookup. This is done by looking up on the key (‘XML’, T*). Similarly, PCsubpath patterns
2 The node identifiers used in this paper are simple numeric values, which suffice for subsequent sort-merge joins, and index-nested-loop
joins. Alternative identifiers such as those in [28] can instead be used to additionally enable containment joins.



(a) (b)

Fig. 4. Illustration of proposed index structures: (a) ROOTPATHS and (b) DATAPATHS.

290 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
with initial recursion, but without a condition on the leaf value, such as ‘‘//author/fn’’ can be looked up
on the key (null, FA*). Neither the Index Fabric nor the DataGuide can support the evaluation of such
queries efficiently. Fully specified PCsubpaths (without an initial ‘‘//’’) can also be handled using this index.
Fig. 4(a) illustrates the ROOTPATHS index structure.

4.3. DATAPATHS index

The DATAPATHS index is a regular B+-tree index on the concatenation of HeadId, LeafValue and the
reverse of SchemaPath (or the concatenation LeafValueÆHeadIdÆReverseSchemaPath), where the
SchemaPath column stores all subpaths of root-to-leaf paths, and the complete IdList is returned.
DATAPATHS index can solve both the FreeIndex and the BoundIndex problems in one index lookup.3 For

example, consider query ‘‘/book//author[fn = ‘jane’ and ln = ‘doe’]’’. One can use the index to
probe all book-ids that match ‘‘/book’’, which is a FreeIndex problem. Using these book-ids as HeadId val-
ues, one can solve the BoundIndex problem by probing author-id matches to each of the two PCsubpaths
‘‘//author[fn = ‘jane’]’’ and ‘‘//author[ln = ‘doe’]’’, rooted at the book-ids. Finally the intersec-
tion of these two sets of author-id matches is the answer of the query. Alternative plans enabled by the DATA-
PATHS index, are also possible. Note that the initial recursion in these PCsubpaths necessitate the use of
ReverseSchemaPath in the BoundIndex. Fig. 4(b) illustrates the DATAPATHS index structure.

The DATAPATHS index is bigger than ROOTPATHS, but is exactly what is needed to solve the BoundIndex
problem in one index lookup.
3 In our implementation, we added a virtual root as the parent of all XML documents, thus the index can solve FreeIndex as well (by
letting the HeadId be the virtual root).



Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 291
5. Compressing ROOTPATHS and DATAPATHS

The ROOTPATHS and DATAPATHS indices can be quite large, depending on the size and depth of the XML
database, because node ids are duplicated in IdList and SchemaPaths are duplicated in DATAPATHS.

In this section, we explore lossless and lossy compression techniques for reducing the index sizes. The loss-
less compression schemes do not negatively impact query functionality (i.e., exactly the same query plan can
be used), while the lossy compression schemes trade off space for query functionality. Also, for all compression
techniques, there is a tradeoff between the decompression overhead at run time and space savings. For exam-
ple, we could use dictionary-encoding to compress the LeafValues. However, the dictionary is likely to be
quite large and cannot fit in memory, incurring additional I/O overhead for index lookup. Thus, we only con-
sider compressing IdList, HeadId and SchemaPath in this paper.

5.1. Compressing IdLists

The IdList attribute of ROOTPATHS and DATAPATHS maintains a list of node identifiers, typically gen-
erated using depth-first or breadth-first numbering, for the nodes in the schema path. One lossless compression
technique is to store only the offset of each identifier with respect to the previous identifier in the IdList, as is
done in compressed inverted indices in IR. This corresponds to a differential encoding of the IdList, and is
likely to lead to a significant savings in space because the ids in the list are strongly correlated by parent–child
relationships.

With some knowledge about the query workload, it is also possible to prune the IdLists. For example, a
node that is never returned as part of the result of any twig pattern in the workload, and is not a branching
point of any twig pattern, can be eliminated from the IdList (i.e., replaced by a NULL). An extreme
example is when the query workload contains only simple rooted path patterns (i.e., no branching or recur-
sion) that return the path root nodes; this occurs when one is only filtering XML documents based on the
existence of a pattern, rather than returning each pattern match; this is the query class handled by the Index
Fabric. In this case, each IdList in ROOTPATHS contains one node. This compression of IdLists results
in loss in functionality. One can only match queries in the workload, and the index is not useful for ad hoc
path patterns.

