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ABSTRACT
Database queries are often exploratory and users often find their
queries return too many answers, many of them irrelevant. Exist-
ing work either categorizes or ranks the results to help users locate
interesting results. The success of both approaches depends on the
utilization of user preferences. However, most existing work as-
sumes that all users have the same user preferences, but in real
life different users often have different preferences. This paper
proposes a two-step solution to address the diversity issue of user
preferences for the categorization approach. The proposed solution
does not require explicit user involvement. The first step analyzes
query history of all users in the system offline and generates a set
of clusters over the data, each corresponding to one type of user
preferences. When user asks a query, the second step presents to
the user a navigational tree over clusters generated in the first step
such that the user can easily select the subset of clusters match-
ing his needs. The user then can browse, rank, or categorize the
results in selected clusters. The navigational tree is automatically
constructed using a cost-based algorithm which considers the cost
of visiting both intermediate nodes and leaf nodes in the tree. An
empirical study demonstrates the benefits of our approach.

Categories and Subject Descriptors
H.2 [Information Systems]: DATABASE MANAGEMENT; H.3.3
[Information Systems]: INFORMATION STORAGE AND RE-
TRIEVAL—Information Search and Retrieval
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1. INTRODUCTION
As internet becomes ubiquitous, many people are searching their

favorite cars, houses, movies, stocks, etc. over the web. Many
websites use databases to store the data and provide a form-based
search interface. However, typically users often can not form a
query that returns exactly the answers matching their preferences.
Instead, they will start with some queries with very general condi-
tions and returning many answers, and then iteratively refine their
queries until a few answers matching their preferences are returned.
However, this iterative procedure is time-consuming and many users
will give up before they reach the final stage.

To speed up this iterative search process, two types of solutions
have been proposed. The first type [7] categorizes the query re-
sults into a navigational tree, and the second type [2, 9, 10, 1, 8]
ranks the results. The success of both approaches depends on the
utilization of user preferences. However, most existing work as-
sumes that all users have the same user preferences, but in real life
different users often have different preferences.
Example 1. Consider a mutual fund selection website. Figure 1
shows a fraction of a navigational tree generated using a method
proposed in [7] over 193 mutual funds (details are described in
Section 6.1) returned by a query with the condition fund name like
‘%Vanguard%’. Each tree node specifies the range or equality con-
ditions on an attribute, and the number in the parentheses is the
number of data records satisfying all conditions from the root to
the current node. Users can use this tree to select the funds that are
interesting to them. For example, a user interested in funds with
very high returns may select those funds with “3 Yr return” over
20% (the right most node in the first level). Now he only needs to
examine 29 records instead of the 193 records in the query results.

Consider four users U1, U2, U3, and U4. U1 and U2 prefer
funds with high returns and are willing to take higher risks, U3
prefers funds with low risks and is willing to sacrifice some returns,
and U4 prefers both high return funds and low risk funds (these
two types of funds typically do not overlap). The existing method
assumes that all users have the same preferences. Thus it places
attributes “3 Year return” and “1 Year return” at the first two levels
of the tree because more users are concerned with returns than risks.
However, the attribute characterizing the risks of a fund is “standard
deviation”, and is placed at multiple nodes in the third level of the
tree. Suppose U3 and U4 want to visit low risk funds at the two
bottom-left nodes (bounded with rectangles) in Figure 1, they need
to visit many nodes (including nodes on the paths from the root
plus the sibling nodes because users need to check the labels of the
siblings to decide which path to follow.).
Two key challenges: User preferences are often difficult to obtain
because users do not want to spend extra efforts to specify their
preferences. Thus there are two major challenges to address the
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Figure 2: Tree generated by our method

diversity issue of user preferences: (1) how to summarize diverse
user preferences from the behavior of all users already in the sys-
tem, and (2) how to decide the subset of user preferences associated
with a specific user. As most existing work [7, 2, 9, 10] did, we use
query history to infer the behavior of all users in the system.

Agrawal et al. [1] addressed the problem of diverse user pref-
erences for the ranking approach. The authors assume there are
a set of orders over records, each corresponding to some contexts
(represented as conditions over attributes). A method is proposed
to select a small subset of representing orders. When a user asks
a query, the query will be matched against the contexts. An order
will be generated to maximize the agreement of stored orders with
the returned order, where each stored order will be weighted with
the similarity score between the query and the context associated
with that order. However, this work does not consider the case of
categorization. Further, it does not focus on how to summarize user
preferences from the behavior of all users (it assumes preferences
are given). It also uses the query asked by a specific user to de-
cide his preferences, which is questionable because as mentioned
earlier, typically users can not form a meaningful query at the be-
ginning of their searches.

One well-known solution to the second challenge is to define a
user profile for each user and use the profile to decide his pref-
erences. However, in real life user profiles may not be available
because users do not want to or can not specify their preferences (if
they can, then they can form the appropriate query and there is no
need for either ranking or categorization). One could try to derive a
profile from the query history of a certain user, but this method will
not work if the user is new to the system, which is exactly when the
user needs help the most.
Our approach: In this paper, we propose a two-step approach to
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address both challenges for the categorization case. The system ar-
chitecture is shown in Figure 3. The first step occurs offline. It ana-
lyzes query history of all users already in the system and generates
a set of non overlapping clusters over the data, each correspond-
ing to one type of user preferences. Each cluster has an associated
probability of users being interested in that cluster. We assume that
an individual user’s preference can be represented as a subset of
these clusters, and each cluster will appear in the subset with its
associated probability. The system stores these clusters (by adding
a class label to each data record) and probabilities for each cluster.

The second step occurs online when a specific user asks a query.
It first intersects the set of clusters generated in the first step with
the answers of the query. It then automatically constructs a naviga-
tional tree over these intersected clusters on the fly. This tree is then
presented to the user. The user first navigates this tree to select the
subset of clusters matching his needs. The user then can browse,
rank, or categorize the results in the selected clusters.

Note that here we are not intending to select the most interesting
records for the user. Instead, it is up to the user to do so. We just
provide a navigational tree that “best describes” the differences of
different clusters such that the user can easily locate the subset of
clusters matching his needs. This step also does not assume the
availability of a user profile or a meaningful query.

The diversity issue is addressed in two aspects. First, the first
step of our approach captures diverse user preferences by identify-
ing all types of user preferences in the format of clusters. Second,
the second step uses a navigational tree to let a specific user select
the subset of clusters (or types of user preferences) matching his
needs. Let k be the number of clusters, the user can potentially se-
lect up to 2k different preferences (subsets). This gives users more
flexibility than the profiling approach because in the latter case each
user is forced to use only one profile.

In Example 1, suppose the first step of our approach generates
three clusters, one for high return funds, one for low risk funds,
and the third for the remaining funds (i.e., those no users will be
interested in).

