
A Framework for Situation-Aware Access Control in Federated Data-as-a-Service
Systems Based on Query Rewriting

Samson Oni∗, Zhiyuan Chen∗, Adina Crainiceanu†, Karuna P Joshi∗ and Don Needham†
∗ University of Maryland Baltimore County, Baltimore, MD

Email: {soni5, zhchen, karuna.joshi}@umbc.edu
†US Naval Academy, Annapolis, MD
Email: {adina, needham}@usna.edu

Abstract—Organizations often need to share mission-
dependent data in a secure and flexible way. Examples include
contact tracing for a contagious disease such as COVID-
19, maritime search and rescue operations, or creating a
collaborative bid for a contract. In such examples, the ability
to access data may need to change dynamically, depending on
the situation of a mission (e.g., whether a person tested positive
for a disease, a ship is in distress, or a bid offer with given
properties needs to be created). We present a novel framework
to enable situation-aware access control in a federated Data-as-
a-Service architecture by using semantic web technologies. Our
framework allows distributed query rewriting and semantic
reasoning that automatically adds situation based constraints
to ensure that users can only see results that they are allowed
to access. We have validated our framework by applying it to
two dynamic use cases: maritime search and rescue operations
and contact tracing for surveillance of a contagious disease.
This paper details our implemented solution and experimental
results of the two use cases. Our framework can be adopted by
organizations that need to share sensitive data securely during
dynamic, limited duration scenarios.

Keywords-Ontology, Federated Systems, Data-as-a-Service,
Semantic Web, Access Control

I. INTRODUCTION

Complex, evolving situations often require close inter-

action between multiple entities. An example is maritime

search and rescue (SAR) missions which often involve

collaboration between military organizations, government

agencies, private vessels, and even foreign vessels. Another

example is contact tracing of contagious disease exposure

which involves multiple entities like contact tracers, health-

care providers, and private businesses such as airlines and

hotels that provide data (e.g. passenger lists) to help identify

people in close contact with someone diagnosed with the

disease.

In these limited duration, dynamic scenarios, each entity

typically has data that needs to be kept private, as well

as data that needs to be shared with other collaborators

to accomplish the mission. Current approaches to data

sharing are centered around situation-aware access control,

also called policy-based or attribute-based access control

[1], [2]. Entities may join the mission at any time, and

data access decisions depend on situations like whether a

ship is in distress or a person tests positive for a disease.

However, these approaches only consider context-awareness

within a single organization and often do not account for

the challenges of securely sharing specific data elements

between multiple organizations where each organization may

have different data sharing policies.

One solution to supporting data sharing in collaborative

scenarios is a federated Data-as-a-Service system. Multiple

members form a federation and each provides a Data-as-

a-Service interface to allow other members to query data

stored at one or possibly multiple members’ local data store.

There are two main challenges to supporting situation-aware

access control in a federated Data-as-a-Service system: 1)

supporting distributed reasoning in evaluating access control

rules, as this may require data from multiple members, and

2) efficiency, especially in cases such as maritime SAR

with typically poor network connectivity. Existing work

supporting distributed reasoning [3] fails to address the first

challenge as highly specialized systems are required, making

them hard to deploy within an access-control framework.

Although significant work has been done on query rewriting

[2], [4]–[10], most of such work either does not focus

on access control or does not address the problem in a

distributed environment.

We have developed a novel framework that allows pol-

icy based situation aware access in federated Data-as-

a-Service systems. This framework facilitates automated

query-rewriting by adding necessary constraints to the origi-

nal query by checking organization’s access control policies.

We move away from a distributed reasoning focus into

a distributed query focus. Since many federated Data-as-

a-Service systems already support federated queries, our

approach can be easily integrated into existing systems.

Our approach also addresses the efficiency issue by using a

peer-to-peer architecture such that fragments of a rewritten

query can be executed locally, where data resides, reducing

communication overhead.

We make the following contributions: 1) a semantic web

based approach to defining situation-aware access control

policies. We use maritime search and rescue and contact

tracing for surveillance of a contagious disease as two

1

2020 IEEE International Conference on Services Computing (SCC)

2474-2473/20/$31.00 ©2020 IEEE
DOI 10.1109/SCC49832.2020.00008

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



use cases, and develop an ontology and a set of rules

to define access control policies for each use case; 2) a

distributed reasoning framework based on query rewriting

that enforces these rules and can be easily integrated with

existing federated Data-as-a-Service architecture; 3) a peer-

to-peer architecture that reduces communication overhead

and is suitable for application scenarios, such as maritime

SAR, with limited network bandwidth.

In our preliminary work [11], we proposed an initial

proof-of-concept system for a situation-aware access control

framework. In this paper, we substantially extend our pre-

liminary work, including a new query rewriting algorithm,

a new use case, and extensive experiments.

The rest of the paper is organized as follows. Section II

describes the overall architecture of our framework. Section

III describes the semantic approach to representing situation-

aware access control rules, and the ontology and sample

rules developed for two use cases. Section IV presents our

query-rewriting based distributed reasoning framework. Sec-

tion V describes implementation and experimental results.

Section VI summarizes related work. Section VII gives our

conclusions and discusses future work.

II. SYSTEM ARCHITECTURE

Background: In this paper we assume that each member in

the system stores data in a common RDF format [12]. RDF

data are represented as triples, each containing a subject, a

predicate, and an object. For example, John (subject) has the

role (predicate) of Captain of a ship (object). The structure

of RDF data can be represented in an ontology language

such as OWL [13]. The data can be queried using a SQL-

like language such as SPARQL [14].

Consider the SPARQL query QS1 below which returns

all data from members of a SAR center.

QS1: PREFIX ns: <http://www.sar.org/ns#>
SELECT ?Result
WHERE {
?Organization ns:isMemberOf ?SARCenter .
?Organization ns:has ?Result . }

SPARQL queries have a SELECT clause that indicates

the variables returned by the query and a WHERE clause

which specifies conditions the results need to satisfy.