5.2. Compressing SchemaPaths

In a well-structured XML database, the number of distinct schema paths is quite small compared to the
number of root-to-leaf paths. For example, the DBLP database has 235 distinct schema paths, and the XMark
[26] database has 902 distinct schema paths. This naturally suggests that one can dictionary-encode each of the
schema paths, representing them as small integer ids.

This compression of schema paths, however, results in some loss in functionality. One can no longer match
a PCsubpath pattern that begins with a ‘‘//’’, e.g., ‘‘//author/fn[. = jane]’’. This loss of functionality is
due to the fact that the schema path identifier is indivisible, and one cannot compute its prefixes or suffixes.
Thus, reducing the space used by the index can result in an increase in query evaluation time, by eliminating
some (potentially) efficient query processing plans.

5.3. Pruning HeadIds

While a FreeIndex lookup is useful for any PCsubpath pattern, a BoundIndex lookup is useful only when
one knows a set of HeadId values, say, because of a previous index lookup of a PCsubpath in the twig pat-
tern, and the optimizer chooses index-nested-loops as the join algorithm. This observation is the basis for
reducing the size of DATAPATHS.

If we know the query workload, then we can prune out entries from the DATAPATHS index whose HeadId
corresponds to a data node that is not a query branch point. This technique is sensitive to the query workload.
One can still use the index to match queries not in the workload (using IdLists), but the index-nested-loop
join strategy will not be possible.



292 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
6. Experimental evaluation

We present an experimental evaluation of the ROOTPATHS and DATAPATHS indices with the existing index
structures in the same family.
6.1. Experimental setup

We assume the XML data is stored in an Edge Table [7] in IBM’s DB2 version 7.2 relational database man-
agement system. The Edge table approach is selected because any XML data can be stored using this
approach. We used a 100 MB scaled XMark data [26] and a 50 MB DBLP data [5]. Our experiments were
performed using a 1.7 GHz Pentium machine running Windows 2000, with 1 GB memory and a 37 GB disk,
and a 40 MB buffer pool with operating system cache turned off. The reported query execution time are the
average of 10 runs with a cold cache, excluding query optimization time. The cost of translating the XPath
query to SQL is considered part of the query optimization cost.

6.1.1. Queries

We used a workload of 15 XPath queries on XMark and three queries on DBLP (because DBLP is too
shallow for testing), and varied the parameters of the query such as the number of branches, the selectivity
of each branch, and the depth of branches. Fig. 5 summarizes the characteristics of these queries. The details
of these queries can be found in Figs. 6–9.

6.1.2. Indexing strategies

We implemented seven different indexing strategies for our experiments: ROOTPATHS (RP) and DATA-

PATHS (DP) (both with differential encoding on IdList), simulated DataGuide (DG) and simulated Index
Fabric (IF) using B+-tree index, Edge Table index with the value index, forward link, and backward link
index as described in [16], Access Support Relations (ASR) [14], and Join Indices (JI) [22]. We use regular
B+-tree indices in this paper to simulate Index Fabric since DB2 has implemented prefix compression on
indexed columns to reduce the key size. Thus regular B+-tree indices are also space efficient.

Since the DataGuide and the Index Fabric do not store IdLists, they cannot be directly used to answer
twig queries. Consequently, we experimented with various query plans where we used the DataGuide/Index
Fabric to look up ids at the end of root-to-leaf paths, then used (possibly many lookups in) the reverse link
index on the Edge Table to determine the branch point ids from the leaf ids, and chose the best query plan. We
refer to these combined strategies as DG + Edge and IF + Edge.

The original proposals for ASRs [14] and Join Indices [22] present techniques for materializing a subset of
the paths given a query workload. However, since our focus is on evaluating ad hoc queries, we implemented
Fig. 5. Summary of characteristics of queries used in experiments.



Fig. 7. Multi-branch queries with high branch points used in our experiments.