In the second step, when a user asks for “Vanguard mutual funds”,
a navigational tree shown in Figure 2 is automatically constructed.
How this tree is generated will be discussed later. Here we just
give some intuitions. Attribute “manager years” is selected in the
first level of the tree. The intuition is that funds managed by very
senior managers often have either very high returns, or very low
risks because otherwise those managers may get fired for their poor
performance. “manager years” is not selected by the existing cate-
gorization method [7] because the most frequently used attribute is
“3 Yr return” in the query history. Next “1 year return” is selected
to separate the remaining two clusters. Now “high return” funds
and “low risk” funds can be found at two leaf nodes with bounding
rectangles. All four users only need to visit 4 tree nodes (2 in first
level and 2 in the second level) excluding the root, while using the
tree in Figure 1, U3 and U4 need to visit 12 nodes (3 in the first
level, 5 in the second level, and 4 in the third level).

Our contributions are summarized as follows:

• We propose a clustering method to summarize user prefer-
ences of all users in the system using query history. This
method uses query pruning, query merging, precomputation,
and min-wise hashing to deal with large query histories and
large data sets.

• We propose a cost-based algorithm to construct a naviga-
tional tree over these clusters. Unlike existing categoriza-
tion and decision tree construction algorithms, this algorithm
considers the overhead for users to visit both intermediate
nodes and leaf nodes.



• We conduct an empirical study which demonstrates the su-
periority of our approach over existing solutions.

Road map: The rest of the paper is organized as follows. Section 2
describes related work. Section 3 gives necessary preliminaries.
Section 4 describes the clustering step of our approach. Section 5
describes the tree construction step. Section 6 presents results of an
empirical study. Section 7 concludes the paper.

2. RELATED WORK
The only known study on categorizing SQL query results [7]

proposed a greedy algorithm to construct a navigational tree. This
algorithm uses query history of all users in the system to infer an
overall user preference as the probabilities of users are interested
in each attribute. As explained in Section 1, it does not consider
the diversity issue of user preferences. Further, we will show in
Section 5 that the algorithm does not consider the impact of future
splits on the overhead of navigating the tree.

There has been a rich body of work on categorizing text doc-
uments [12, 16, 18] and web search results [28, 27]. However,
categorizing relational data presents unique challenges and oppor-
tunities. First, relational data contains numerical values while text
categorization methods treat documents as bags of words. Further,
this paper tries to minimize the overhead for users to navigate the
generated tree (will be defined in Section 3), which is not consid-
ered by existing text categorization methods.

There has been a rich body of work on information visualiza-
tion [6] techniques. Two popular techniques are dynamic query
slider [3] which allows users to visualize dynamic query results
using sliders to represent range search conditions, and brushing
histogram [26] which employs interactive histograms to represent
each attribute and helps users exploring correlations between at-
tributes. However, none of them takes query history into account.
Furthermore, information visualization techniques also require users
to specify what information to visualize (e.g., by setting the slider
or selecting histogram buckets). Since our approach generates the
information to visualize, i.e., the navigational tree, our approach
is complementary to visualization techniques. For example, if the
leaf of the tree still contains many records, a query slider or brush-
ing histogram could be used to further narrow down the scope.

There has been recent work on applying ranking techniques for
data stored in databases [2, 9, 10, 1, 8]. Ranking is complemen-
tary to categorization and we could use ranking in addition to our
techniques (e.g., we could rank records stored in each leaf). Fur-
ther, most existing work does not consider the diversity issue of
user preferences. The only exception is [1]. However it does not
focus on how to obtain different user preferences. To the best of
our knowledge, our paper is the first to consider the diversity issue
of user preferences for the categorization approach.

There also has been a lot of work on information retrieval [22,
13, 23, 17] using query history or other implicit feedbacks. How-
ever, such work focuses on searching text documents, while this
paper focuses on searching relational data. These studies also typi-
cally rank query results, while this paper categorizes the results.

One could also use existing hierarchical clustering techniques [19]
to create the navigational tree. However, the trees generated are not
easy for users to navigate. For example, how do we describe the
records contained in a node? We can use a representative record,
but such a record may contain many attributes, making it difficult
for users to read. On the contrary, the navigational tree is easy to
understand because each node just uses one attribute.

There has also been work on OLAP queries [15] that aggregate
data into a hierarchical structure and allow users to drill down or

Table 1: Symbols
D Dataset
H Query history
T Navigational tree
Ai Attribute i
Qi Query i
Fi Frequency of query i
DQi Results of Qi

Ci Preference-based cluster i
Pi Probability of users being interested in Ci

QCi Query cluster i
t Tree node
Anc(t) The set of ancestors of node t
Sib(t) The set of siblings of node t
N(t) Number of records in node t

roll up. However, users have to specify the group by attributes
while in this paper the tree is created automatically.

3. PRELIMINARIES
Notations: Table 1 lists the symbols used in this paper. Let D be a
relation with n records r1, ..., rn and m attributes A1, ..., Am. Let
H be a query history {(Q1, U1, F1), ..., (Qk, Uk, Fk)} in chrono-
logical order, where Qi is a query, Ui is a session ID (a session
starts when a user connects to the database and ends when the user
disconnects), and Fi is a weight associated with that query. In this
paper, Fi represents the frequency of the query. But the methods
proposed in this paper also apply to other meanings of Fi as well
(e.g., the importance of the query). Note that queries in the same
session are asked by the same user, which will be used later to prune
queries. The query history can be collected easily using the query
logging feature of commercial database systems.

We assume that all queries only contain range or equality condi-
tions, and the conditions can be represented in the following con-
junctive normal form: Cond(A1)∧Cond(A2) . . . ∧Cond(Am).
Cond(Ai) is the conditions on attribute Ai and is in the format of
c11 ≤ Ai ≤ c12 ∨ c21 ≤ Ai ≤ c22 ∨ . . .∨ c1j ≤ Ai ≤ c2j , where
c11, c12, . . . , c2j are constants.

D can be partitioned into a set of disjoint preference-based clus-
ters C = {C1, ..., Cq}, where each cluster Cj corresponds to one
type of user preferences. Each Cj is associated with a probability
Pj that users are interested in Cj . This set of clusters are inferred
from the query history.

We assume that the clusters are disjoint in this paper just for
simplicity. In practice, user preferences may overlap. However, we
may divide two overlapped preferences into three clusters, one for
the intersection part of the two preferences, and the other two for
the non-overlapped parts of each preference. We also assume that
each user’s preference may consist of a set of clusters instead of
just one cluster. Thus although the clusters are not overlapped, our
model can represent overlapped user preferences.

We also assume that the results of queries are not stored in the
query history, and can be recomputed later. We further assume
that the dataset D is fixed. In practice D may get modified from
time to time. In this case we assume that clusters are generated
periodically (e.g., once a month), and the result DQi of a query
Qi ∈ H is computed using the database at the time when clusters
are generated. This is because users are typically more interested in
the most up-to-date information. For example, the “1 Year Return”
of a mutual fund may get updated frequently. Thus it makes more
sense to use the current value rather than using previous ones.



Definition of navigational tree and navigational cost:
DEFINITION 1. A navigational tree T (V, E, L) contains a node

set V , an edge set E, and a label set L. Each node v ∈ V has a
label l(v) ∈ L which specifies the condition on an attribute such
that the following should be satisfied: (1) such conditions are range
or equality conditions, and the bounds in the range conditions are
called split points; (2) v contains records that satisfy all conditions
on its ancestors including itself; (3) conditions associated with chil-
dren of a non-leaf node v are on the same attribute (called split
attribute), and define a partition of the records in v.