In this paper we only consider Basic Graph Pattern (BGP)

SPARQL queries in which the WHERE clause consists of

conjunctions of triple patterns. Each triple pattern has a sub-

ject, predicate, and object, but any of these components can

be a literal (e.g, ns:Location) or a variable (e.g. ?Result).

We consider a federated data-as-a-service system where

each member provides a service endpoint that supports

SPARQL 1.1 queries. A SPARQL 1.1 query can specify

parts of the query to be executed at each SPARQL service

endpoint and the results from all endpoints are put together

as the final results.

Federated Member 1

Cloud Based
Policy Repository

Data Access Policy
Ontology and Rules Federated Member 2

User 3

User 4

Local Data
File

Trusted Middleware

Access Control
Query Rewriting

Query Engine

User 1

User 2

Local
Data File

Trusted Middleware

Access Control
Query Rewriting

Query Engine

Figure 1. System Architecture for Situation-aware Access Control System

Overview of system architecture: Figure 1 illustrates the

overall architecture of our system, which consists of feder-

ated members each with its own users and local data files.

To implement situation-aware access control, we first

develop an ontology to help express access control rules for

each member. Members can then define their access control

rules using the ontology. These rules are stored in a cloud

based policy repository for ease of access by all members.

Each member can also store a local copy of the ontology if

the connection is unreliable.

Data-as-a-Service and situation-aware access control are

implemented in our architecture as a trusted middleware

layer at each member. The middleware consists of a query

engine as well as an access control query rewriting mod-

ule. The access control query rewriting module enforces

situation-aware access control rules by adding constraints

derived from these rules to each query such that only results

accessible by the user who asks the query are returned.

The query engine at each member communicates with the

query engines at other members and together they execute

federated queries using data stored at multiple members.

At run time, a user of a federated member submits a query

to the query engine. The access control query rewriting

module adds access-control constraints to the query and

rewrites the query using rules stored in the cloud based

policy repository. The rewritten query is executed by the

query engines of multiple members and the final results are

returned to the user. Note that query rewriting ensures that

the final results only contain data the user is allowed to

access based on the situation, as defined by the rules.

Peer-to-Peer vs. Trusted Coordinator architecture: Our

approach uses a peer-to-peer architecture where each mem-

ber’s middleware layer can directly query other members’

middleware. To simplify the process to join our system,

we assume that there is a known super-peer (e.g., in SAR

missions, there is a SAR center) and each member contacts

the super-peer to join the system. However, the super-peer

is not involved in query processing.

An alternative architecture is to have a single trusted

coordinator. In such an architecture, all queries are sent

to the coordinator. The coordinator rewrites a query based

on access control rules, and sends the query to the query

engines of multiple members to get final results. The final

2

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAR Coordinator
Can update destination
of SAR ship 2

Distressed Ship

SAR Ship 2

Distance < 100 KM

SAR Ship 1

Distance >100 KM

Figure 2. Example for rules RS1 and RS2

results are then sent to the member who initiates the query.

However this architecture has a single point of failure and

a bottleneck: the coordinator. In addition, most situation-

aware access control rules contain conditions concerning the

member who initiates the query, e.g., to verify that the user is

the captain of a vessel that is indeed in distress. Using our

peer-to-peer architecture, some fragments of the rewritten

query will be executed locally at the member where the

data resides. For example, the fragment to verify the role of

the captain will be executed at the vessel. Using the trusted

coordinator architecture, the coordinator needs to execute

all fragments of query remotely, which often leads to worse

performance due to higher network communication costs.

Section V compares these two approaches experimentally.

III. ONTOLOGY AND RULES

Situation-aware access control policies typically can be

represented using the following components [1]:

• U : the set of users.

• R: the set of roles. R has a hierarchical structure.

• UR ⊆ U ×R: the assignment of users to roles.

• O: the set of data that can be shared.

• PU, PO: properties of data or users.

• SE: set of situation expressions typically on properties

of users or objects (PU, PO).

• P : the set of permissions defined on O.

• RP ⊆ R× P : the assignment of permissions to roles.

• SEUR ⊆ 2SE × UR, the set of situation-aware

assignment of roles to users. 2SE is power set of SE.

• SERP ⊆ 2SE × RP , the set of situation-aware role

permission assignments.

We use the W3C Web Ontology Language (OWL) to

define an ontology for maritime search and rescue and

another ontology for contact tracing. Figure 3 and Figure 4

show major classes and relationships (red arrows) between

classes in these ontologies, respectively. The major classes

for Maritime SAR include the vessel in distress, organiza-

tions participating in the search and rescue mission, assets

(e.g., medical equipment) owned by these organizations, the

rescue coordination center, and their data to be shared in

the system, roles, users, allowed operations (read or write),

rescue missions in which they are involved, and tasks in the

mission, etc. The designed ontology contains 14 classes and

20 relationships between these classes.

The ontology for contact tracing includes major classes

such as person (being investigated), different types of data

about the person such as EHR data, air travel data, hotel

data, cruise travel data, users (e.g., contact tracers), roles,

and organizations (e.g., air lines, cruise ships, hotels, health-

care providers). The ontology contains 13 classes and 14

relationships. Many classes also have data properties. We

also assume that in both ontologies the User class can have

hasReadAccess or hasWriteAccess relationship to any other

classes or properties of classes other than the role class.
The rules define the situation-aware assignment of per-

missions (RP and SERP ) or roles (SEUR). The rules

consist of conditions and consequences. Conditions are

typically predicates on the situation or roles of users, and

consequences are typically whether a user is allowed to carry

out a certain operation on a certain type of data item or

whether a certain situation occurs.
Sample Rules: The following are several SAR use case

sample rules. These rules are written in a format slightly

different from the standard OWL format to increase read-

ability.
Rule RS1 defines a dynamic situation: two ships are

within range if they are closer than 100km from each other.