Fig. 6. Single-branch queries used in our experiments.

Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 293
ASRs and Join Indices by materializing all relevant paths present in the data. ASR was implemented as a num-
ber of relations, one for each prefix of a root-to-leaf SchemaPath. Each relation has k + 1 columns (k is the
length of the prefix path), where the first k columns store IDs of nodes on the prefix SchemaPath, and the



Fig. 8. Multi-branch queries with low branch points used in our experiments.

Fig. 9. Recursive queries used in our experiments.

294 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
last column stores leaf values. For each relation, we built k � 1 indices, where the ith index (1 6 i 6 k � 1) is
on the k + 1, i, i + 1, . . . ,kth columns, and supports lookup on leaf value and/or the HeadId of the ith node on
the path. For example, given a relation on ‘‘/book/author’’, an index is built on (author value,

book id, author id), which supports lookup on author value and/or book id.



Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 295
The Join Index (JI) Hierarchy is similar to ASR except that it does not store intermediate nodes on a Sche-
maPath. Thus we materialized the complete join index hierarchy by creating one relation per substring of
every root-to-leaf SchemaPath. Each relation consists of three columns: the starting node ID, the ending
node ID, and the leaf value. In order to return intermediate nodes on a SchemaPath, JI has to support both
forward lookup on starting ID and backward lookup on ending ID. For example, in order to return ‘‘author’’
node in ‘‘/book/author[name = ‘Zhiyuan Chen’]’’, two lookups are needed: one to return the ‘‘name’’ ID in
the relation corresponding to ‘‘/book/author/name’’ given a ‘‘name’’ value, and the other to return the
‘‘author’’ ID in the relation corresponding to ‘‘/author/name’’ given the previously returned ‘‘name’’ ID.
To support both types of lookups, we built two B+-tree indices on each relation: one as a clustered index
on the leaf value, the starting ID, and the ending ID, the other on the leaf value, the ending ID, and the start-
ing ID.

A twig query can be answered by ASR or JI by looking up each branch in the query, then using sort merge,
hash, or index nested loops join methods to join the results of all branches. In case the query contains a ‘‘//’’, if
the schema is known, we can look up all SchemaPaths matching the query and union the results for each
SchemaPath. Further, we can directly use the JI relation corresponding to the query if the ‘‘//’’ is at the
beginning of the query. In our experiments, we assume the ideal case for ASR and JI, when the above
schema-based rewriting is applied without any additional overhead.

Fig. 10 gives the space requirement for the various index structures. Since XMark data is more deeply
nested than DBLP, the space requirements for DATAPATHS increase proportionally.

Fig. 11 reports the time to build various index structures. The time to build these indexes increases with the
sizes of indexes. For ROOTPATHS index, it takes about 3 min to build the index for DBLP and about 4.5 min
for XMark. For DATAPATHS index, it takes about 3 min for DBLP and about 16 min for XMark. These two
indexes are built by two steps. In the first step, a XML document is parsed and the HeadID, SchemaPath,
LeafValue, and IdList are extracted. In the second step, a regular B+-tree index is built based on
extracted 4-ary relation. We observe that the second step takes most of the time (the first step takes less than
1 min in all cases) because the parsing and extraction operations in the first step can be done in memory and
does not require any sorting. Thus the efficiency of index building mostly depends on the efficiency of DB2 to
build a B+-tree index.

6.2. Experimental results

6.2.1. Indexing schema paths and values together

We examine the benefit of indexing schema paths and data values together by choosing a single fully-
specified path query, and varying it from highly selective (Q1d,Q1x), to moderately selective (Q2d,Q2x), to
Fig. 10. Space (in MB) for different indices.

Fig. 11. Index building time (in seconds) for different indices.



0

1

2

3

4

5

6

0 5000 10000 15000

Result cardinality

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)
RP
DP
Edge
DG+Edge
IF+Edge

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000

Result cardinality

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

RP
DP
Edge
DG+Edge
IF+Edge

(a) (b) 

Fig. 12. Increasing selectivity for single path queries: (a) XMark and (b) DBLP.