The third condition in Definition 1 restricts that each node only
uses one split attribute. This makes it simple for users to decide
which branch to follow.

We assume that a user visits T in a top-down fashion, and stops at
a leaf that contains the records that he is interested in. Let t be a leaf
of T with N(t) records and Cj be a cluster in C. Cj∩t �= ∅ denotes
that t contains records in Cj . Anc(t) denotes the set of ancestors
of t including t itself, but excluding the root. Sib(t) denotes the set
of sibling nodes of node t including itself. Let w1 and w2 represent
the weights (or unit costs) of visiting a record in the leaf and visiting
an intermediate tree node, respectively. The navigational cost is
defined as follows.

DEFINITION 2. The navigational cost NCost(T, C) equals
�

t∈Leaf(T )

�

Cj∩t �=∅
Pj(w1N(t) + w2

�

ti∈Anc(t)

|Sib(ti)|).

The navigational cost of a leaf t consists of two terms: the cost
of visiting records in leaf t and the cost of visiting intermediate
nodes. Users also need to examine the labels of all sibling nodes to
select a node on the path from the root to t. Thus users have to visit�

ti∈Anc(t) |Sib(ti)| intermediate tree nodes. The cost of visiting
the root is excluded because every tree has a root. When users reach
the leaf t, they have to look at all N(t) records in t. For example,
in Figure 1, suppose a user is interested in the node with the left
most rectangle with 100% probability, the user needs to visit all
three nodes in the first level, the left two nodes in the second level,
the left two nodes in the third level, and 38 records in that leaf. Let
w1 = w2 = 1, the total cost equals 3 + 2 + 2 + 38 = 45.

Let Pj be the probability that users will be interested in cluster
Cj . Definition 2 computes the expected cost over all clusters and
leaves.

Next we define two problems: (1) the problem of summarizing
preferences of all users via clustering, and (2) the problem of find-
ing an optimal navigational tree for a query.
The clustering problem: A co-clustering method was proposed
in [11] to cluster documents and keywords. We could apply this
method to co-cluster data and queries in the query history. How-
ever, each query is assigned to just one cluster. In our settings, the
same query may belong to multiple clusters of records. For ex-
ample, funds with high returns and funds with low risks may both
be managed by senior managers, thus the query asking for funds
managed by senior managers may appear in both clusters.

We generate preference-based clusters as follows. We first define
a binary relationship R over records such that (ri, rj) ∈ R if and
only if two records ri and rj appear in the results of the exactly
same set of queries in H . If (ri, rj) ∈ R, according to the query
history, ri and rj are not distinguishable because each user that
requests ri also requests rj and vice versa. Clearly, R is reflexive,
symmetric, and transitive. Thus R is an equivalence relation and it
partitions D into equivalence classes {C1, . . . , Cq}, where records
equivalent to each other are put into the same class. Those records
not selected by any query will also form a cluster associated with
zero probability (since no users are interested in them).

CreateTree(H,D, Q)
1. (This step occurs offline and only once.)
Cluster records in query results D using H.
The results are a set of clusters C1, ..., Cq,
and each cluster Cj , 1 ≤ j ≤ q, has a probability Pj.
2. (This step occurs online for each query Q).
Create a navigational tree T with minimal
NCost(T, C) over records in results of Q,
using C1, ..., Cq as class labels.

Figure 4: Algorithm 1.

PROBLEM 1. Given database D, query history H , find a set of
disjoint clusters C = {C1, . . . , Cq} such that for any records ri

and rj ∈ Cl, 1 ≤ l ≤ q, (ri, rj) ∈ R, and for any records ri and
rj not in the same cluster, (ri, rj) �∈ R.
Example 2: Suppose there are three queries Q1, Q2, and Q3 and
13 records r1, r2, . . . , r13. Q1 returns first 10 records r1, r2, . . . ,
r10, Q2 returns the first 9 records r1, r2, . . . r9, and r11, and Q3 re-
turns r12. Clearly the first 9 records r1, r2, . . . r9 are equivalent to
each other since they are returned by both Q1 and Q2. The data can
be divided into five clusters {r1, r2, . . . , r9} (returned by Q1, Q2),
{r10} (returned by Q1 only), {r11} (returned by Q2 only), {r12}
(returned by Q3), and {r13} (not returned by any query).

If we compute for each record ri, the set of queries that contain
it in the results, a simple grouping operation can generate the clus-
ters. However, in practice, the query history H may contain many
queries, thus the direct application of the above method would gen-
erate too many clusters. This will make it difficult for a user to
select his preferred clusters in the second step. Further, the dataset
D may also contain many records, making it expensive to generate
the clusters. Thus we propose several techniques to address this
problem in Section 4.
The navigational tree construction problem:

PROBLEM 2. Given D, C, Q, find a tree T (V, E, L) such that
(1) it contains all records in the results of Q, (2) there does not
exist another tree T ′ satisfying (1) and with NCost(T ′, C) <
NCost(T, C).

The above problem can be proved to be NP hard in a way simi-
lar to proving that the problem of finding an optimal decision tree
with a certain average length is NP hard. Section 5 will present an
approximate solution.

Figure 4 shows our approach. Next we describe the clustering
step in Section 4 and the tree construction step in Section 5.

4. PREFERENCE-BASED CLUSTERING
This section describes the algorithm to cluster data records us-

ing query history. We propose two preprocessing steps to prune
unimportant queries and merge similar queries. The algorithm is
described in Figure 5. At step 1 and 2, the algorithm prunes unim-
portant queries and merges similar queries into a single query. At
step 3 to 5, the clusters are generated.
Query pruning: The pruning algorithm is based on the following
heuristics: (1) queries with empty answers are not useful, (2) in the
same session, a user often starts with a query with general condi-
tions and returns many answers, and then continuously refines the
previous query until the query returns a few interesting answers.
Therefore, only the last query in such a refinement sequence is im-
portant. We define a refinement relationship denoted as ⊆ between
queries as follows.

DEFINITION 3. Let DQi and DQj be results of Qi and Qi.
Qi ⊆ Qj if and only if DQi ⊆ DQj .

An obvious way to verify the refinement relationship is to ex-
ecute a SQL statement as Qi minus Qj and check if the result



Cluster(H, DQ)
1. H ′=Prune(H, D).
2. {QC1, . . . , QCk} = Merge(H ′)
3. For each record ri ∈ DQ, identify
Si = {QCp|∃Qj ∈ QCp such that ri is returned
by Qj}.
4. Group records in DQ by Si.
5. Output each group as a cluster Cj,
assign a class label for each cluster,

and compute probability Pj =

�
Qi∈Sj

Fi
�

Qp∈H′ Fp
.

Figure 5: The algorithm to generate preference-based clusters.
Prune(H,D)
1. Prune queries with empty answers.
2. Order the remaining queries by
session ID and then by chronological order.
3. For each longest sequence (Qi, Ui, Fi),
..., (Qj , Uj , Fj) in H
such that Ui = Ui+1 = ... = Uj and
Qi ⊆ Qi+1... ⊆ Qj and (Qj � Qj+1 or Uj �= Uj+1).
4. Prune all queries Qi, . . . , Qj−1.
5. End For

Figure 6: The query pruning algorithm.

is empty. Since this paper only considers queries with range and
equality conditions, we can use a more efficient algorithm described
below which does not require execution of any query.