Rule RS2 shows situation-aware assignment of permissions

in which the SAR coordinator can update the destination

of search and rescue ships that are near a vessel in distress.

Rule RS3 specifies that the captain of a vessel in distress can

have access to the assets of a member in the SAR mission,

and Rule RS4, specifies that the captain has access to the

location of members in the SAR mission.

• RS1: (?V ns:has ?VL) ∧ (?VL rdf:type ns:Location)

∧ (?O ns:has ?L) ∧ (?L rdf:type ns:Location)

∧ EuclideanDistance(?VL, ?L) < 100KM → (?O

ns:isWithinRangeOf ?V)

• RS2: (?U ns:hasRole ns:SARCoordinator) ∧ (?U

ns:belongsTo ?S) ∧ (?O ns:isMemberOf ?S) ∧ (?O

ns:has ?D) ∧ (?D rdf:type ns:Destination) ∧ (?V

ns:hasStatus ns:Distressed) ∧ (?O ns:isWithinRangeOf

?V) → (?U ns:hasWriteAccess ?D )

• RS3: (?U ns:belongsTo ?V) ∧ (?U ns:hasRole

ns:VesselCaptain) ∧ (?V ns:contacts ?S) ∧ (?V

ns:hasStatus ns:Distressed) ∧ (?O ns:isMemberOf ?S)

∧ (?O ns:has ?A) ∧(?A rdf:type ns:Asset) ∧(?V

ns:inMission ?M) ∧(?O ns:inMission ?M) → (?U

ns:hasReadAccess ?A)

• RS4: (?U ns:belongsTo ?V) ∧(?U ns:hasRole

ns:VesselCaptain) ∧ (?V ns:contacts ?S) ∧(?V

ns:hasStatus ns:Distressed) ∧(?O ns:isMemberOf ?S)

∧(?O ns:has ?L) ∧(?L rdf:type ns:Location) ∧(?O

ns:inMission ?M) ∧(?V ns:inMission ?M) → (?U

ns:hasReadAccess ?L)

According to rules RS1 and RS2, a user who is a SAR

coordinator can update the destination of SAR Ship 2 in

Figure 2 as it is within 100km of the ship in distress, but

cannot update SAR Ship 1 as it is not in the range.
Below are two sample rules in the contact tracing case.

Rule RC1 states that if a person A has status “Person Under

3

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SARMission

User Task Vessel Mission
Private 

Ship

InMission

Role Organization

Rescue
Coordination

Center Asset

createMission

InMission

headedBy

headedBy

inCommand

contacts
has

hasDistrict

hasRole

isMemberOf

requests
roleIn

AirForce

CoastGuard

CoastGuard
Command

CoastGuard
District

inMission

Class

Sub-Class

belongsTo

belongsTo

belongsTo

Figure 3. Ontology for Maritime SAR

Contact
Tracing

Person

EHR AirTravel
Data

owns

owns

AirLine

Health
Provider

Cruise
Ship

Hotel

recordIn

hasRole

flightRecordIn
Class

Sub-Class cruiseRecordIn

User

CriuseTravel
Data

Role Organization

…

hotelRecordIn

householdMemberOf

OrganizationData

HotelTravel
Data

Figure 4. Ontology for Contact Tracing

Investigation” (PUI) (usually when this person is diagnosed

with the disease), and a person B is a household member

of person A, then B has “close contact” status. Rule RC2

states that a user with the role contact tracer can have access

to EHR data about a person who has “close contact” status.

• RC1: (?PersonA td:status td:PUI)∧(?PersonB

td:householdMemberOf ?PersonA) → (?PersonB

td:status td:CloseContact)

• RC2: (?Person td:status td:CloseContact) ∧
(?Person td:recordIn ?EHR) ∧ (?User td:hasRole

td:ContactTracer) ∧ (?HealthCare td:owns ?EHR) ∧
→ (?User td:hasReadAccess ?EHR)

IV. DISTRIBUTED REASONING FRAMEWORK BASED ON

QUERY REWRITING

When a user asks a query in a federated data-as-a-

service system, the system needs to distributively reason

with situation-aware access control rules to only return

results the user is allowed to see.

To accomplish this, we propose a query rewriting

method, Situation-Aware-Access-Control-Rewrite (SAAC-

Rewrite), to convert distributed reasoning into distributed

query processing, which is easier to support in existing

data-as-a-service systems. As shown in Algorithm 1, the

algorithm consists of an offline pre-processing step, detailed

in Algorithm 2 and an online query rewriting step, detailed

in Algorithm 3. An early version of these algorithms was

proposed in our preliminary work [11]. In this paper we have

significantly extended Algorithm 3 to handle query rewriting

in a distributed environment.

In the following discussion, Q is a SPARQL query, RS
is the set of access control rules, u is the user issuing the

query, and I is the set of rule conditions that need to be

inferred (e.g., the isWithinRangeOf condition in rule RS1).

We also assume that policy rules are not recursive.

Preprocessing: Algorithm 2 preprocesses the access con-

trol rules such that any derived predicate that appears in

the condition part of a rule is replaced with predicates

4

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 : SAAC-Rewrite(RS, Q)

1: RS′ =Preprocess(RS) {Rewrite the rule to remove

derived conditions}
2: Rewrite-Online(RS′, Q) {Rewrite the query online}

that are in the raw data, so there is no need for runtime

inference. This essentially allows us to convert a distributed

reasoning problem to a federated query problem. This is

possible because we assume that access control rules are

not recursive. Algorithm 2 works in a manner similar to

backward chaining, i.e., by repeatedly replacing such a

predicate p (line 3) with predicates in the condition part

of a rule where p appears in the consequence (lines 4-5).