296 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
relatively unselective (Q3d,Q3x). Fig. 12 shows the performance of various index structures (XMark on the
left, DBLP on the right). The Index Fabric and ROOTPATHS are among the best approaches, while DATA-
PATHS is only slightly worse. Meanwhile the Edge and DataGuide+Edge approaches perform badly with
decreasing selectivity.

The good performance of Index Fabric is expected because it is optimized for simple path queries. ROOT-
PATHS suffers a slight overhead because it stores IdLists instead of just Ids, and also incurs the cost of
invoking a user-defined function to extract the ids. Similarly, DATAPATHS is slightly worse than ROOTPATHS

because it has the overhead of storing both IdLists and HeadId.
Edge performs badly because it performs a join operation for each step along the path. As the selectivity of

paths decreases, it increases the cost of each join. The bad performance of Edge is a simple justification for
using a single index lookup instead of resorting to more expensive joins.

The most interesting aspect of the figure, however, is the bad performance of DataGuide+Edge. The main
reason for this behavior is that schema paths are indexed separately from the data values. Consequently, the
results for schema paths and data values have to be joined together. As the selectivity of paths decreases, the
cost of each join increases, resulting in bad performance.

6.2.2. Returning IdLists

We now examine the performance benefits of returning IdLists for twig queries. We study three groups
of queries, one in which all branches are selective, one is which all branches are unselective, and one in which
there are selective and unselective branches. For each group, we vary the number of branches.

We used queries Q4x (2 branches) and Q5x (3 branches) to evaluate the performance of queries with all
selective branches. In addition, we also used a single path selective query (chosen as the first branch common
to Q4x and Q5x) as a baseline for comparison. Similarly, we used Q6x (2 branches) and Q7x (3 branches) to
evaluate the performance of queries with a mix of selective and unselective branches, and Q8x (2 branches) and
Q9x (3 branches) for queries with all unselective branches. For all these queries, the branch point is high (i.e.,
close to the query root) in the query. The results for DBLP are similar and omitted.

Fig. 13(a)–(c) shows the performance results for the different groups of queries. ROOTPATHS and DATA-

PATHS scale gracefully both with respect to the number of branches and with respect to the selectivity of these
branches. However, the Index Fabric, DataGuide and Edge approaches perform badly in both regards (note
the log scale on the graphs).
ROOTPATHS and DATAPATHS perform so well because they store IdLists. Hence, they can do an index

lookup for each path, extract the ids of the branch point from the IdLists, and do a join on the branch
points to produce the desired result. With increasingly unselective predicates, more ids will need to be
extracted, thereby explaining the slightly higher running times as the selectivity of paths decreases. In all cases,
however, the running time of the two approaches is well under a second. The reason that DATAPATHS per-
forms slightly worse than ROOTPATHS in Fig. 13(a) and (c) is that in these cases the selectivities are roughly



0.1

1

10

1 2 3
Num. of branches

1 2 3
Num. of branches

1 2 3
Num. of branches

1 2 3
Num. of branches

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)
RP
DP
Edge
DG+Edge
IF+Edge

RP
DP
Edge
DG+Edge
IF+Edge

RP
DP
Edge
DG+Edge
IF+Edge

RP
DP
Edge
DG+Edge
IF+Edge

0.1

1

10

100

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

(a) (b)

0.1

1

10

100

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

0.1

1

10

100

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

(c) (d)

Fig. 13. XMark twig queries without recursion: (a) twig queries with selective branches, (b) twig queries with selective and unselective
branches, (c) twig queries with unselective branches and (d) twig queries with low branch points.

Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 297
the same and thus the speedup from index-nested-loops join cannot be exploited. (The index-nested-loops join
strategy is effective when one branch is selective whereas the other branches are unselective.) Since a sort-
merge join is performed for both, DATAPATHS offers no benefit over ROOTPATHS.