Let Qi’s condition on attribute Al be c11 ≤ Al ≤ c12 ∨ c21 ≤
Al ≤ c22 ∨ . . . ∨ c1p ≤ Al ≤ c2p. and Qj’s condition on attribute
Al be c′11 ≤ Al ≤ c′12 ∨ c′21 ≤ Al ≤ c′22 ∨ . . . ∨ c′1q ≤ Al ≤ c′2q .
Qi ⊆ Qj if for every condition c1x ≤ Al ≤ c2x in Qi, Qj either
does not contain any condition on Al or has a condition c′1y ≤
Al ≤ c′2y such that c′1y ≤ c1x ≤ c2x ≤ c′2y . For example, if Q1

has condition “1 year return > 0”, and Q2 has condition “1 year
return > 10%”, then Q2 ⊆ Q1. Note that this algorithm actually
checks a stronger form of refinement which does not depend on the
dataset D (or the refinement must hold for any D). This may lead
to fewer queries being pruned, but is more efficient than executing
queries. Figure 6 shows the query pruning algorithm.
Query merging: We could certainly merge queries based on se-
mantic similarities. However, since we will use queries to partition
data into clusters, a more meaningful method is to measure the sim-
ilarity between the set of answers returned by two different queries.
Let DQi and DQj be the set of records returned by Qi and Qj . Be-
low is the definition of distance between Qi and Qj .

DEFINITION 4. The distance d(Qi, Qj) between Qi and Qj

equals 1 − |DQi∩DQj|
|DQi∪DQj| .

|DQi∩DQj|
|DQi∪DQj| is also called resemblance between DQi and DQj .

In Example 2, the intersection of answers to Q1 and Q2 consists of
the first 9 records, and the union of answers consists of 11 records.
Thus the distance between Q1 and Q2 equals 1 − 9/11 = 0.18.
The query merging problem is defined as follows.

PROBLEM 3. Given H ′ (the pruned query history), D, and a
distance bound B, find the minimal number k such that queries in
H ′ can be divided into k disjoint clusters QC1, . . . , QCk where
for any Qi, Qj ∈ QCl, 1 ≤ l ≤ k, d(Qi, Qj) ≤ B.

The distance bound B is a user defined parameter and we set it
to 0.2 in this paper because in experiments this value greatly re-
duces the number of queries and at the same time only merges very
similar queries.

Problem 3 is NP hard because a simplification of this problem,
deciding whether a set of data points can be divided into 3 clusters,

Merge(H ′,D, B)
1. Compute result DQi for each query Qi ∈ H ′

2. Create a cluster QCi for each query Qi ∈ H ′

3. For every pair of QCi and QCj

compute the average distance between
pairs of queries in QCi and QCj

4. Merge the pair of QCi and QCj

with the smallest average distance
if for all pairs of queries in QCi and QCj,
the distance is below B. Delete both
clusters, add a new cluster as QCi ∪ QCj

5. Repeat step 3 and 4 until no more
merging is possible
6. Return the merged query clusters.

Figure 7: The query merging algorithm.

is NP hard. Thus we propose a Greedy algorithm in Figure 7. We
also assume that the result set DQi consists of the record IDs of
records returned by Qi.

This algorithm repeatedly merges pairs of query clusters and
stops when no pairs can be merged. Note that the database is only
accessed in line 1 of the algorithm where we compute the result
sets of all queries. Later we only need to use the result sets con-
sisting of record IDs. We can further limit the I/O cost by scanning
the entire database just once. During this scan, for each record in
the database, we evaluate the conditions in each query against this
record to decide whether the query returns that record.

Let the time to compute distance be td, and the complexity of
this algorithm be O(|H′||D|+ |H ′|3td). The first term is the com-
plexity to evaluate |H′| queries with range or equality conditions
on a size |D| database (line 1 in Figure 7). The second term is
the complexity for merging operations (line 2-6 in Figure 7). For
each merge operation the algorithm needs to compute the distance
between O(|H ′|2) pairs of queries and there can be at most |H′|
merges. td is O(|D|) because in the worst case the sizes of DQi

and DQj are |D|. Thus this algorithm does not scale for large data
sets and large workloads. Next we describe several techniques to
speed up the merging algorithm.
Sampling: The first technique generates a random sample from the
query history if the size of the history is very large. We first ran-
domly select a set of users, and then select queries asked by these
users. We do not sample on the query level because the queries
asked by the same user are often related.
Precomputation: The second technique avoids redundant distance
computation by precomputing the distances between all pairs of
queries at line 1 of the algorithm, and only keeps those pairs whose
distance is below B. Those pairs of queries not retained will never
be merged. Further, at line 3-4 of the algorithm, we speed up the
selection of the pair of clusters with minimal distance by using a
binary heap to maintain the distances for all pairs of clusters.

The size of the heap is O(|H′|2) and the heap can be created
in O(|H ′|2 log |H ′|2) = (|H ′|22 log |H ′|) = O(|H ′|2 log |H ′|)
time. Now for each merge operation (line 3-4 of the algorithm), it
takes O(1) time to extract the pair with minimal distance. Next we
examine how to maintain the heap.

Suppose the pair of QCi and QCj is merged at line 4 of the al-
gorithm, it is easy to verify that only the distances of those pairs of
clusters involving either QCi or QCj need to be updated. For ex-
ample, if a pair consists of QCi and QCp, then we need to update
the average distance of this pair to the average distance between
QCi ∪ QCj and QCp. There can be at most O(|H′|) pairs in-
volving QCi or QCj because the total number of clusters does not
exceed |H′|. Moreover, let TD(QCi, QCp) be the total distance



between queries in QCi and QCp. We have:

TD(QCi ∪ QCj, QCp) = TD(QCi, QCp) + TD(QCj , QCp)

Thus the distance between QCi ∪ QCj and QCp can be inferred
from the distances for (QCi, QCp) and (QCj , QCp) in O(1) time.
Updating a heap node takes O(log(|H′|2))= O(log |H ′|) time.
Each merging step (line 3 and 4 of the algorithm) will take O(|H′|
log |H ′|) time because we need to update O(|H′|) nodes in the
heap. The complexity of the algorithm is reduced to O(|H′||D|+
|H ′|2 td +|H ′|2 log |H ′|), where the second term is the precom-
putation cost and the third term is the cost of merging operations.
Min-wise hashing: The third technique uses min-wise hashing [5]
to speed up distance computation for large data sets. The key idea
of min-wise hashing is that we can create a small signature (e.g.,
with 100 integers) for the result set DQi of each query Qi, and the
resemblance of any pair of DQi and DQj can be estimated accu-
rately using these signatures.