Algorithm 2 : Preprocess(RS)
1: repeat
2: for each r = cond → cons ∈ RS do
3: for each p ∈ cond and p ∈ I where I is set of

derived predicates do
4: find rules r′1 = cd′1 → cs′1, r′2 = cd′2 → cs′2, . . .,

r′k = cd′k → cs′k ∈ RS such that ∀j, p ∈ cs′j
5: replace p in r with cd′1 ∨ cd′2 ∨ . . . ∨ cd′k
6: end for
7: end for
8: until no more rules are rewritten

Preprocessing example: When Algorithm 2 is applied to

the RS1 and RS2 rules introduced in Section III, the (?O

ns:isWithinRangeOf ?V) condition in rule RS2, which is the

same as the consequence in rule RS1, is replaced by the

conditions in rule RS1.

Access Control Query Rewriting: Algorithm 3 shows our

online query rewriting algorithm that enforces access control

rules. Step 1 initializes NQ to store rewritten query and C to

store the set of conditions to check permissions. In steps 2

to 3, for each returned variable vi in SELECT clause, a new

triple pattern ti is added to the query to check that the user

issuing the query has the correct permissions to access vi.
This is the key step in our proposed framework for situation-

aware access control as constraints are added to the query

to ensure that the end user only receives the results they

have permission to see. The algorithm then checks for each

rule whose consequence’s predicate matches the predicate in

ti (lines 4-7) and calls a function VariableMatch to rewrite

the rule such that the variables in the rule’s conditions are

replaced with matching variables or constants from the query

(line 5). The function returns a set of conditions of the

processed rule and adds them to C. Due to space constraints,

we omit pseudo code for the VariableMatch function, but

include an example below which illustrates how it works.

If multiple access control rules match the same triple

pattern ti, only one of them needs to be satisfied in order for

the user to have access to the result. In line 8, GenAllQueries

function generates all possible queries where each query has

the same conditions as Q except that each of the added

Algorithm 3 Rewrite-Online(RS, Q)

1: NQ = ∅; C = ∅
2: for each variable vi in SELECT do
3: add a triple ti = (u, hasReadAccess, ?vi) to Q
4: for each rule r ∈ RS whose consequence predicate

matches ti’s predicate do
5: add Cir =VariableMatch(r, Q, ti) to C
6: end for
7: end for
8: QS = GenAllQueries(Q,C)
9: for each query Qj ∈ QS do

10: P = ∅; Q′
j = prefix and select clause of Q

11: for each triple pattern q ∈ Qj do
12: for each service endpoint pq do
13: add (pq, q) to P if pq returns non empty result

for q using SPARQL ASK query

14: end for
15: end for
16: sort items in P by endpoints and remove duplicates

17: for each service endpoint pq ∈ P do
18: if pq is not local then
19: add SERVICE keyword at pq to Q′

j

20: end if
21: add to Q′

j all triple patterns in P at pq
22: end for
23: add Q′

j to NQ and add a UNION keyword if j > 1
24: end for
25: return NQ

triple ti is replaced with triple patterns (conditions) returned

by one matching rule. The final result is a union of results

generated by these queries (line 23).
Some of the triple patterns in these queries need to be

evaluated using a remote member’s data. Lines 11 to 15 use

SPARQL ASK queries to find the service end points that

have non-empty results for each triple pattern in a generated

query. Triple patterns belonging to the same endpoint are

then placed in the same group and duplicated triple pat-

terns are removed (line 16). If the endpoint is remote, the

SERVICE keyword is added to get results from that endpoint

(line 19). Finally, all queries generated in line 8 are unioned

in line 23 and the resulting query NQ is returned (line 25).

Query rewriting example: Consider query QS1 described

in Section II. Suppose that QS1 is issued by “John”, the

captain of a vessel in distress. Following Algorithm 3 line 3,

once QS1 is issued by “John”, the algorithm first adds

the triple pattern t1 = ns:John ns:hasReadAccess
?Result to the query. Both rules RS3 and RS4 in Section

III match the added triple pattern. Function VariableMatch

is invoked to replace variables in rule RS3 first.
The VariableMatch function tries to match every triple

in the rule with a triple pattern in the query (including

t1) based on their predicate. There are two cases: 1) the

subject or object (sr) of a triple in the rule is a variable so

5

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



it needs to be replaced with the subject or object (sq) of the

matching query triple; 2) sr is a constant but the matching

sq is a variable so sq needs to be bounded to sr. The second

case can be handled by using a BIND(sr AS sq) form and

replacing sq in other triple patterns in Q with sr.

In the above example, the triple pattern ?U
ns:hasReadAccess ?A in rule RS3 matches triple

pattern ns:John ns:hasReadAccess ?Result in

the query, so the variable ?U is replaced with ns:John.

Similarly ?A in the rule is replaced with ?Result.

After such replacement, the conditions of rule RS3 will

be returned. Similarly, the conditions of rule RS4 will be

returned. At step 8, two queries will be generated, each

containing conditions in one of these rules as well as triple

patterns in the original query.

Algorithm 3 then uses SPARQL ASK queries to find

the service end point matching each triple pattern. In our

experimental setup (discussed in Section V), triple patterns

with subject ?Organization or ?Result are matched using

the remote service endpoint. The other triple patterns are

matched locally. The algorithm repeats for the query gener-

ated from rule RS4 and unions the results from both rules

in line 23. The final rewritten query is:

PREFIX ns: <http://www.sar.org/ns#>
SELECT DISTINCT ?Result WHERE{{
ns:John ns:belongsTo ?V .
ns:John ns:hasRole ns:VesselCaptain .
?V ns:contacts ?SARCenter .
?V ns:hasStatus ns:Distressed.
?V ns:inMission ?M .
SERVICE <http://192.168.56.103:3030/AF> {
?Organization ns:has ?Result .
?Result rdf:type ns:Location .
?Organization ns:isMemberOf ?SARCenter .
?Organization ns:inMission ?M .
} } UNION {
ns:John ns:belongsTo ?Vessel .
ns:John ns:hasRole ns:VesselCaptain .
?Vessel ns:contacts ?SARCenter .
?Vessel ns:hasStatus ns:Distressed .
?Vessel ns:inMission ?M .
SERVICE <http://192.168.56.103:3030/AF> {
?Organization ns:has ?Result .
?Result rdf:type ns:Asset .
?Organization ns:isMemberOf ?SARCenter .
?Organization ns:inMission ?M . } }}