In contrast, the performance of the Edge table, DG + Edge, and IF + Edge approaches is many orders of
magnitude worse, both when the number of branches increases and when the selectivity of the branches
decreases. In fact, for unselective queries with three branches, the execution time for these approaches was
more than 10 min. This phenomenon occurs because, in the absence of IdLists, these approaches have to
perform expensive joins to determine the relationship between the path leaves and the branch points. Since
the branch points were high for this set of experiments, they had to perform a 5-way join for each branch.
While the joins are expensive enough to do for selective branch queries, performance degrades dramatically
in the presence of unselective branches.

It is also interesting to note some limitations of relational systems in evaluating many joins. The time that
DB2 took to optimize these queries was longer than the time it took to execute the ROOTPATHS and DATA-

PATHS queries (the graphs only show the execution time). The relational optimizer also understandably made
some wrong decisions for queries with a large number of joins, which further contributed to the bad perfor-
mance of Index Fabric, DataGuide and Edge. Thus IdLists are valuable both for reducing the overhead of
performing joins, and for simplifying the generated query to enable better optimization.

6.2.3. Benefit of index-nested-loop join

We now vary the branching point of the twig queries so that they branch closer to the leaves (recall that we
used branching points close to the root for the previous set of experiments). We use Q10x (2 branches) and



298 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
Q11x (3 branches) for the XMark data. Both queries have one selective path and other unselective paths. The
performance results are shown in Fig. 13(d). The results for DBLP are similar and are omitted.

As before, DATAPATHS performs uniformly well, while Index Fabric, DataGuide and Edge perform poorly
as the number of branches increase. The performance of these three approaches, while still up to orders of
magnitude worse than DATAPATHS, is better than the case when the branches are deeper because the number
of joins required to determine the branch point is lower for this set of experiments.

The most surprising result here is the relatively bad performance of ROOTPATHS (it is even worse than
IF + Edge at a point). The reason for this degradation of performance is that ROOTPATHS does not support
the index-nested-loop join strategy while the other indices do. The index-nested-loop join strategy is much bet-
ter for this set of queries because (a) one branch is very selective, (b) other branches are unselective, and (c)
each selective branch matches with only very few unselective branches. Condition (c) was not satisfied earlier
for the queries with deep branches because they branch at nodes closer to the root, which usually have a large
number of descendants.

6.2.4. Recursive queries

We now examine the performance of evaluating recursive (‘‘//’’) queries. The recursive queries are exactly
the same as queries used in Fig. 7 except that each query now starts with a ‘‘//’’. To examine the overhead for
recursive queries, we compare the performance of ROOTPATHS and DATAPATHS for queries which do not
have a recursion. (Other indices cannot be used here.)

Fig. 14 shows the results for queries with only selective branches (variants of Q4x, Q5x) or only unselective
branches (variants of Q8x, Q9x). The results for queries with both selective and unselective branches are sim-
ilar and omitted. The results show that ROOTPATHS and DATAPATHS have little additional overhead (less
than 5%) for processing queries with a ‘‘//’’. This is because such queries can be converted into B+-tree range
queries on ReverseSchemaPaths. The Edge approach can also support such queries, but suffers from the
previous overheads of multiple joins for both paths and twigs.

6.2.5. Space optimizations

Although DATAPATHS performs orders of magnitude better than existing approaches, one possible concern
is its space overhead. The lossless compression strategy (differential encoding of IDLists) reduced the space
requirement by about 30%, which gives rise to the space requirement shown in Fig. 10. We now study the
effects of other lossy compression strategies.

We implemented SchemaPaths compression, which reduces the space overhead by an additional 10 MB
for the XMark data, and has no savings for the DBLP data. For this marginal savings in space, Schema-
Paths compression may not be desirable because it does not support recursive (‘‘//’’) queries. We imple-
mented HeadId pruning based on workload information (i.e., all queries used in our experiments), and the
0

0.5

1

1.5

2

2.5

3

3.5

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

RP-old
DP-old
RP
DP
Edge

RP-old
DP-old
RP
DP
Edge

0.1

1

10

100

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

(a) (b)

1 2 3
Num. of branches

1 2 3
Num. of branches

Fig. 14. Overhead for recursive queries: (a) twig queries with selective branches and (b) twig queries with unselective branches.



Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 299
index size dropped considerably to 141 MB (1.4 times the data size) for the XMark data and 38.4 MB (77% of
data size) for the DBLP data. Note, however, such pruning disables index-nested-loop join for queries not in
the workload and branching at other positions. Thus there might be a performance penalty for such queries
and so this compression should be used judiciously.
6.2.6. Comparison with ASRs and Join Indices

We now compare our index structures against ASR and Join Indices. ASR and Join Indices are similar to
DATAPATHS in the sense that all of them encode nodes along paths. However, there are three differences
between them.

First, both ASR and Join Indices assume the schema is known a priori. Therefore, ASR and Join Indices
require schema discovery as a pre-requisite step and have manageability problems when new data, not con-
forming to the previous schema, is added.

Second, our index structures encode both schema and data using the same framework, while ASR and Join
Indices encode schema as relation names. This gives our index structures two advantages over ASR and Join
Indices. First, this drastically reduces the number of relations and indices, and the management overhead. For
example, in order to support ad hoc queries, both ASR and Join Indices created 902 and 235 tables for XMark
and DBLP respectively. Our index structures each have only one index.

More importantly, indexing schema and data together enables the efficient evaluation of ‘‘//’’ queries,
when the recursion matches many subpaths, because both ASR and Join Indices need to access many relations,
one for each matching subpath. This is less efficient than accessing a single index structure because in a unified
index structure, the cost of accessing the index is logarithmic to the data size, but the cost of accessing many
small indices is linear to the number of indices. To investigate this, we ran experiments for the queries shown in
Fig. 9 which contain a ‘‘//’’ as branch point and matches six subpaths in the data. Again, we vary the number
of branches as well as selectivity of different branches. Q12x and Q13x consist of both selective and unselective
branches, and Q14x and Q15x consist of unselective branches. The results for all selective branches are similar,
so they are omitted. We also exclude the overhead to decide which relations to access for ASR and Join Indices.
So their real performance would be worse than shown here.

Fig. 15 shows the results. The performance of Edge table, DG + Edge, and IF + Edge are not shown
because they are about an order of magnitude worse than our index structures. The results show that the per-
formance of DATAPATHS is up to a factor of 5 better than ASR and Join Indices because the latter techniques
have to access six different relations to retrieve a single branch in the query. This difference decreases as the
queries contain only unselective branches, because now the cost of joining these branches dominates the cost
of index access. ROOTPATHS has bad performance because index-nested-loops join is much more efficient than
merge join for these queries.
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

RP
DP
ASR
JI

RP
DP
ASR
JI

0

1

2

3

4

5

6

7

8

T
im

e 
of

 1
0 

ru
ns

 (
se

co
nd

s)

(a) (b)

1 2 3

Num. of branches

1 2 3

Num. of branches

Fig. 15. XMark queries having a ‘‘//’’ as branch point: (a) selective and unselective branches and (b) unselective branches.



300 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
Note that the same argument applies to other index structures that answer a recursive query by translating
the recursion into several equality path conditions (e.g., XRel [27]). Hence we do not compare our index struc-
tures with these indices in this paper.

Finally, ASRs and Join Indices require more space than DATAPATHS. ASR uses more space because it can-
not compress IdLists, which are stored in separate columns. However, the space saving is less than that
achieved by the differential encoding of IdLists (i.e., 30%, see Section 6.2.5) because DATAPATHS need to
store SchemaPath. Join Index needs even more space than ASRs for the following reason. Join Index only
stores the starting and ending node id along a subpath. In order to return intermediate nodes on this path, Join
indices have to support both forward lookup to return the ending node and backward lookup to return the
starting node. As a result, Join Indices need to build two B+-tree indices per subpath, while ASRs only need
to build one.

7. Conclusion

We have described a family of index structures, with different space–time tradeoffs, for the efficient evalu-
ation of ad hoc, recursive, twig queries. The proposed index structures are enabled by a simple relational rep-
resentation of the XML data paths. This permits conventional use of existing relational index structures (e.g.,
B+-trees) for the twig indexing problem, and can thus be tightly coupled with a relational optimizer and query
evaluator. A promising direction for future work is to devise efficient update techniques for the proposed index
structures.
References

[1] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N. Koudas, D. Srivastava, Structural joins: a primitive for efficient XML query
pattern matching, in: ICDE, 2002.