The min-wise hashing signature is computed as follows. Given a
signature size l, we first generate l independent random hash func-
tions f1, . . . , fl. For result set DQi, the p’th component of its sig-
nature equals

min
r∈DQi

fp(r)

That is, we record the minimal hash value of all record IDs in DQi

for the p’th hash function fp. Note that the same hash function fp is
used for every query to generate its p’th signature component. Let
the signature of DQi and DQj be Sig(Qi) and Sig(Qj), respec-
tively. Let Sig(Qi)p be the p’th component of the signature. We
call it a match if Sig(Qi)p = Sig(Qj)p. The resemblance of DQi

and DQj can be estimated by the number of matches of Sig(Qi)
and Sig(Qj) divided by signature size l. Thus we can estimate the
distance using these signatures because the distance between Qi

and Qj equals one minus the resemblance of DQi and DQj . In
Example 2, suppose the signature for Q1 is (1, 9, 8, 4, 10) and the
signature for Q2 is (1, 9, 8, 4, 11), then there are 4 matches and the
resemblance of DQ1 and DQ2 is estimated as 4/5 = 0.8.

The min-wise hashing estimator is unbiased. An error bound was
given in [5] and the accuracy increases with the resemblance value.
This suits our needs perfectly because we only merge queries with
high resemblance. The accuracy also increases with the size of
signatures. We use signature size of 100 in this paper because it
gives high accuracy.

Signatures of a query can be computed in O(|D|) time, and
the number of matches between two signatures can be computed
in O(l) time. Note that l is irrelevant to the size of database.
Thus the complexity of merging becomes O(|H′||D| + |H ′|2l +
|H ′|2 log |H ′|), using both min-wise hashing and precomputation
of distances. As mentioned before, this algorithm also only scans
the whole database just once. Further, the clustering step occurs
offline and only needs to be done once.
Generation of clusters: After query pruning and merging, we get a
set of query clusters QC1, . . . , QCk. For each record ri, we gener-
ate a set Si consisting of query clusters such that one of the queries
in that cluster returns ri. That is, Si = {QCp|∃Qj ∈ QCp such
that ri is returned by Qj}. We then group data records according to
their Si, and each group forms a cluster. Each cluster is assigned a
class label. The probability of users being interested in cluster Ci is
computed as the sum of probabilities that a user asks a query in Si.
This equals the sum of frequencies of queries in Si divided by the
sum of frequencies of all queries in the pruned query history H′. In
example 2, after merging we get two clusters {Q1, Q2} and {Q3}.
Three clusters C1, C2, and C3 will be generated. C1 corresponds
to Q1 and Q2 and contains the first 11 records, with probability
P1 = 2/3 = 0.67. C2 corresponds to Q3 and contains r12, with

probability P2 = 1/3 = 0.33. C3 contains r13, with probability 0
because r13 is not returned by any query.

5. NAVIGATIONAL TREE CONSTRUCTION
This section describes the navigational tree construction algo-

rithm. Section 5.1 explains the relationship of navigational tree
construction to decision tree construction and gives an overview of
our algorithm. Section 5.2 proposes a novel splitting criterion that
considers the cost of visiting both leaves and intermediate nodes.

5.1 Algorithm Overview
A navigational tree is very similar to a decision tree. There are

many well-known decision tree construction algorithms such as
ID3 [20], C4.5 [21], and CART [4]. There have also been studies
on cost-sensitive splitting criteria [24, 25]. However, the existing
decision tree construction algorithm aims at minimizing the impu-
rity of data [21] (represented by information gain, etc.). Our goal
is to minimize the navigational cost, which includes both the cost
of visiting intermediate tree nodes and the cost of visiting records
stored in leaf nodes. Our subsequent analysis will show that exist-
ing decision tree construction algorithms just consider the cost of
visiting intermediate nodes. This is intuitive because a decision tree
construction algorithm will not distinguish two leaf nodes with dif-
ferent number of records if each node contains only records of the
same class. Interestingly, our analysis will also show that the exist-
ing categorization algorithm proposed in [7] considers the cost of
visiting leaf nodes, but not the cost of visiting intermediate nodes
generated by future splits. This paper proposes an algorithm that
considers both costs.

We now describe how we construct a navigational tree. Since
the problem of finding a tree with minimal navigational cost is NP
hard, we propose an approximate algorithm in Figure 8.

The algorithm is similar to decision tree construction algorithms
[21]. The algorithm only considers attributes that appear in search
conditions of some queries in H as splitting attributes. The intu-
ition is that if no user is using an attribute then that attribute is not
interesting to any user.

The algorithm starts from the root of the tree. Each record has a
class label assigned in the clustering step. If all records in the tree
have the same class label, the algorithm stops (line 2). Otherwise,
it selects the attribute that gives the maximal gain (Section 5.2 will
discuss how to compute the gain) to expand the tree (line 3 to 12).

For a categorical attribute, a new subtree will be created with one
branch for each value of the attribute, and the gain will be computed
over that subtee (line 4 to 6). In case a categorical attribute may
have too many values and thus generate too many branches, we
can add intermediate levels to that attribute (e.g., location can be
divided into region, state, county, zip code levels).

For a numeric attribute Ai, the split can be binary (i.e., Ai <= v
or Ai > v), or multi-way (i.e., use ranges vj <= Ai < vj+1,
j = 1, . . .). The binary split only considers all possible locations
and selects the one that generates the best partition based on the
criteria. Multi-way split, however, needs to consider all possible
ranges of the attribute values of A, which can be very large. Thus
we use binary split in this paper. For a numerical value attribute, the
algorithm will generate one subtree for every possible split point,
and compute a gain for that split point (line 7 to 10). The best
split point will be selected and the gain of the best split is the gain
of the attribute. Once the attribute with the maximal gain is se-
lected, if the gain exceeds a user-defined threshold ε, the tree will
be expanded by adding the selected subtree to the current root (line
13-14). The algorithm continues to expand every leaf of the new
subtree at line 14. Since a categorical attribute can only generate



BuildTree(AH ,DQ,C,ε) where AH is the set of attributes appeared in search conditions of some queries in H , DQ is query results,
C is the class labels assigned in the clustering step for each record in DQ, and ε is a user defined stopping threshold.
1. create a root r.
2. if all records in DQ have the same class label, stop.
3. for each attribute Ai ∈ AH .
4. if Ai is a categorical attribute then
5. for each value v of Ai, create a branch under the current root. Add those records with Ai = v to that branch.
6. compute split gain g(Ai, Ti) where Ti is the subtree created.
7. else
8. for each value v of Ai, create a tree T v

i with r as the root and two branches, one for those records with Ai ≤ v, one for
those records with Ai > v.
9. compute split gain g(Ai, T

v
i ) for each split point v and choose the maximal one as g(Ai, Ti).

10. end if
11. end for
12. choose the attribute Aj with the maximal g(Aj, Tj). Remove Aj from AH if Aj is categorical.
13. If g(Aj , Tj) > ε then
14. Replace r with the subtree Tj . for each leaf nk in Tj with records in DQk , BuildTree(AH ,DQk,C,ε).
15. end if

Figure 8: Algorithm 2
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(a) An example for the need of considering future splits. (b) The explanation for Observation 1.

Figure 9: Cost of visiting intermediate nodes.

one possible split, it will be removed from AH if it is selected as
the split attribute.