Complexity: Let nr be the number of rules, np be the

average number of conditions in a rule, nt be the number of

triple patterns in query Q, nv be the number of variables in

SELECT and ns be the number of service endpoints. The

function VariableMatch is called O(nvnr) times. Each call

costs O(npnt) as the function matches every query triple

pattern with a rule condition. In line 8, O(nnv
r ) queries

can be generated because each added triple can match up

to nr rules. For each generated query, O((np + nt)ns)
ASK queries are executed. Sorting the items at line 16

of Algorithm 3 costs O((np + nt)ns log (np + nt)ns). The

total cost of Algorithm 3 is O(nvnpntnr + nnv
r (np +

nt)ns log (np + nt)ns). Note that nv is typically quite small.

For example, in the Lehigh University Benchmark [15], nv

ranges from 1 to 4 in the 14 test queries and the average of

nv is 1.78.

Correctness: Since the rewritten query is executed in a

trusted middleware in our architecture and users do not

see intermediate results, we only need to prove that our

query rewriting Algorithm 3 satisfies the following two

properties described in [16]: soundness (the rewritten query

only returns results in the initial query) and maximality (the

rewritten query returns as much information as possible).

The soundness of Algorithm 3 is straightforward as the

rewritten query still contains all existing triple patterns

(conditions) in the initial query, so any result returned by

the rewritten query also satisfies the initial query.

To prove that our algorithm is maximal, we need to show

that any result returned by the initial query, but not by

the rewritten query, must be a result that the user is not

authorized to see.

Line 3 of Algorithm 3 adds triple patterns to check

whether the user has access to each variable in SELECT. At

line 8, the algorithm generates a number of queries where

each is identical to the original query except that each triple

pattern added in line 3 is replaced with conditions of a

matching access control rule. Lines 11 to 22 of Algorithm

3 distribute the rewritten query to different members in the

system. The final result is union of all generated queries.

Let CQ be conditions in original query. Let RSi be

the set of rules matching a added triple ti for variable vi
in SELECT. Let Cij be conditions of rule rij ∈ RSi.

The result of each generated query satisfies conditions

(∧nv
i=1Cij)∧CQ, for some (ri1, . . . , rinv

) ∈ RS1×. . . RSnv
.

The rewritten query returns union of all possible queries.

So a result returned by the rewritten query must satisfy

∨(ri1,...,rinv )∈RS1×...RSnv
((∧nv

i=1Cij) ∧ CQ), which equals

(∨(ri1,...,rinv )∈RS1×...RSnv
(∧nv

i=1Cij)) ∧ CQ.

So any result returned by initial query satisfies

CQ, but not the rewritten query, must not satisfy

∨(ri1,...,rinv )∈RS1×...RSnv
(∧nv

i=1Cij). Thus the result does

not satisfy access control conditions ∧nv
i=1Cij checked by

any generated query. However if the user is authorized to

see the result, for each variable vi in SELECT, there must

be some access control rule whose conditions (Cij) are

satisfied. This contradicts with the above. So user is not

authorized to see the result.

V. IMPLEMENTATION AND EVALUATION

We have implemented a system in which the ontology

and rules are developed using Protégé [17]. We used Apache

6

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



Jena Fuseki [18] to store data as RDF triples and provide a

web service interface to support SPARQL 1.1. queries over

multiple endpoints. Each member of the federated system

was implemented as an Apache Jena Fuseki server. Apache

Jena Fuseki only supports local reasoning (both data and

rules are at the same endpoint). In our implementation, the

rules are stored in the cloud but data are stored at different

members. We implemented our middleware responsible for

enforcing access control rules using query rewriting.

A. Validation of Ontology and Rules

We validated the Maritime SAR proposed ontology with

SAR domain experts from the U.S. Coast Guard and U.S.

Navy1. The ontology for contact tracing has been validated

by a public health expert2. These experts confirmed that the

domain assumptions, classes, properties, and relationships

defined by our ontology support the extraction, aggregation,

and sharing of relevant information in each use case.

B. Experiment Setup

We assume that for each use case there are multiple

members and each member has its own data but shares the

same ontology. We created five Ubuntu virtual machines

to simulate different members. Each VM has 3 GB of

memory and 80GB of hard disk. Each VM runs a Jena

Fuseki Server as well as middleware implementing our query

rewriting algorithm. We varied the number of endpoints

in the experiments. We also simulated different network

delays, ranging from no delay, 50 ms (typical in a 4G

network), 100 ms (3G network), to 500 ms (typical in

satellite communication).

Methods: We compare the performance of the following

algorithms.

1) SAAC-Rewrite: this is our proposed algorithm using

the peer-to-peer architecture shown in Figure 1. Query

rewriting occurs at the member issuing the query. Parts

of the rewritten query are executed locally and other

parts are executed remotely.

2) Trusted-Coordinator: this is the alternative solution

discussed in Section II, where all queries are first sent

to a trusted coordinator. The trusted coordinator runs

a similar query rewriting algorithm and sends parts of

the rewritten query to different service end points. It

then puts together final results and sends them back

to the member who issued the query. Since data are

distributed at different members, all parts of the query

are executed remotely.

1Interviews with: Nautical Science Instructor (search and rescue domain
expert), U. S. Naval Academy, Feb 2019; retired U. S. Naval Officer, March
2019; Chief, Incident Management Division, Sector Maryland, U. S. Coast
Guard, April 2019.