[2] E. Bertino, W. Kim, Indexing techniques for queries on nested objects, in: IEEE TKDE, vol. 1 (2), 1989.
[3] C.-W. Chung, J.-K. Min, K. Shim, APEX: an adaptive path index for XML data, in: SIGMOD, 2002.
[4] B.F. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, M. Shadmon, A fast index for semistructured data, in: VLDB, 2001.
[5] DBLP. Available from: <http://www.informatik.uni-trier.de/~ley/db/index.html>.
[6] A. Deutsch, M. Fernandez, D. Suciu, Storing semistructured data with STORED, in: SIGMOD, 1999.
[7] D. Florescu, D. Kossman, Storing and querying XML data using an RDMBS, IEEE Data Engineering Bulletin 22 (3) (1999) 27–

34.
[8] R. Goldman, J. McHugh, J. Widom, From semistructured data to XML: Migrating the Lore data model and query language, in:

WebDB Workshop, 1999.
[9] R. Goldman, J. Widom, DataGuides: Enabling query formulation and optimization in semistructured databases, in: VLDB, 1997.

[10] T. Grust, Accelerating XPath location steps, in: SIGMOD, 2002.
[11] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman, S. Paparizos, J.M. Patel, D. Srivastava, N.

Wiwatwattana, Y. Wu, C. Yu, TIMBER: a native XML database, VLDB Journal 11 (4) (2002) 274–291.
[12] R. Kaushik, P. Bohannon, J.F. Naughton, H.F. Korth, Covering indexes for branching path queries, in: SIGMOD, 2002.
[13] R. Kaushik, P. Shenoy, P. Bohannon, E. Gudes, Exploiting local similarity for efficient indexing of paths in graph structured data, in:

ICDE, 2002.
[14] A. Kemper, G. Moerkotte, Access support in object bases, in: SIGMOD, 1990.
[15] Q. Li, B. Moon, Indexing and querying XML data for regular path expressions, in: VLDB, 2001.
[16] J. McHugh, J. Widom, Query optimization for XML, in: VLDB, 1999.
[17] T. Milo, D. Suciu, Index structures for path expressions, in: ICDT, 1999.
[18] J. Naughton, D.J. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R.

Ramamurthy, J. Shanmugasundaram, F. Tian, K. Tufte, S. Viglas, Y. Wang, C. Zhang, B. Jackson, A. Gupta, R. Chen, The Niagara
Internet Query System, IEEE Data Engineering Bulletin 2 (2) (2001).

[19] P. Rao, B. Moon, PRIX: indexing and querying XML using pruffer sequences, in: ICDE, 2004.
[20] F. Rizzolo, A. Mendelzon, Indexing XML data with ToXin, in: WebDB Workshop, 2001.
[21] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, J.F. Naughton, Relational databases for querying XML documents:

limitations and opportunities, in: VLDB, 1999.
[22] P. Valduriez, Join indices, in: ACM TODS, 1987, vol. 12(2).
[23] H. Wang, S. Park, W. Fan, P. Yu. ViST: a dynamic index method for querying XML data by tree structures, in: SIGMOD, 2003.
[24] World Wide Web Consortium, XQuery: a query language for XML. Available from: <http://www.w3.org/TR/xquery>.
[25] Z. Xie, J. Han, Join index hierarchies for supporting efficient navigations in object-oriented systems, in: VLDB, 1994.
[26] XMark, The XML benchmark project. Available from: <http://monetdb.cwi.nl/xml>.

http://www.informatik.uni-trier.de/~ley/db/index.html
http://www.w3.org/TR/xquery
http://monetdb.cwi.nl/xml


Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302 301
[27] M. Yoshikawa, T. Amagasa, T. Shimura, S. Uemura, XRel: a path-based approach to storage and retrieval of XML documents using
relational databases, in: ACM TOIT, vol. 1(1), 2001, pp. 110–141.

[28] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, G.M. Lohman, On supporting containment queries in relational database
management systems, in: SIGMOD, 2001.