5.2 Splitting Criteria
The main difference between Algorithm 2 and the existing de-

cision tree construction algorithm is how to compute the gain of a
split. Existing decision tree construction algorithms such as C4.5
[21] compute an information gain to measure how good an attribute
classifies data. However, this paper wants to reduce the naviga-
tional cost, which consists of the cost of visiting intermediate nodes
and the cost of visiting records in the leaves. Our analysis will
show that information gain ignores the cost of visiting records, and
the existing navigational tree construction algorithm [7] ignores the
cost of visiting intermediate nodes generated by future splits.
Cost of visiting leaves: Let t be the node to be split and N(t) be
the number of records in t. Let t1 and t2 be children generated by
a split. Let Pi be the probability that users are interested in cluster
Ci. The gain equals the reduction of navigational cost when t is
split into t1 and t2. Thus based on the navigational cost defined
in Definition 2, the reduction of the cost of visiting records due to
splitting t into t1 and t2 equals

N(t)
�

Cl∩t �=∅
Pl −
�

j=1,2

N(tj)(
�

Ci∩tj �=∅
Pi) (1)

Existing decision tree construction algorithms do not consider
the cost of visiting leaf records. For example, consider a split that
generates two nodes that contain records with labels (C1, C2, C1)
and (C2), and a split that generates two nodes that contain records
with labels (C2, C1, C2) and (C1). These two splits have the same

information gain (will be described later). However, if P1 = 0.5,
and P2 = 0, then the navigational cost for the first split is smaller
because the cost is 1.5 for the first split and is 2 for the second split.
Cost of visiting intermediate nodes: Now we show how to esti-
mate the reduction of the cost of visiting intermediate nodes. The
existing work [7] directly computes this cost reduction by treating
the nodes generated by the split (i.e., t1 and t2) as leaves. However,
this is problematic because t1 and t2 may get split further.

For example, Figure 9 (a) shows a node with 8 records, of which
4 belong to C1, and 4 belong to C2. Let us assume that the first
split using attribute A1 generates two nodes each of which con-
tains records with class labels: (C1, C2, C1, C2), and the second
split using a different attribute A2 generates two nodes containing
records with class labels: (C1, C1, C1, C2) and (C2, C2, C2, C1).
As illustrated in Figure 9 (a), the navigational cost is the same for
both splits if the new nodes are considered leaves. However, the
second split is better because its leaf nodes have a lower degree of
impurity than leaf nodes generated by the first split, and is likely to
have a lower navigational cost after future splits.

Next we examine how to estimate the cost of visiting intermedi-
ate nodes. Since it is infeasible to consider all possible trees rooted
at t, we only consider the set of trees that perfectly classify records
in t, i.e., their leaves only contain records of one class. We call
these trees perfect trees. Obviously, perfect trees can not be split
further. We have the following observation.

OBSERVATION 1. Given a perfect tree T with N records and
k classes, where each class Ci in T has Ni records. The entropy
E(t) = −�1≤i≤k

Ni
N

log Ni
N

approximates the average length of
root-to-leaf paths for all records in T .



This observation can be explained as illustrated in Figure 9 (b).
Since T is a perfect tree, its leaves contain only one class per node.
For each such leaf Li that contains Ni records of class Ci, we can
further expand it into a smaller subtree Ti which is rooted at Li, and
its leaf contains exactly one record in Ci. Each such small subtree
Ti contains Ni leaves. All these subtrees and T compose a big tree
Tb that contains

�
1≤i≤k Ni = N leaves. We further assume that

each Ti and the big tree Tb are balanced, thus the height for Ti is
logNi and the height for Tb is logN . Note that for the i-th leaf Li

in T , the length of the path from root to Li equals the height of big
tree Tb minus the height of small tree Ti. There are Ni records in
Li, all with the same path from the root. Thus the average length
of root-to-leaf paths for records in T equals

�

1≤i≤k

Ni

N
(logN − logNi) = −

�

1≤i≤k

Ni

N
log

Ni

N
. (2)

This is exactly the entropy E(t). Note that most existing deci-
sion tree algorithms choose the split that maximizes information
gain. Information gain is the reduction of entropy due to a split and
is represented in the following formula.

IGain(t, t1, t2) = E(t) − N1

N
E(t1) − N2

N
E(t2) (3)

Thus a split with a high information gain will generate a tree with
a low entropy. Based on Observation 1, this tree will have short
root-to-leaf paths as well. Thus Observation 1 agrees with the fact
that the decision tree construction algorithms prefer shorter trees
over longer trees [19]. Since the cost of visiting intermediate nodes
equals the product of path lengths and fan-out in Definition 2, if
we assume the average fan-out is about the same for all trees, then
the cost of visiting intermediate nodes is proportional to the length
of root-to-leaf paths. Therefore, we can use information gain to
estimate the cost reduction of visiting intermediate nodes.
Combining both costs: The remaining problem is how to combine
the two types of costs. One can certainly assign certain weights to
both costs. Here we take a normalization approach, which uses the
following formula to estimate the gain of splitting t into t1 and t2.

IGain(t, t1, t2)/E(t)

(
�

j=1,2 N(tj)(
�

Ci∩tj �=∅ Pi))/(N(t)
�

Cl∩t �=∅ Pl)
(4)

The denominator is the cost of visiting leaf records after split
normalized by the cost before split. A split always reduces the
cost of visiting records (the proof is straightforward and is omitted
due to lack of space). Thus the denominator ranges from (0,1].
The nominator is the information gain normalized by the entropy
of t. We compute a ratio between these two terms rather than a
sum of the nominator and (1-denominator) because in practice the
nominator (information gain) is often quite small. Thus the ratio is
more sensitive to the nominator when the denominator is similar.
For example, suppose the nominators for two splits are 0.1 and 0.2,
and the denominator is 0.5 in both cases. The sum equals 0.6 and
0.7, respectively. The difference is 0.1. The ratio equals 0.2 and
0.4, respectively, and the difference is 0.2.
Complexity analysis: We implemented Algorithm 2 by modifying
the well-known C4.5 decision tree construction algorithm [21]. Let
n be the number of records in query results, m be the number of
attributes, and k be the number of classes. The gain in Formula 4
can be computed in O(k) time. C4.5 also uses several optimiza-
tions such as computing the gains for all split points of an attribute
in one pass, sorting all records on different attribute values before-
hand, and reusing the sort order. The cost of sorting records on dif-
ferent attribute values is O(mn log n), and the cost of computing
gains for all possible splits at one node is O(mnk) because there

are at most m split attributes and n possible split points, and each
gain can be computed in O(k) time. If we assume the generated
tree has O(log n) levels, the total time is O(mnk log n). Note that
C4.5 is an in-memory algorithm, which is sufficient when the re-
sults of queries can fit in memory. There exist efficient disk-based
algorithms [14], and our implementation can be easily extended to
using such algorithms.

Finally we illustrate how the tree for Example 1 (in Figure 2) is
generated. Suppose the first step of our approach creates 3 clusters:
C1 for high return funds, C2 for low risk funds, and C3 for the
remaining funds. Let us assume P1 = P2 = 0.5, and P3 = 0. The
tree construction algorithm selects “manager year > 9.9” as the first
split because it generates the highest gain. This is intuitive because
records in both C1 and C2 (high returns or low risks funds) belong
to the right branch and records in C3 belong to the left branch. It
is easy to verify that both the cost of visiting records and the cost
of visiting intermediate nodes get reduced. The right branch is split
further using “1 Yr return > 19.27”, where the records in C1 and
C2 are separated. The algorithm then stops.