2Interviews with a public health expert at Johns Hopkins University, May
2020.

Data set Member 1 Member 2 Member 3
(Vessel in
Distress)

(Coast
guard)

(Air
Force)

Small 52 96 86
Medium 520 960 860
Large 5200 9600 8600

Table I
TOTAL NUMBER OF TRIPLES IN SMALL, MEDIUM AND LARGE DATA

SETS FOR SAR

Data Set Member 1 Member 2 Member 3
(Contact
Tracer)

(Healthcare
Provider)

(Airline)

Small 66 53 61
Medium 660 530 610
Large 6600 5300 6100

Table II
TOTAL NUMBER OF TRIPLES IN SMALL, MEDIUM AND LARGE DATA

SETS FOR CONTACT TRACING

3) Centralized: this is the case when all data are stored

at one place. The queries are still rewritten to verify

situation-aware access control conditions but without

the need to query remote nodes.

Datasets: It is difficult to obtain publicly available data

sets for the two use cases we consider. We generated three

synthetic data sets for each use case: Small, Medium, and

Large, based on the created ontology. We tried to model the

synthetic data as realistically as possible to the respective

use case. For the maritime SAR use case, we generated

data based on information from a large scale multinational

maritime search and rescue exercise conducted in 2016 [19].

For the contact tracing use case, we generated data based

on information available from the US Centers for Disease

Control and Prevention [20].

Table I shows the number of triples in the SAR data and

Table II shows the numbers in the contact tracing data. The

Medium data set is scaled by a factor of 10 over the Small

data set. The Large data set is scaled by a factor of 100 over

the Small data set.

In the SAR data sets, there are three members: a vessel in

distress, a member of the U.S. Coast Guard, and a member of

the U.S. Air Force. Each member stores data related to itself.

E.g., vessel in distress member stores data about passengers

and the incident.

Contact tracing data sets are distributed on three members:

a contact tracer who has data about people being diagnosed

with the disease, a healthcare provider which owns EHR

data of patients, and an airline which owns air travel data.

Queries: For each data set we used two queries in the

experiments. For SAR data sets, query QS1 is the same

as the example query in Section IV where the captain of a

vessel in distress asks for data about organizations belonging

to the SAR center that oversees the rescue mission.

Query QS2 is asked by the coordinator of an organization

participating in the rescue mission to get data about the

7

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d

s

SAAC-Rewrite small data SAAC-Rewrite medium data

SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data

Centralized small data Centralized medium data

Centralized large data

Figure 5. Execution time of Query QS1 when varying network delay

0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d

s

SAAC-Rewrite small data SAAC-Rewrite medium data

SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data

Centralized small data Centralized medium data

Centralized large data

Figure 6. Execution time of Query QS2 when varying network delay

1 2 3 4 5
0

1

2

3

4

Number of endpoints

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d

s

Small data Medium data

Large data

Figure 7. Execution time of Query QS1 using SAAC-Rewrite when
varying number of endpoints at 100ms delay.

2 4 6 8 10
0

1

2

3

4

Number of rules

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d

s

Small data Medium data

Large data

Figure 8. Execution time of Query QS1 using SAAC-Rewrite when
varying number of rules with 100 ms network delay

Data # of results for
QS1

# of results for
QS2

Small 4 6
Medium 17 21
Large 167 172

Table III
SIZE OF QUERY RESULTS

vessel that asked for help:

QS2: PREFIX ns: <http://www.sar.org/ns#>
SELECT ?Result
WHERE {
?Vessel ns:contacts ?SARCenter .
?Vessel ns:has ?Result . }

The rewritten query includes additional conditions from

access control rules such as whether the user is coordinator

of the SAR mission, and that the data is accessible by

coordinator. For example, general passenger data of the

vessel will be accessible, but not nationality of passengers

(which may discourage passengers from seeking help).

For the contact tracing data sets, we used two queries.

QC1 is asked by a contact tracer to return the electronic

health data and status of people where the EHR data is at a

healthcare provider’s site.

QC1: PREFIX td: <http://www.cdc.gov/td#>
SELECT ?Person ?status ?EHR
WHERE {
?Person rdfs:status ?status .
?Person td:recordIn ?EHR .};

According to the access control rules, status and person

are accessible by any users but only EHR data for people

with the status PUI or with the status “close contact” are

accessible by a contract tracer. So the rewritten query will

check these conditions at the contract tracer site. The query

also needs to retrieve EHR data for qualified people from

healthcare provider’s site.

QC2 is asked by a contract tracer John to get air travel

data (say passenger list) related to people under investigation

from an airline.

8

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d

s

SAAC-Rewrite small data SAAC-Rewrite medium data

SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data

Centralized small data Centralized medium data

Centralized large data

Figure 9. Execution time of Query QC1 when varying network delay.

0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d

s

SAAC-Rewrite small data SAAC-Rewrite medium data

SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data

Centralized small data Centralized medium data

Centralized large data

Figure 10. Execution time of Query QC2 when varying network delay.

QC2: PREFIX td: <http://www.cdc.gov/td#>
SELECT ?Person ?Status ?AirtravelData
WHERE {
?Person rdfs:status ?Status.
?person td:flightRecordIn ?AirtravelData.}

According to access control rules, only users with contact

tracer or case investigator roles can access air travel data

about flights where a person with PUI status is on that flight.

The rewritten query is shown below:

PREFIX td: <http://www.cdc.gov/td#>
SELECT ?Person ?Status ?AirtravelData
WHERE {{?Person td:status td:PUI.
td:John td:hasRole td:ContactTracer.
BIND (td:PUI AS ?Status)
SERVICE <http://192.168.56.103:3030/Trace>
{?Person td:flightRecordIn ?AirtravelData.
?Airline td:owns ?AirtravelData.}
} UNION { ?Person rdfs:status td:PUI.
td:John td:hasRole td:CaseInvestigator.
BIND (td:PUI AS ?Status)
SERVICE <http://192.168.56.103:3030/Trace>
{?Person td:flightRecordIn ?AirtravelData .
?Airline td:owns ?AirtravelData.}}}

We used 16 rules in the experiment for the SAR case,

where query QS1 and QS2 each matched 8 rules. For the

contact tracing use case we used 8 rules where query QC1

matched 3 rules and QC2 matched 2 rules.