Zhiyuan Chen received the Ph.D. degree in computer science from the Cornell University in 2002. Presently, he is
an assistant professor in the information systems department at University of Maryland, Baltimore County. His
research interests include XML and semi-structured data, privacy-preserving data mining, data integration,
automatic database tuning, and database compression.

Johannes Gehrke is an Associate Professor in the Department of Computer Science at Cornell University and the
Technical Director of Data-Intensive Computing of the Cornell Theory Center. He obtained his Ph.D. in com-

puter science from the University of Wisconsin-Madison in 1999. Johannes’ research interests are in the areas of
data mining, data stream processing, data privacy, and applications of database and data mining technology to
marketing and the sciences. Johannes has received a National Science Foundation Career Award, an Arthur P.
Sloan Fellowship, an IBM Faculty Award, the Cornell College of Engineering James and Mary Tien Excellence in
Teaching Award, and the Cornell University Provost’s Award for Distinguished Scholarship. He is the author of
numerous publications on data mining and database systems, and he co-authored the undergraduate textbook
Database Management Systems (McGrawHill (2002), currently in its third edition), used at universities all over
the world. He has also given courses and tutorials on data mining and data stream processing at international
conferences and on Wall Street, and he has extensive industry experience as technical advisor.

Flip Korn is a member of the Database Research Department at AT&T Labs-Research in Florham Park, NJ. He

received a Ph.D. degree from the University of Maryland, College Park in 1998. His current research interests are
in the area of database methods for network management, with a focus on processing data streams.

Nick Koudas is a faculty member at the University of Toronto, department of computer science. He holds a Ph.D.
from the University of Toronto, an M.Sc. from the University of Maryland at College Park, and a B.Tech. from

the University of Patras in Greece. He serves as an associate editor for the Information Systems journal, the IEEE
TKDE journal and the ACM Transactions on the WEB. He is the recipient of the 1998 ICDE Best Paper award.
His research interests include core database management, data quality, metadata management and its applications
to networking.

Jayavel Shanmugasundaram is an Assistant Professor in the Department of Computer Science at Cornell Uni-
versity. He obtained his Ph.D. degree from the University of Wisconsin, Madison, his masters degree from the

University of Massachusetts, Amherst, and his bachelors degree from the Regional Engineering College, Tiru-
chirappalli, India, all in Computer Science. Prior to joining Cornell University, he spent two years at the IBM
Almaden Research Center in San Jose, California. Jayavel’s research interests include Internet data management,
information retrieval, and query processing in emerging system architectures. He is the author of several publi-
cations and patents on these topics, and his research ideas have been implemented in commercial data man-
agement products. Jayavel is an invited expert and co-editor of the XQuery and XPath Full-Text language
currently being developed by the World Wide Web Consortium (W3C). He has received an NSF CAREER
Award, an IBM Faculty Award, and the James and Mary Tien Excellence in Teaching Award.



302 Z. Chen et al. / Data & Knowledge Engineering 60 (2007) 283–302
Divesh Srivastava is the head of the Database Research Department at AT&T Labs-Research. He received his
Ph.D. from the University of Wisconsin, Madison, and his B.Tech. from the Indian Institute of Technology,
Bombay. His current research interests include data quality, IP network data management and XML databases.


	Index structures for matching XML twigs using relational query processors
	Introduction
	Related work
	Preliminaries
	Query twig patterns
	Subpaths and PCsubpaths
	Problem: PCsubpath indexing
	Problem FreeIndex
	Problem BoundIndex


	A family of indices
	Framework
	Family of indices

	ROOTPATHS index
	DATAPATHS index

	Compressing ROOTPATHS and DATAPATHS
	Compressing IdLists
	Compressing SchemaPaths
	Pruning HeadIds

	Experimental evaluation
	Experimental setup
	Queries
	Indexing strategies

	Experimental results
	Indexing schema paths and values together
	Returning IdLists
	Benefit of index-nested-loop join
	Recursive queries
	Space optimizations
	Comparison with ASRs and Join Indices


	Conclusion
	References