6. EXPERIMENTAL EVALUATION
In this section we present the results of an empirical study to

evaluate our approach against existing approaches.

6.1 Experimental Setup
We conducted our experiments on a machine with Intel PIII 3.2

GHZ CPU, 2 GB RAM, and running Windows XP.
Dataset: We used a data set of 18537 mutual funds downloaded
from www.scottrade.com. The dataset includes almost all available
mutual funds in US market. There are 33 attributes, 28 numerical
and 5 categorical. The total data size is 20 MB.
Query history: We collected query history by asking 14 users (stu-
dents in our department) to ask queries against the dataset. Each
query had 0 to 6 range conditions. The history contained 124
queries with uniform weight. Each user asked about the same num-
ber of queries. There were six attributes “1 year return”, “3 year
return”, “standard deviation”, “minimal investment”, “expenses”,
and “manager year” in search conditions of these queries. Each
query had 4.4 conditions on average. We assume each query has
equal weight. We did observe that users started with a general
query which returned many answers, and then gradually refined the
query until it returned a small number of answers.
Algorithms: We implemented Algorithm 1 in C++. The clusters
are stored by adding a column to the data table to store the class
labels of each record. The distance threshold B in the merging
algorithm is set to 0.2. We implemented the tree construction algo-
rithm (Algorithm 2) by modifying C4.5 [21] Release 8 (available
at http://www.rulequest.com/Personal/). The stopping parameter ε
in Algorithm 2 is set to 0.001. We have developed a tool that al-
lows users to navigate query results using generated trees. Users
can also sort the results in a leaf node by any attribute.

We compare Algorithm 1 with the algorithm proposed in [7], re-
ferred to as No-Clustering Algorithm. It differs from our algorithm
on two aspects: (1) it does not consider different user preferences,
(2) it does not consider the cost of visiting intermediate nodes gen-
erated by future splits.

We also compare against an algorithm that first uses the cluster-
ing step to generate class labels, then uses standard C4.5 to create
the navigational tree. This algorithm is called Clustering+C4.5.
Setup of user study: We conducted an empirical study by asking
47 subjects (with no overlap with the 14 users giving the query his-
tory) to use this tool. The subjects were randomly selected students.
Each subject was first given a tutorial about mutual funds and how



Table 2: Test queries used in user study
Query Condition Result size
Q1: Fund Name like ‘%Vanguard%’ 193
Q2: Manager Year ≥ 20 140
Q3: Standard Deviation ≤ 0.05 352
Q4: All funds 18537

Table 3: Results of Survey
Algorithm # subjects that called it best
Algorithm 1 37
Clustering+C4.5 6
No-Clustering 0
Did not respond 4

to use this tool. Next, each subject was given the results of 4 test
queries listed in Table 2, which do not appear in the query history.
For each such query, the subject was asked to navigate the trees
generated by the three algorithms mentioned above, and to select
1-20 funds that he would like to invest. The trees were also pre-
sented to the subject in a random order to reduce the possible bias
introduced by the order of trees. Finally each subject was asked to
rank the three algorithms on its effectiveness.
Metrics: We use three metrics to measure the quality of categoriza-
tion methods. The first metric is the total navigational cost defined
below. Unlike the probabilistic navigational cost in Definition 2,
this cost is the real count of intermediate nodes (including siblings)
and records visited by a subject. We use equal weight for visiting
intermediate nodes and visiting records by setting w1 = w2 = 1�

∀ leaf t visited by a subject
(w1N(t) + w2

�

ti∈Anc(t)

|Sib(ti)|). (5)

In general the lower the total navigational cost, the better the cat-
egorization method. The second metric is the number of funds se-
lected as worth investing by a subject. In general a good categoriza-
tion method shall make it easy for a subject to navigate the results,
leading to a higher number of funds selected. The third metric is
the average navigational cost per selected fund. This normalizes
the total navigational cost against the number of funds selected.

6.2 Overall Comparison with Existing
Categorization Methods

Results of user study: Figure 10 reports the total navigational cost,
averaged over all the subjects, for Algorithm 1, Clustering+C4.5,
and No-clustering. Figure 11 reports the average navigational cost
per selected fund for these algorithms. Figure 12 reports the av-
erage number of funds selected by each subject (i.e., considered
worth investing by the subject).

The results show that the navigational trees generated by Algo-
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Figure 12: Average number of selected funds per subject

rithm 1 have the lowest total navigational cost and the lowest av-
erage cost per selected fund. Users have also found more funds
worth investing using our algorithm than the other two algorithms,
suggesting our method makes it easier for users to find interesting
funds. The improvements of Algorithm 1 in terms of total navi-
gational cost is lower than the improvements in terms of average
navigation cost per fund, because using Algorithm 1 users have se-
lected more funds to invest than the other two methods.

The trees generated by No-clustering have the worst results. This
is expected because No-Clustering ignores different user prefer-
ences, and does not consider future splits when generating navi-
gational trees. Clustering+C4.5 also have worse results than our
method. The reason is that our algorithm uses a splitting crite-
rion that considers the cost of visiting records, while standard deci-
sion tree algorithms do not. The improvement is less significant for
query Q3 because the results of Q3 contain very few classes, thus
the differences between these trees are smaller than the differences
between trees for other queries.

We also ran a paired t-test over the average navigational costs
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Figure 13: Average navigational cost for funds recommended
by experts
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of all subjects and all test queries for each method to verify the
difference is significant. The probability of the null hypothesis that
Algorithm 1 and Clustering+C4.5 have the same average cost is
about 0.07, and probability of that Algorithm 1 and No-clustering
have the same average cost is about 0.04. Thus the improvement of
Algorithm1 over the other two methods is statistically significant.

The results show that using our approach, on average a user only
needs to visit no more than 10 records or intermediate nodes for
queries Q1, Q2, and Q3 to locate an interesting record, and needs
to visit about 22 records or intermediate nodes for query Q4 that
returns all records. The total navigational cost for our algorithm
is less than 50 for Q1, Q2, and Q3, and is less than 100 for Q4
(about 0.5% of the result size). This is clearly better than browsing
hundreds of results for the first 3 queries and tens of thousands of
results for the last query.

Table 3 reports the number of subjects that called our algorithm
the best among the three algorithms. The results show that a ma-
jority of subjects considered our algorithm the best.
A sanity check: We also conducted a sanity check. The goal is to
examine how our approach works when the selected funds are given
by domain experts. Some investment research companies such as
MorningStar and ValueLine recommend “top performing” mutual
funds. We obtained the list of 1086 top performing mutual funds
from ValueLine and assumed that there is a fictitious user that will
select these funds with 100% probability. We computed the cost of
visiting the intersection of these top performing funds with the re-
sults of the four test queries in Table 2 using Formula 5. Figure 13
shows the average navigational costs per selected fund for the three
algorithms. We do not report total navigational cost because the
number of funds selected is the same for all methods. The results
are similar to the results of the user study: our approach leads to
the lowest navigational cost. Note that the focus of our approach is
not to select the “best” funds for users like those companies giving
recommendations. Our focus is to find the best navigational trees
to help users quickly distinguish different types of funds and select
those meeting their needs. Users have the final say in our methods.
Further, a user may not agree with the way in which those compa-
nies select a “top performing” funds, and those companies do not
recommend relatively new funds. Finally, such expert recommen-
dations may be unavailable for many data sets where our method
can be applied.