C. Results

Correctness of Query Rewriting Algorithm: We compared

returned query results of the proposed SAAC rewriting al-

gorithm to the centralized solution. Table III reports the size

of the result set when executing the queries for various data

sets for the SAR case. The query results of our algorithm

are identical to the centralized solution, the experiment thus

validating our theoretical result that our proposed distributed

query rewriting algorithm is correct. The results for contact

tracing are similar and omitted.

Results when varying network delay: Figure 5 shows the

execution time of QS1 and Figure 6 shows the execution

time of QS2 where we vary the network delay from no

delay to 50ms, 100ms, 200ms, and 500ms for the three

data set sizes, each distributed across three endpoints for

the SAR use case. Figure 9 and Figure 10 show the results

for QC1 and QC2 over three data sets for the contact tracing

case with three endpoints but only data from two endpoints

(member 1 and 2 for QC1 and member 1 and 3 for QC2)

are needed to answer each query.

The execution time includes both query rewriting time and

time to execute the rewritten query. The time is recorded in

seconds. The query rewriting time is quite small compared

to the execution time of the rewritten query.

The execution time of the centralized case (i.e., when

all data are in one place) and Trusted-Coordinator are also

reported. The execution time of the centralized case is flat

because all data are stored at one place, so network delay

has no impact on execution time.

The results show that the execution time of the SAAC-

Rewrite method increases almost linearly with network

delay. Although its execution time is higher than that of

the centralized case, it is still acceptable, e.g., at only 4.39

seconds on the Large SAR data set with 500 ms delay.

The execution time of the Trusted-Coordinator approach

is in the range of 30% to 110% higher than that of SAAC-

Rewrite on SAR data sets and is in the range of 50% to

150% higher than that of SAAC-Rewrite on contact tracing

data sets, mainly because Trusted-Coordinator has to execute

all parts of a query remotely while SAAC-Rewrite executes

part of the query locally. The local part also always contains

9

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



user information (e.g., to verify the role of the user), so the

result size of the local part of the query is very small. Since

the results from remote queries need to be joined with local

results, this also reduces overall execution time.

Our results also show that when data size increases,

execution time of SAAC-Rewrite increases just slightly. The

reason is that each query is asked by a specific user. To

check whether the user has access to the results, triples

with subject or object equal to the user are added to

the rewritten query. For example in QS2, triples “ns:Peter

ns:hasRole ns:SARCoordinator” and “ns:Peter ns:belongsTo

?Organization” are added during rewriting. This makes the

query more selective and thus more efficient to execute

because not many intermediate results need to be sent over

the network.

Results when varying number of endpoints: Figure 7

shows execution time of query QS1 using SAAC-Rewrite

when we vary the number of endpoints from 1 to 5 with

100 ms network delay for the SAR use case. The results for

QS2 and the contact tracing case are similar and omitted.

The case with one endpoint is the centralized case. When

there are two endpoints, we include Member 1 and Member

2 in Table I. When there are four or five endpoints, we

generate data similar to Member 2 for Members 4 and 5.

The results indicate that execution time of SAAC-Rewrite

increases roughly linearly with the number of endpoints for

two reasons. First, each endpoint has its own set of data so

when the number of endpoints increases, more data needs to

be queried and this increases execution time. Second, since

there are more data, more intermediate and final results need

to be transferred between endpoints, which also increases

execution time.

Results when varying number of rules: Figure 8 shows

execution of QS1 using SAAC-Rewrite when we vary the

number of rules matching the query from 1 to 10 on various

data sets with three endpoints and 100 ms network delay.

The results show that the execution time of the proposed

SAAC-Rewrite method increases linearly with the number

of rules involved. The results for other queries are similar

and omitted.

VI. RELATED WORK

Yau et al. [1] proposed a situation-aware access control

framework for distributed settings with a model for repre-

senting access control rules. We used a similar model in our

approach. However, instead of query rewriting, they assume

that users explicitly request access to individual objects and

then their solution decides whether a user is allowed to have

access. This will not be efficient for cases in which a user

asks a query that may return many thousands of objects.

There has been work on using semantic web technologies

to enforce access control or privacy preferences. Beimel

and Peleg [2] propose a situation-aware access control

model based on OWL ontology and SWRL rules. A sim-

ilar semantic-based approach was proposed by Sun et al.

[7] and applied to e-Healthcare. Kayes et al. [8] used

an ontology-based solution to represent purpose-oriented

situations and use that in access control of software services.

Oulmakhzoune et al. [9] used ontologies and query rewriting

to enforce privacy preferences for data stored at a single

place. Padia et al. [10] applied a query rewriting approach

to enforce fine-grained access control to RDF data stored

at a single place. However, none of these works considers

distributed environments, where distributed reasoning and

efficiency are two major challenges. Our work addresses

these two challenges in a distributed environment.

Query rewriting has been used to answer queries over data

with different schema or ontologies. Two popular techniques

for relational data are Local-as-View (LAV) and Global-as-

View (GAV). LAV represents the local schema as a view

of the mediated global schema, and GAV represents the

global schema as a view of local schema [4]. Thieblin et

al. [5] proposed a rewriting method when there exists 1 to

M mappings between two ontologies. Venetis et al. [6] pro-

posed a method that can expand an existing rewritten query

when the ontology is expanded. However, none of these

efforts considers access control in a distributed environment

which is addressed by our work. Our work currently does

not consider multiple ontologies but we can certainly extend

our work to multiple ontologies in the future.