6.3 Evaluation of The Clustering Step
This section evaluates the clustering step in our approach. The

clustering step utilizes a number of optimization techniques to deal
with large data sets and large query histories. The techniques in-
clude query pruning and query merging, where the query merging
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Figure 16: Merging time when varying number of records
also uses precomputation and min-wise hashing techniques. This
section evaluates the effectiveness of these techniques.
Query pruning and merging: We first study the impact of query
pruning and merging on the number of clusters generated. We
choose a random order of users who provide the query history, and
then vary the query history by including different number of users.
We have also tried different orders but the results are similar. Fig-
ure 14 reports the number of clusters generated using our method.
We also turn off query pruning and query merging separately and
report the results. There are two interesting observations. First, the
results show that the number of clusters drops dramatically by using
pruning and merging techniques. Second, as the number of users
increases, the total number of clusters generated by our method in-
creases less quickly and seems to converge to around 30 clusters.
We examine the clusters generated and find that the queries asked
by later users tend to be very similar to the queries asked by pre-
vious users, and can be merged with these previous queries. This
shows that user preferences (represented in the format of clusters)
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Figure 17: Merging time when varying query history sizes



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150

Number of queries

Tim
e (s

ecs
)

Total merging time Compute result set

Compute signature Actual merging

Figure 18: Breakdown of merging time

tend to converge as the number of users increases. Thus it is possi-
ble to summarize the preferences of a large number of users.

Next we investigate the impact of the pruning and merging tech-
niques on the quality of trees constructed using generated clusters.
Rather than asking the subjects to redo the user study, we simu-
lated the user study as follows. We first recorded the set of funds
considered worth investing for each subject. We assume that each
subject will select these funds with 100% probability. We then use
Formula 5 to compute the navigational cost to visit these funds us-
ing the trees created from the clusters generated without pruning.
We simulated the user study in the same way as above for the trees
generated without query merging. Figure 15 reports the average
navigational cost of these trees. Note that in the simulation the
number of funds selected by a subject for each method is the same,
thus we do not report the total navigational cost and the number of
funds selected.

The results show that both query pruning and query merging re-
duced the navigational cost, especially when the result size is large
(Q4). Without pruning or merging, too many clusters are generated,
and many records in the results of very similar queries are placed in
different clusters. Thus the navigational trees using these clusters
are usually much bigger than the trees generated using fewer clus-
ters, leading to higher navigational cost. Further, without pruning,
all queries including those returning many answers are considered
as the evidence of user interests. Thus the probabilities that user
are interested in those clusters are often overestimated, leading to
higher navigational costs because users will spend more time on
those less interesting clusters. In both cases, this problem is more
severe when the result size is large (Q4) because the query results
contain more clusters.
Precomputation and min-wise hashing: Query merging is the
most expensive part in the clustering step (generating clusters and
query pruning took no more than 2 seconds in our experiments).
Next we study the impact of precomputation and min-wise hashing
on merging time. We first examine the merging time when increas-
ing the number of records. We have generated two synthetic data
sets by duplicating records in the original data set 10 and 100 times.
In this way, the synthetic data sets have the same clusters as the
original data sets. Figure 16 reports the execution time of our merg-
ing algorithm that uses both precomputation and min-wise hashing,
along with the execution time of the merging algorithm without
both optimizations, and the merging algorithm with precomputa-
tion but without min-wise hashing. The results show that all three
algorithms scale linearly to the number of records, which is ex-
pected. Using precomputation and min-wise hashing does greatly
reduce the execution time. For example, our algorithm took about
6 minutes for the data set with 1853700 rows while the algorithm
without optimization took 98 minutes.

We next examine the merging time when varying the query his-

tory size. As mentioned before, we have picked a random order
of users and generated smaller query histories by including queries
asked by the first few users. Figure 17 reports the merging time
for the three algorithms above. For very small query histories (no
more than 40 queries), all algorithms took about the same time.
However, as query history size increases beyond 40, both precom-
putation and min-wise hashing greatly reduce the merging time.
For example, our algorithm took about 4.1 seconds for the query
history with 124 queries while the algorithm without optimization
took about 58 seconds.

Figure 18 reports the breakdown of the time for individual steps
in our algorithm. The results show that the time to compute result
sets and the time to generate signatures increase linearly with the
query history size. The time for actual merging operations does
increase faster (in the order of |H′|2 log |H ′|), but accounts for a
small fraction of the total time for the query histories we consider.
In practice if the query history is very large, we may use sampling
technique discussed in Section 4 to reduce the query history size
and then run our merging algorithm. Further, the clustering step
occurs offline and only needs to be done once. We have also ex-
amined the clusters generated by all algorithms and there is no dif-
ference between them, meaning the min-wise hashing technique is
accurate enough.

6.4 Evaluation of The Tree Construction Step
This section evaluates the splitting criterion of our tree construc-

tion algorithm as well as the tree construction time. Our algo-
rithm uses a splitting criterion that considers both the cost of visit-
ing intermediate nodes and leaf nodes. Section 6.2 has shown the
value of considering leaf nodes as we compare our algorithm with
C4.5+Clustering, which does not consider the cost of visiting leaf
nodes.
Value of considering the cost of visiting intermediate nodes:
Next we evaluated the value of considering the cost of visiting inter-
mediate nodes. We modified the computation of gain in Algorithm
1 to consider only the cost of visiting records in leaves by replacing
the nominator in Formula 4 in Section 5 with a constant 1. We sim-
ulated the user study in the same way as described in Section 6.3.
Figure 19 reports the average navigational cost using the trees gen-
erated by this algorithm and the algorithm that considers the cost
of visiting intermediate nodes. The results show that considering
the cost of visiting intermediate nodes does reduce the navigational
cost.
Tree Construction Time: Figure 20 and Figure 21 report the tree
construction time of our algorithm for the four test queries. Our
algorithm took no more than 0.03 second for the first 3 queries that
returned several hundred results, and took about 1.4 seconds for the
last query that returned 18537 records. Thus our algorithm can be
used in an interactive environment.

7. CONCLUSIONS
In this paper, we propose a novel approach to address diverse

user preferences when helping users navigate SQL query results.
This approach first summarizes preferences of all users in the sys-
tem by dividing data into clusters using query history. When a spe-
cific user asks a query, our approach uses a cost-based algorithm
to create a navigational tree over the clusters appearing in the re-
sults of the query to help users navigate these results. An empirical
study shows the effectiveness of our approach. There are three key
differences with existing literature: (1) our approach is the first to
address diverse user preferences for categorization approach, (2)
our approach does not require a user profile or a meaningful query
when deciding the user preferences for a specific user, and (3) the
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navigational tree construction algorithm considers both the cost of
visiting intermediate nodes and leaf nodes. In the future, we plan to
further investigate (1) how to use multi-way splits for numerical at-
tributes, (2) how to adapt to the dynamic nature of user preferences
(e.g., how to dynamically update the set of clusters stored in the
system when user preferences change), (3) how does our approach
compare to ranking approach.
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