In terms of application domains, Bruggemann et al. pro-

pose an ontology based approach to track vessel movement

and detect abnormal behavior [21], and an ontology for

surveillance of COVID-19 has been proposed [22].

VII. CONCLUSION AND FUTURE WORK

Existing work supporting distributed reasoning requires

special systems, making such reasoning hard to deploy in

current systems. Efficiency can also be a challenge in a

resource limited environment such as maritime SAR. In

this paper we propose an approach to supporting situation-

aware access control in federated Data-as-a-Service systems

using semantic reasoning that can be easily integrated with

existing systems through query rewriting. Our peer-to-peer

architecture allows the rewritten query fragments to be eval-

uated where the data resides, reducing the communication

overhead.

For future work, we plan to extend our proposed ontolo-

gies and use real data to evaluate our approach. We also

plan to develop methods for distributed trust management, as

data sharing in federated systems depends on trust between

members.

ACKNOWLEDGEMENT

This work was partially supported by Office of Naval

Research grant# N00014-18-1-2452.

10

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] S. S. Yau, Y. Yao, and V. Banga, “Situation-aware access con-
trol for service-oriented autonomous decentralized systems,”
in Autonomous Decentralized Systems. IEEE, 2005, pp. 17–
24.

[2] D. Beimel and M. Peleg, “Using owl and swrl to represent
and reason with situation-based access control policies,” Data
& Knowledge Engineering, vol. 70, no. 6, pp. 596–615, 2011.

[3] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije,
and F. van Harmelen, “Marvin: Distributed reasoning over
large-scale semantic web data,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 7, no. 4,
pp. 305–316, 2009.

[4] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration:
The teenage years,” in Proceedings of the 32nd international
conference on Very large data bases, 2006, pp. 9–16.

[5] É. Thiéblin, F. Amarger, O. Haemmerlé, N. Hernandez, and
C. T. dos Santos, “Rewriting select sparql queries from
1: n complex correspondences.” in The 11th International
Workshop on Ontology Matching, 2016, pp. 49–60.

[6] T. Venetis, G. Stoilos, and G. Stamou, “Query rewriting under
query extensions for owl 2 ql ontologies,” in The 7th Interna-
tional Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS 2011), 2011, p. 59.

[7] L. Sun, H. Wang, J. Yong, and G. Wu, “Semantic access
control for cloud computing based on e-healthcare,” in Pro-
ceedings of the 2012 IEEE 16th International Conference on
Computer Supported Cooperative Work in Design (CSCWD).
IEEE, 2012, pp. 512–518.

[8] A. Kayes, J. Han, and A. Colman, “An ontological frame-
work for situation-aware access control of software services,”
Information Systems, vol. 53, pp. 253–277, 2015.

[9] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, and
S. Morucci, “Privacy policy preferences enforced by sparql
query rewriting,” in 2012 Seventh International Conference
on Availability, Reliability and Security, 2012, pp. 335–342.

[10] A. Padia, T. Finin, A. Joshi et al., “Attribute-based fine
grained access control for triple stores,” in 3rd Society, Pri-
vacy and the Semantic Web-Policy and Technology workshop,
14th International Semantic Web Conference, 2015.

[11] S. Oni, Z. Chen, A. Crainiceanu, K. Joshi, and D. Needham,
“Situation-aware access control in federated data-as-a-service
for maritime search and rescue,” in 2019 IEEE International
Conference on Services Computing (SCC), 2019, pp. 228–
230.

[12] O. Lassila and R. R. Swick, “Resource description framework
(rdf) model and syntax specification,” WWW Consortium,
1999.

[13] D. L. McGuinness, F. Van Harmelen et al., “Owl web
ontology language overview,” W3C recommendation, vol. 10,
no. 10, 2004.

[14] The W3C SPARQL Working Group, “Sparql 1.1 overview,”
March 2013, accessed June 2, 2020. [Online]. Available:
https://www.w3.org/TR/sparql11-overview/

[15] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark
for owl knowledge base systems,” Web Semantics, vol. 3,
no. 2-3, pp. 158–182, Oct. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.websem.2005.06.005

[16] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-
W. Byun, “On the correctness criteria of fine-grained access
control in relational databases,” in Proceedings of the 33rd
international conference on Very large data bases. VLDB
Endowment, 2007, pp. 555–566.

[17] M. A. Musen, “The protégé project: A look back and a look
forward,” AI Matters, vol. 1, no. 4, p. 4–12, Jun. 2015.

[18] Apache Jena, “Apache jena: A free and open source java
framework for building semantic web and linked data
applications,” accessed June 2, 2020. [Online]. Available:
https://jena.apache.org/

[19] Crystal Cruises, the Canadian Coast Guard, Transport
Canada, and the U. S. Department of Defense (U.S.
Air Force, and U.S. Coast Guard), “Northwest Passage
(NWP 16) 2016 Exercise – After Action Report,” July
2016, accessed Feb 7, 2019. [Online]. Available: https:
//www.hsdl.org/?view&did=802138

[20] Centers for Disease Control and Prevention, “Contact
Tracing,” May 2020, accessed May 12, 2020. [Online].
Available: https://www.cdc.gov/coronavirus/2019-ncov/php/
open-america/contact-tracing-resources.html

[21] S. Brüggemann, K. Bereta, G. Xiao, and M. Koubarakis,
“Ontology-based data access for maritime security,” in In-
ternational Semantic Web Conference. Springer, 2016, pp.
741–757.

[22] H. Liyanage, S. de Lusignan, and J. Williams, “Covid-19
surveillance ontology,” March 2020, accessed May 26,
2020. [Online]. Available: https://bioportal.bioontology.org/
ontologies/COVID19

11

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 24,2022 at 18:35:38 UTC from IEEE Xplore.  Restrictions apply. 


